1
|
Hoang B, Damircheli R, Ferrari VC, Stewart DM, Brausch M, Nguyen N, Lin CF. Highly Effective Polyacrylonitrile-Rich Artificial Solid-Electrolyte-Interphase for Dendrite-Free Li-Metal/Solid-State Battery. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39504980 DOI: 10.1021/acsami.4c16480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Lithium metal anode batteries have attracted significant attention as a promising energy storage technology, offering a high theoretical specific capacity and a low electrochemical potential. Utilizing lithium metal as the anode material can substantially increase energy density compared with conventional lithium-ion batteries. However, the practical application of lithium metal anodes has encountered notable challenges, primarily due to the formation of dendritic structures during cycling. These dendrites pose safety risks and degrade battery performance. Addressing these challenges necessitates the development of a reliable and effective protection layer for lithium metal. This study presents a cost-effective and convenient method to spontaneously produce lithium metal protective layers by creating polymeric layers by using acrylonitrile (AN). This method remarkably extends 6× of the lifetime of lithium metal anodes under high current density (1 mA/cm2) cycling conditions. While the cycle life of bare lithium metal is approximately 150 h under high current cycling conditions, AN-treated lithium metal anodes exhibit an impressive longevity of over 900 h. The AN-treated lithium metal anodes are further integrated and tested with sulfide-based Li10GeP2S12 (LGPS) solid-state electrolytes to evaluate its interfacial stability at a solid-solid interface. The formation of the polyacrylonitrile (PAN)-rich ASEI, due to AN-treatment, effectively reduces and stabilizes the cell overpotential to only one-tenth of that with the interface without treatment. This strategy paves a route to enable a highly efficient and highly stable Li/LGPS solid-state battery interface.
Collapse
Affiliation(s)
- Binh Hoang
- Department of Mechanical Engineering, Catholic University of America, Washington, D.C. 20064, United States
| | - Roya Damircheli
- Department of Mechanical Engineering, Catholic University of America, Washington, D.C. 20064, United States
| | - Victoria Castagna Ferrari
- Department of Material Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - David M Stewart
- Department of Material Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Madison Brausch
- Department of Mechanical Engineering, Catholic University of America, Washington, D.C. 20064, United States
| | - Nhi Nguyen
- Department of Mechanical Engineering, Catholic University of America, Washington, D.C. 20064, United States
| | - Chuan-Fu Lin
- Department of Mechanical Engineering, Catholic University of America, Washington, D.C. 20064, United States
| |
Collapse
|
2
|
Ha J, Lee J, Lee G, Kim YT, Choi J. In Situ Formation of an Artificial Lithium Oxalate-Rich Solid Electrolyte Interphase on 3D Ni Host for Highly Stable Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39427-39436. [PMID: 39028895 DOI: 10.1021/acsami.4c08044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Li metal, with a high theoretical capacity, is considered the most promising anode for next-generation high-energy-density batteries. However, the commercialization of the Li metal anode is limited owing to its high reactivity, significant volume expansion, continuous solid electrolyte interphase (SEI) layer degradation caused by undesirable Li deposition, and uncontrollable dendrite growth. This study demonstrates the in situ construction of a Li2C2O4-enriched SEI layer from NiC2O4 nanowires on three-dimensional Ni foam. The lithiophilic Li2C2O4-enriched SEI layer provides a uniform distribution of the electrical field and sufficient nucleation and deposition sites for Li without dendrite formation. Consequently, the stable Li2C2O4-enriched SEI layer successfully inhibits the formation of lithium dendrites, resulting in reversible Li stripping/plating behavior, maintained over an extended period of 5000 h with a deposition capacity of 1 mAh cm-2 at 1 mA cm-2. Additionally, a high cycling stability is observed in the full cell test with ∼70% capacity retention after 1300 cycles at 3 C. This approach offers a large-scale and facile synthesis process via the in situ precipitation growth of NiC2O4 followed by lithiation to form Li2C2O4. Furthermore, the significant stability of the Li2C2O4-enriched SEI layer aids the design of in situ-constructed SEI layers for highly stable Li metal batteries.
Collapse
Affiliation(s)
- Jaeyun Ha
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jinhee Lee
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Garam Lee
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Yong-Tae Kim
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Jinsub Choi
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
3
|
Zhang Z, Han WQ. From Liquid to Solid-State Lithium Metal Batteries: Fundamental Issues and Recent Developments. NANO-MICRO LETTERS 2023; 16:24. [PMID: 37985522 PMCID: PMC10661211 DOI: 10.1007/s40820-023-01234-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/30/2023] [Indexed: 11/22/2023]
Abstract
The widespread adoption of lithium-ion batteries has been driven by the proliferation of portable electronic devices and electric vehicles, which have increasingly stringent energy density requirements. Lithium metal batteries (LMBs), with their ultralow reduction potential and high theoretical capacity, are widely regarded as the most promising technical pathway for achieving high energy density batteries. In this review, we provide a comprehensive overview of fundamental issues related to high reactivity and migrated interfaces in LMBs. Furthermore, we propose improved strategies involving interface engineering, 3D current collector design, electrolyte optimization, separator modification, application of alloyed anodes, and external field regulation to address these challenges. The utilization of solid-state electrolytes can significantly enhance the safety of LMBs and represents the only viable approach for advancing them. This review also encompasses the variation in fundamental issues and design strategies for the transition from liquid to solid electrolytes. Particularly noteworthy is that the introduction of SSEs will exacerbate differences in electrochemical and mechanical properties at the interface, leading to increased interface inhomogeneity-a critical factor contributing to failure in all-solid-state lithium metal batteries. Based on recent research works, this perspective highlights the current status of research on developing high-performance LMBs.
Collapse
Affiliation(s)
- Zhao Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Wei-Qiang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| |
Collapse
|
4
|
Hu P, Chen W, Wang Y, Chen T, Qian X, Li W, Chen J, Fu J. Fatigue-Free and Skin-like Supramolecular Ion-Conductive Elastomeric Interphases for Stable Lithium Metal Batteries. ACS NANO 2023; 17:16239-16251. [PMID: 37534984 DOI: 10.1021/acsnano.3c06171] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The heterogeneity and continuous cracking of the static solid electrolyte interphase (SEI) are one of the most critical barriers that largely limit the cycle life of lithium (Li) metal batteries. Herein, we report a fatigue-free dynamic supramolecular ion-conductive elastomeric interphase (DSIEI) for a highly efficient and dendrite-free lithium metal anode. The soft phase poly(propylene glycol) backbone with loosely Li+-O coordinating interaction was responsible for fast ion transport. Simultaneously, the supramolecular quadruple hydrogen bonds (H-bonds) in the hard phases endow the elastomeric interphase with mechanical enhancement, while gradient H-bonds can dissipate strain energy via the sequential bonding cleavage. Such a design affords superior mechanical robustness, high ionic conductivity, gradient energy dissipation, and high Li+ transference number. Besides, anion enrichment in DSIEI assists in situ construction of a lithium fluoride-rich inner layer upon cycling. The resultant biomimetic bilayer structure enables the symmetric cells with superior cyclability of over 600 h at a high current density of 10 mA cm-2. Moreover, the DSIEI allows stable operation of the full cells under constrained conditions of limited lithium excess, a high-loading LiNi0.8Co0.1Mn0.1O2 cathode, and a low negative/positive capacity (N/P) ratio. This work presents a powerful strategy for deigning artificial SEI and achieving high-energy-density Li metal batteries.
Collapse
Affiliation(s)
- Po Hu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Wei Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Tao Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Xiaohu Qian
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Wenqi Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Jiaoyang Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Jiajun Fu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
5
|
Jia D, Shen Q. Multifunctional Mesoporous Carbonaceous Materials Enable the High Performance of Lithium-Sulfur Batteries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3173-3178. [PMID: 36802662 DOI: 10.1021/acs.langmuir.2c03446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Focusing on multifunctional mesoporous carbonaceous materials (MCMs) is one of the hot research topics due to increasing demand in the high-energy-density devices of lithium-sulfur (Li-S) batteries (2600 Wh kg-1). On the premise of applying MCMs as a porous framework to load elemental sulfur, to improve the electronic conductivity of the cathode, and to trap the in situ-formed electrolyte-soluble intermediates of lithium polysulfides (LiPSs), the commercialization of MCMs-based energy storage devices still needs to solve solid/solid and solid/liquid interfacial issues such as the chemical anchoring of the electrically insulating active substances, the sluggish redox kinetics of intermediate LiPSs, and so on. Through the permutation of multifunctional MCMs serving as the primary sulfur-loading carrier of the cathode, as the secondary surface-coating layers of the separator, the cathode, and the anode separately, this Perspective highlights research challenges to clarify a comprehensive high-performance mechanism of MCM-based Li-S batteries and provides new chemical insight for potential application purposes.
Collapse
Affiliation(s)
- Dandan Jia
- Key Laboratory of Laser and Infrared System of Ministry of Education, Shandong University, Qingdao 266237, P. R. China
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Qiang Shen
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
6
|
Patrike A, Yadav P, Shelke V, Shelke M. Research Progress and Perspective on Lithium/Sodium Metal Anodes for Next-Generation Rechargeable Batteries. CHEMSUSCHEM 2022; 15:e202200504. [PMID: 35560981 DOI: 10.1002/cssc.202200504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/27/2022] [Indexed: 06/15/2023]
Abstract
With the development of consumer electronic devices and electric vehicles, lithium-ion batteries (LIBs) are vital components for high energy storage with great impact on our modern life. However, LIBs still cannot meet all the essential demands of rapidly growing new industries. In pursuance of higher energy requirement, metal batteries (MBs) are the next-generation high-energy-density devices. Li/Na metals are considered as an ideal anode for high-energy batteries due to extremely high theoretical specific capacity (3860 and 1165 mAh g-1 for Li and Na, respectively) and low electrochemical potential (-3.04 V for Li and -2.71 V for Na vs. standard hydrogen electrode). Unfortunately, uncontrolled dendrite growth, high reactivity, and infinite volume change induce severe safety concerns and poor cycle efficiency during their application. Consequently, MBs are far from commercialization stage. This Review represents a comprehensive overview of failure mechanism of lithium/sodium metal anode and its progress for rechargeable batteries through (i) electrolyte optimization, (ii) artificial solid-electrolyte interphase (SEI) layer formation, and (iii) nanoengineering at materials level in current collector, anode, and host. The challenges in current MBs research and potential applications of lithium/sodium metal anodes are also outlined and summarized.
Collapse
Affiliation(s)
- Apurva Patrike
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Poonam Yadav
- Rechargion Energy Pvt. Ltd., Pune, Maharashtra, 411045, India
| | - Vilas Shelke
- Rechargion Energy Pvt. Ltd., Pune, Maharashtra, 411045, India
| | - Manjusha Shelke
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Rechargion Energy Pvt. Ltd., Pune, Maharashtra, 411045, India
| |
Collapse
|
7
|
Wang J, Zhang C, Zhang Y, Xue Z. Advances in
host selection
and
interface regulation
of polymer electrolytes. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Jirong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan China
| | - Chi Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan China
| | - Yong Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan China
| | - Zhigang Xue
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
8
|
Zou Y, Guo D, Yang B, Zhou L, Lin P, Wang J, Chen X, Wang S. Toward High-Performance Lithium-Sulfur Batteries: Efficient Anchoring and Catalytic Conversion of Polysulfides Using P-Doped Carbon Foam. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50093-50100. [PMID: 34649425 DOI: 10.1021/acsami.1c16551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rational design of the sulfur cathode structure enables effective adsorption of polysulfides and accelerates the sulfur reduction reaction, which is of great significance to the practical application of lithium-sulfur batteries. Here, P-doped carbon foam (PCF) as a sulfur host for the lithium-sulfur battery cathode was successfully synthesized by a facile strategy. The tailored hierarchical pore structure combined with P doping not only facilitates Li+ diffusion but also enhances the adsorption and accelerates the catalytic conversion of lithium polysulfides, thus significantly improving lithium storage performance of the PCF/S cathode.
Collapse
Affiliation(s)
- Yanwen Zou
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Daying Guo
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Bin Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Ling Zhou
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Peirong Lin
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jinyi Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xi'an Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Shun Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
9
|
Zhao Q, Deng Y, Utomo NW, Zheng J, Biswal P, Yin J, Archer LA. On the crystallography and reversibility of lithium electrodeposits at ultrahigh capacity. Nat Commun 2021; 12:6034. [PMID: 34654812 PMCID: PMC8519946 DOI: 10.1038/s41467-021-26143-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/16/2021] [Indexed: 11/21/2022] Open
Abstract
Lithium metal is a promising anode for energy-dense batteries but is hindered by poor reversibility caused by continuous chemical and electrochemical degradation. Here we find that by increasing the Li plating capacity to high values (e.g., 10–50 mAh cm−2), Li deposits undergo a morphological transition to produce dense structures, composed of large grains with dominantly (110)Li crystallographic facets. The resultant Li metal electrodes manifest fast kinetics for lithium stripping/plating processes with higher exchange current density, but simultaneously exhibit elevated electrochemical stability towards the electrolyte. Detailed analysis of these findings reveal that parasitic electrochemical reactions are the major reason for poor Li reversibility, and that the degradation rate from parasitic electroreduction of electrolyte components is about an order of magnitude faster than from chemical reactions. The high-capacity Li electrodes provide a straightforward strategy for interrogating the solid electrolyte interphase (SEI) on Li —with unprecedented, high signal to noise. We find that an inorganic rich SEI is formed and is primarily concentrated around the edges of lithium particles. Our findings provide straightforward, but powerful approaches for enhancing the reversibility of Li and for fundamental studies of the interphases formed in liquid and solid-state electrolytes using readily accessible analytical tools. Lithium metal batteries offer high-capacity electrical energy storage but suffer from poor reversibility of the metal anode. Here, the authors report that at very high capacities, lithium deposits as dense structures with a preferred crystallite orientation, yielding highly reversible lithium anodes.
Collapse
Affiliation(s)
- Qing Zhao
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Yue Deng
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Nyalaliska W Utomo
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Jingxu Zheng
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Prayag Biswal
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Jiefu Yin
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Lynden A Archer
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA. .,Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
10
|
|
11
|
Cui Y, Liu S, Liu B, Wang D, Zhong Y, Zhang X, Wang X, Xia X, Gu C, Tu J. Bi-containing Electrolyte Enables Robust and Li Ion Conductive Solid Electrolyte Interphase for Advanced Lithium Metal Anodes. Front Chem 2020; 7:952. [PMID: 32039160 PMCID: PMC6990125 DOI: 10.3389/fchem.2019.00952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/31/2019] [Indexed: 11/22/2022] Open
Abstract
The notorious lithium dendrite growth, causing the safety concern, hinders the practical application of high-capacity Li metal anodes for rechargeable batteries. Here, a robust and highly ionic conductive solid electrolyte interphase (SEI) layer to protect Li metal anode is in-situ constructed by introducing trace additive of tetrapotassium heptaiodobismuthate (K4BiI7) into electrolyte. The K4BiI7-added electrolyte enables Li metal anode to display a stable cycling for over 600 cycles at 1.0 mA cm−2/1.0 mAh cm−2 and over 400 cycles at 5.0 mA cm−2/5.0 mAh cm−2. In situ optical microscopy observations also conform the suppression of Li dendrites at high current density. Moreover, the in-situ SEI layer modified Li anode exhibits an average Coulombic efficiency of 99.57% and less Li dendrite growth. The Li-S full sells with the modified electrolyte also show improved electrochemical performance. This research provides a cost-efficient method to achieve a highly ionic conductive and stable SEI layer toward advanced Li metal anodes.
Collapse
Affiliation(s)
- Yongliang Cui
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Sufu Liu
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Bo Liu
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Donghuang Wang
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Yu Zhong
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Xuqing Zhang
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Xiuli Wang
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Xinhui Xia
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Changdong Gu
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jiangping Tu
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
A dual-layered artificial solid electrolyte interphase formed by controlled electrochemical reduction of LiTFSI/DME-LiNO3 for dendrite-free lithium metal anode. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.162] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Li C, Lan Q, Yang Y, Shao H, Zhan H. Flexible Artificial Solid Electrolyte Interphase Formed by 1,3-Dioxolane Oxidation and Polymerization for Metallic Lithium Anodes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2479-2489. [PMID: 30557500 DOI: 10.1021/acsami.8b16080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lithium-tin (Li-Sn) alloys are perfect substrate materials for anodes in high-energy density lithium metal secondary batteries. A new approach is proposed to further prevent the Li deposit on Li-Sn alloy substrates from reaction with electrolytes using an artificial solid electrolyte interphase (ASEI) based on electrochemical oxidation and polymerization of 1,3-dioxolane precursor with LiTFSI additive. This ASEI layer is flexible, stable, ion conductive, and electrically insulating, which can provide very stable cycling of Li-Sn alloy substrate anodes for Li deposition/stripping with an average Coulombic efficiency of 98.4% at a current density of 1 mA cm-2. The Li-Sn alloy substrate is kept uniform and smooth without any dendrites and cracks after cycles. When the Li-Sn alloy substrate protected by ASEI is used as the anode of lithium-sulfur full cell, the cell shows much higher discharge capacity and better cycleability. This innovative and facile strategy of ASEI formation demonstrates a new and promising approach to the solution of the tough problems of Li dendrites in Li metal batteries.
Collapse
Affiliation(s)
- Cheng Li
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Qing Lan
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Yifu Yang
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Huixia Shao
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Hui Zhan
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| |
Collapse
|