1
|
Li X, Liu Z, Yang L, Zhou S, Qian Y, Wu Y, Yan Z, Zhang Z, Li T, Wang Q, Zhu C, Kong XY, Wen L. An ultrasensitive 2,4,6-trinitrophenol nanofluidic sensor inspired by olfactory sensory neurons in sniffer dogs. Chem Sci 2024; 15:19504-19512. [PMID: 39568954 PMCID: PMC11575536 DOI: 10.1039/d4sc05493h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/26/2024] [Indexed: 11/22/2024] Open
Abstract
Explosives, as high-energy materials, could generate huge destructive explosions along with a massive release of energy. The regulatory or illegal transportation of explosives threatens the peace and stability worldwide. Among the many high-powered explosives, 2,4,6-trinitrophenol (TNP) is not only frequently used in many terrorist attacks, but also seriously jeopardizes environmental safety and human health. Hence, dependable methods for high-sensitivity, rapid and portable detection are desperately needed. Inspired by olfactory sensory neurons (OSNs) in sniffer dogs, we present a nanofluidic sensor for ultrasensitive TNP detection by in situ growing dense UiO-66-NH2 layers on the surface of anodic aluminum oxide (AAO) nanochannels. TNP could be specifically captured by UiO-66-NH2 of the sensor through charge transfer to form Meisenheimer complexes, which cause the ionic current change. The TNP concentrations are quantitatively analyzed by monitoring the changed ionic current. And the detection range is from 10-14 to 10-10 g mL-1 with a limit of detection as low as 6.5 × 10-16 g mL-1, which is far beyond those of the state-of-the-art sensors. This work provides a novel strategy for ultrasensitive detection of TNP as well as other explosives, which opens new and promising routes to various breakthroughs in the fields of homeland security, military applications, security inspections and environmental monitoring.
Collapse
Affiliation(s)
- Xin Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhanfang Liu
- Institute of Forensic Science, Ministry of Public Security Beijing 100038 P. R. China
| | - Linsen Yang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shengyang Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yongchao Qian
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yuge Wu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zidi Yan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhehua Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Tingyang Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Qingchen Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Congcong Zhu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China Suzhou Jiangsu 215123 China
- School of Chemistry and Materials Science, University of Science and Technology of China Hefei Anhui 230026 P. R. China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China Suzhou Jiangsu 215123 China
- School of Chemistry and Materials Science, University of Science and Technology of China Hefei Anhui 230026 P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao 266101 P. R. China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
2
|
Liu R, Liu Z, Li J, Qiu Y. Low-cost and convenient fabrication of polymer micro/nanopores with the needle punching process and their applications in nanofluidic sensing. BIOMICROFLUIDICS 2024; 18:024103. [PMID: 38571910 PMCID: PMC10987195 DOI: 10.1063/5.0203512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024]
Abstract
Solid-state micro/nanopores play an important role in the sensing field because of their high stability and controllable size. Aiming at problems of complex processes and high costs in pore manufacturing, we propose a convenient and low-cost micro/nanopore fabrication technique based on the needle punching method. The thin film is pierced by controlling the feed of a microscale tungsten needle, and the size variations of the micropore are monitored by the current feedback system. Based on the positive correlation between the micropore size and the current threshold, the size-controllable preparation of micropores is achieved. The preparation of nanopores is realized by the combination of needle punching and chemical etching. First, a conical defect is prepared on the film with the tungsten needle. Then, nanopores are obtained by unilateral chemical etching of the film. Using the prepared conical micropores, resistive-pulse detection of nanoparticles is performed. Significant ionic current rectification is also obtained with our conical nanopores. It is proved that the properties of micro/nanopores prepared by our method are comparable to those prepared by the track-etching method. The simple and controllable fabrication process proposed here will advance the development of low-cost micro/nanopore sensors.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zhe Liu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Yinghua Qiu
- Author to whom correspondence should be addressed:
| |
Collapse
|
3
|
Lu J, Jiang Y, Yu P, Jiang W, Mao L. Light-Controlled Ionic/Molecular Transport through Solid-State Nanopores and Nanochannels. Chem Asian J 2022; 17:e202200158. [PMID: 35324076 DOI: 10.1002/asia.202200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/24/2022] [Indexed: 11/10/2022]
Abstract
Biological nanochannels perfectly operate in organisms and exquisitely control mass transmembrane transport for complex life process. Inspired by biological nanochannels, plenty of intelligent artificial solid-state nanopores and nanochannels are constructed based on various materials and methods with the development of nanotechnology. Specially, the light-controlled nanopores/nanochannels have attracted much attention due to the unique advantages in terms of that ion and molecular transport can be regulated remotely, spatially and temporally. According to the structure and function of biological ion channels, light-controlled solid-state nanopores/nanochannels can be divided into light-regulated ion channels with ion gating and ion rectification functions, and light-driven ion pumps with active ion transport property. In this review, we present a systematic overview of light-controlled ion channels and ion pumps according to the photo-responsive components in the system. Then, the related applications of solid-state nanopores/nanochannels for molecular sensing, water purification and energy conversion are discussed. Finally, a brief conclusion and short outlook are offered for future development of the nanopore/nanochannel field.
Collapse
Affiliation(s)
- Jiahao Lu
- Shandong University, School of Chemistry and Chemical Engineering, CHINA
| | - Yanan Jiang
- Beijing Normal University, College of Chemistry, CHINA
| | - Ping Yu
- Chinese Academy of Sciences, Institute of Chemistry, CHINA
| | - Wei Jiang
- Shandong University, School of Chemistry and Chemical Engineering, CHINA
| | - Lanqun Mao
- Beijing Normal University, College of Chemistry, No.19, Xinjiekouwai St, Haidian District, 100875, Beijing, CHINA
| |
Collapse
|
4
|
Guarding food safety with conventional and up-conversion near-infrared fluorescent sensors. J Adv Res 2022; 41:129-144. [DOI: 10.1016/j.jare.2022.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 01/05/2023] Open
|
5
|
Dong Q, Jiang J, Wang Y, Zhai J. Geometric Tailoring of Macroscale Ti 3C 2T x MXene Lamellar Membrane for Logic Gate Circuits. ACS NANO 2021; 15:19266-19274. [PMID: 34870410 DOI: 10.1021/acsnano.1c05170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Constructing nanofluidic diode nanochannels with an asymmetric structure for logic gate circuits has attracted extensive research interests. Currently, the preparation of a geometrically asymmetric nanochannel relies on cost-effective material-processing methods and has been hard to scale up, limiting the development of nanofluidic research. Herein, we introduce the idea of geometric tailoring to cut the MXene lamellar membrane in different shapes and investigate the ion transport behavior systematically. The ion rectification can be regulated by adjusting geometric factors such as the asymmetric ratio and height of the trapezoidal membrane. On the basis of the above-mentioned research on rectification characteristics, we further optimized the trapezoidal membrane into a triangular membrane on the macroscopic level and successfully applied it to logic circuits, realizing the logic operations of "AND" and "OR". It is worth mentioning that the shape of a macrocut triangular membrane is exactly the same as the symbol of an electronic diode, and the conduction and cutoff directions of the ionic current are also exactly the same as those of electronic diodes. Our finding provides a facile and general strategy for fabricating a macroscale geometric asymmetry nanochannel-based two-dimensional lamellar membrane and shows the potential applications in complex highly integrated ionic circuits.
Collapse
Affiliation(s)
- Qizheng Dong
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Jiaqiao Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Yuting Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Jin Zhai
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
6
|
Wang J, Zhou Y, Jiang L. Bio-inspired Track-Etched Polymeric Nanochannels: Steady-State Biosensors for Detection of Analytes. ACS NANO 2021; 15:18974-19013. [PMID: 34846138 DOI: 10.1021/acsnano.1c08582] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Bio-inspired polymeric nanochannel (also referred as nanopore)-based biosensors have attracted considerable attention on account of their controllable channel size and shape, multi-functional surface chemistry, unique ionic transport properties, and good robustness for applications. There are already very informative reviews on the latest developments in solid-state artificial nanochannel-based biosensors, however, which concentrated on the resistive-pulse sensing-based sensors for practical applications. The steady-state sensing-based nanochannel biosensors, in principle, have significant advantages over their counterparts in term of high sensitivity, fast response, target analytes with no size limit, and extensive suitable range. Furthermore, among the diverse materials, nanochannels based on polymeric materials perform outstandingly, due to flexible fabrication and wide application. This compressive Review summarizes the recent advances in bio-inspired polymeric nanochannels as sensing platforms for detection of important analytes in living organisms, to meet the high demand for high-performance biosensors for analysis of target analytes, and the potential for development of smart sensing devices. In the future, research efforts can be focused on transport mechanisms in the field of steady-state or resistive-pulse nanochannel-based sensors and on developing precisely size-controlled, robust, miniature and reusable, multi-functional, and high-throughput biosensors for practical applications. Future efforts should aim at a deeper understanding of the principles at the molecular level and incorporating these diverse pore architectures into homogeneous and defect-free multi-channel membrane systems. With the rapid advancement of nanoscience and biotechnology, we believe that many more achievements in nanochannel-based biosensors could be achieved in the near future, serving people in a better way.
Collapse
Affiliation(s)
- Jian Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Yahong Zhou
- Key Laboratory of Bio-inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, People's Republic of China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, People's Republic of China
| |
Collapse
|
7
|
|
8
|
Zhang D, Zhang X. Bioinspired Solid-State Nanochannel Sensors: From Ionic Current Signals, Current, and Fluorescence Dual Signals to Faraday Current Signals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100495. [PMID: 34117705 DOI: 10.1002/smll.202100495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Inspired from bioprotein channels of living organisms, constructing "abiotic" analogues, solid-state nanochannels, to achieve "smart" sensing towards various targets, is highly seductive. When encountered with certain stimuli, dynamic switch of terminal modified probes in terms of surface charge, conformation, fluorescence property, electric potential as well as wettability can be monitored via transmembrane ionic current, fluorescence intensity, faraday current signals of nanochannels and so on. Herein, the modification methodologies of nanochannels and targets-detecting application are summarized in ions, small molecules, as well as biomolecules, and systematically reviewed are the nanochannel-based detection means including 1) by transmembrane current signals; 2) by the coordination of current- and fluorescence-dual signals; 3) by faraday current signals from nanochannel-based electrode. The coordination of current and fluorescence dual signals offers great benefits for synchronous temporal and spatial monitoring. Faraday signals enable the nanoelectrode to monitor both redox and non-redox components. Notably, by incorporation with confined effect of tip region of a needle-like nanopipette, glorious in-vivo monitoring is conferred on the nanopipette detector at high temporal-spatial resolution. In addition, some outlooks for future application in reliable practical samples analysis and leading research endeavors in the related fantastic fields are provided.
Collapse
Affiliation(s)
- Dan Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| | - Xuanjun Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| |
Collapse
|
9
|
Wang Y, Zhang S, Yan H, Quan J, Yang L, Chen X, Toimil-Molares ME, Trautmann C, Li H. Efficient Chiral Nanosenor Based on Tip-Modified Nanochannels. Anal Chem 2021; 93:6145-6150. [PMID: 33826298 DOI: 10.1021/acs.analchem.0c05390] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Enantiomers of various drug molecules have a specific effect on living organisms. Accordingly, developing a sample method for the efficient and rapid recognition of chiral drug enantiomers is of great industrial value and physiological significance. Here, inspired by the structure of ion channels in living organisms, we developed a chiral nanosensor based on an artificial tip-modified nanochannel system that allows efficient selective recognition of chiral drugs. In this system, l-alanine-pillar[5]arenes as selective receptors were introduced on the tip side of conical nanochannels to form an enantioselective "gate". The selective coefficient of our system toward R-propranolol is 4.96, which is higher than the traditional fully modified nanochannels in this work.
Collapse
Affiliation(s)
- Yingqian Wang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Siyun Zhang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hewei Yan
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jiaxin Quan
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lei Yang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xue Chen
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt 64291, Germany.,Technische Universität Darmstadt, Darmstadt 64287, Germany
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
10
|
Yu KK, Pan SL, Li K, Shi L, Liu YH, Chen SY, Yu XQ. A novel near-infrared fluorescent sensor for zero background nitrite detection via the "covalent-assembly" principle. Food Chem 2020; 341:128254. [PMID: 33039741 DOI: 10.1016/j.foodchem.2020.128254] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/03/2020] [Accepted: 09/27/2020] [Indexed: 01/03/2023]
Abstract
Different chemical states of nitrogen are present in many freshwater and marine ecosystems, and nitrite ions are one of the most toxic water-soluble nitrogen species. Developing an effective and convenient sensing method to constantly detect the concentration of nitrite has become a wide concern. Here, a novel near-infrared fluorescent probe (AAC) was designed and synthesized via the "covalent assembly" principle, showing excellent selectivity and high sensitivity for nitrite. A new nitrite-quantitative method was established with the help of AAC, and the detection limit of nitrite using the new method was as low as 6.7 nM. AAC was successfully applied for the quantitative detection of nitrite in real-world environmental and food samples (including river water and Chinese sauerkraut), and the detection results were essentially identical to the results obtained from the traditional Griess assay. Moreover, AAC was successfully applied for tracking nitrite in Escherichia coli by fluorescence imaging. Since nitrite can have devastating effects, the method established with AAC allowed us to "see" effectively about the water quality, food quality, etc.
Collapse
Affiliation(s)
- Kang-Kang Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, 29, Wangjiang Road, Chengdu, Sichuan Province 610064, China; Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, 29, Wangjiang Road, Chengdu, Sichuan Province 610064, China.
| | - Sheng-Lin Pan
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, 29, Wangjiang Road, Chengdu, Sichuan Province 610064, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, 29, Wangjiang Road, Chengdu, Sichuan Province 610064, China
| | - Lei Shi
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, 29, Wangjiang Road, Chengdu, Sichuan Province 610064, China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, 29, Wangjiang Road, Chengdu, Sichuan Province 610064, China
| | - Shan-Yong Chen
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, 29, Wangjiang Road, Chengdu, Sichuan Province 610064, China.
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, 29, Wangjiang Road, Chengdu, Sichuan Province 610064, China.
| |
Collapse
|
11
|
Zhao C, Zhang H, Hou J, Ou R, Zhu Y, Li X, Jiang L, Wang H. Effect of Anion Species on Ion Current Rectification Properties of Positively Charged Nanochannels. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28915-28922. [PMID: 32460478 DOI: 10.1021/acsami.0c08263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biological ion channels can realize delicate mass transport under complicated physiological conditions. Artificial nanochannels can achieve biomimetic ion current rectification (ICR), gating, and selectivity that are mostly performed in pure salt solutions. Synthetic nanochannels that can function under mixed ion systems are highly desirable, yet their performances are hard to be compared to those under pure systems. Seeking out the potential reasons by investigating the effect of mixed-system components on the ion-transport properties of the constructed nanochannels seems necessary and important. Herein, we report the effect of anions with different charges and sizes on the ICR properties of positively charged nanochannels. Among the investigated anions, the low-valent anions showed no impact on the ICR direction, while the high-valent component ferrocyanide [Fe(CN)64-] caused significant ICR inversion. The ICR inversion mechanism is evidenced to result from the adsorption of Fe(CN)64--induced surface charge reversal, which relates to solution concentration, pH conditions, and nanochannel sizes and applies to both aminated and quaternized nanochannels that are positively charged. Noticeably, Fe(CN)64- is found to interfere with the transport of protein molecules in the nanochannel. This work points out that the ion species from mixed systems would potentially impact the intrinsic ICR properties of the nanochannels. Replacing highly charged counterions with organic components would be promising in building up future nanochannel-based mass transport systems running under mixed systems.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Chemical Engineering, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Huacheng Zhang
- Department of Chemical Engineering, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Jue Hou
- Department of Chemical Engineering, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Ranwen Ou
- Department of Chemical Engineering, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Yinlong Zhu
- Department of Chemical Engineering, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Xingya Li
- Department of Chemical Engineering, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Lei Jiang
- Department of Chemical Engineering, Monash University, Clayton, Melbourne, Victoria 3800, Australia
- Key Laboratory of Bioinspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| |
Collapse
|
12
|
Xie Z, Yang M, Luo L, Lv Y, Song K, Liu S, Chen D, Wang J. Nanochannel sensor for sensitive and selective adamantanamine detection based on host-guest competition. Talanta 2020; 219:121213. [PMID: 32887115 DOI: 10.1016/j.talanta.2020.121213] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 01/01/2023]
Abstract
The abuse of adamantanamine (ADA) and its derivatives as veterinary drugs in the poultry industry could cause severe health problems for humans. It is of great need to develop a rapid, cheap and ultrasensitive method for ADA detection. In this study, a sensitive conical nanochannel sensor was established for the rapid quantitative detection of ADA with the distinctive design of the host-guest competition. The sensor was constructed by functionalizing the nanochannel surface with p-toluidine and was then assembled with Cucurbit [7]uril (CB [7]). When ADA is added, it could occupy the cavity of CB [7] due to the host-guest competition and makes CB [7] to release from the CB [7]-p-toluidine complex, resulting in a distinct change of hydrophobicity of the nanochannel, which could be determined by the ionic current. Under the optimal conditions, the strategy permitted sensitive detection of ADA in a linear range of 10-1000 nM. The nanochannel based ADA sensing platform showed both high sensitivity and excellent reproducibility and the limit of detection was 4.54 nM. For the first time, the rapid and sensitive recognition of an illegal medicine was realized based on the host-guest competition method with the nanochannel system and the principle and feasibility of this method were described at length. This strategy provides a simple, reliable, and effective way to apply host-guest system in the development of nanochannel sensor for small-molecule drug detection.
Collapse
Affiliation(s)
- Zhipeng Xie
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China; The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Mingfeng Yang
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Le Luo
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yiping Lv
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Kangjin Song
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Simin Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Daqi Chen
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Jiahai Wang
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Fu L, Zhai J. Biomimetic stimuli‐responsive nanochannels and their applications. Electrophoresis 2019; 40:2058-2074. [DOI: 10.1002/elps.201800536] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/23/2019] [Accepted: 02/26/2019] [Indexed: 01/26/2023]
Affiliation(s)
- Lulu Fu
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering Beijing Key Laboratory of Bio‐inspired Energy Materials and Devices School of Chemistry Beihang University Beijing P. R. China
| | - Jin Zhai
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering Beijing Key Laboratory of Bio‐inspired Energy Materials and Devices School of Chemistry Beihang University Beijing P. R. China
| |
Collapse
|
14
|
Conical nanofluidic channel for selective quantitation of melamine in combination with β-cyclodextrin and a single-walled carbon nanotube. Biosens Bioelectron 2019; 127:200-206. [DOI: 10.1016/j.bios.2018.12.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|