1
|
Zhang Z, Wu B, Wang Y, Cai T, Ma M, You C, Liu C, Jiang G, Hu Y, Li X, Chen XZ, Song E, Cui J, Huang G, Kiravittaya S, Mei Y. Multilevel design and construction in nanomembrane rolling for three-dimensional angle-sensitive photodetection. Nat Commun 2024; 15:3066. [PMID: 38594254 PMCID: PMC11004118 DOI: 10.1038/s41467-024-47405-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/01/2024] [Indexed: 04/11/2024] Open
Abstract
Releasing pre-strained two-dimensional nanomembranes to assemble on-chip three-dimensional devices is crucial for upcoming advanced electronic and optoelectronic applications. However, the release process is affected by many unclear factors, hindering the transition from laboratory to industrial applications. Here, we propose a quasistatic multilevel finite element modeling to assemble three-dimensional structures from two-dimensional nanomembranes and offer verification results by various bilayer nanomembranes. Take Si/Cr nanomembrane as an example, we confirm that the three-dimensional structural formation is governed by both the minimum energy state and the geometric constraints imposed by the edges of the sacrificial layer. Large-scale, high-yield fabrication of three-dimensional structures is achieved, and two distinct three-dimensional structures are assembled from the same precursor. Six types of three-dimensional Si/Cr photodetectors are then prepared to resolve the incident angle of light with a deep neural network model, opening up possibilities for the design and manufacturing methods of More-than-Moore-era devices.
Collapse
Affiliation(s)
- Ziyu Zhang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
| | - Binmin Wu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
| | - Yang Wang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
| | - Tianjun Cai
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
| | - Mingze Ma
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
| | - Chunyu You
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
| | - Chang Liu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
| | - Guobang Jiang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
| | - Yuhang Hu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
| | - Xing Li
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
| | - Xiang-Zhong Chen
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200438, People's Republic of China
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, People's Republic of China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, People's Republic of China
| | - Enming Song
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200438, People's Republic of China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, People's Republic of China
| | - Jizhai Cui
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, People's Republic of China
| | - Gaoshan Huang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, People's Republic of China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, People's Republic of China
| | - Suwit Kiravittaya
- Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Yongfeng Mei
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China.
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200438, People's Republic of China.
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, People's Republic of China.
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
2
|
Buentello DC, Garcia-Corral M, Trujillo-de Santiago G, Alvarez MM. Neuron(s)-on-a-Chip: A Review of the Design and Use of Microfluidic Systems for Neural Tissue Culture. IEEE Rev Biomed Eng 2024; 17:243-263. [PMID: 36301779 DOI: 10.1109/rbme.2022.3217486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neuron-on-chip (NoC) systems-microfluidic devices in which neurons are cultured-have become a promising alternative to replace or minimize the use of animal models and have greatly facilitated in vitro research. Here, we review and discuss current developments in neuron-on-chip platforms, with a particular emphasis on existing biological models, culturing techniques, biomaterials, and topologies. We also discuss how the architecture, flow, and gradients affect neuronal growth, differentiation, and development. Finally, we discuss some of the most recent applications of NoCs in fundamental research (i.e., studies on the effects of electrical, mechanical/topological, or chemical stimuli) and in disease modeling.
Collapse
|
3
|
Fan S, Qi L, Li J, Liu S, Li R, Zhan T, Li X, Wu D, Lau P, Qiu B, Bi G, Ding W. Accelerating Neurite Growth and Directing Neuronal Connections Constrained by 3D Porous Microtubes. NANO LETTERS 2022; 22:8991-8999. [PMID: 36327196 DOI: 10.1021/acs.nanolett.2c03232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Investigation of neural growth and connection is crucial in the field of neural tissue engineering. Here, using a femtosecond laser direct writing (fs-DLW) technique, we propose a directionally aligned porous microtube array as a culture system for accelerating the growth of neurons and directing the connection of neurites. These microtubes exhibited an unprecedented guidance effect toward the outgrowth of primary embryonic rat hippocampal neurons, with a wrap resembling the myelin sheaths of neurons. The speed of neurite growth inside these microtubes was significantly faster than that outside these microtubes. We also achieved selective/directing connection of neural networks inside the magnetic microtubes via precise microtube delivery to a gap between two neural clusters. This work not only proposes a powerful microtube platform for accelerated growth of neurons but also offers a new idea for constructing biological neural circuits by arranging the size, location, and pattern of microtubes.
Collapse
Affiliation(s)
- Shengying Fan
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Lei Qi
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui 230026, China
| | - Jiawen Li
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shunli Liu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui Li
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tongzhou Zhan
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaowei Li
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dong Wu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Pakming Lau
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui 230026, China
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bensheng Qiu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guoqiang Bi
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Weiping Ding
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| |
Collapse
|
4
|
Park Y, Chung TS, Lee G, Rogers JA. Materials Chemistry of Neural Interface Technologies and Recent Advances in Three-Dimensional Systems. Chem Rev 2021; 122:5277-5316. [PMID: 34739219 DOI: 10.1021/acs.chemrev.1c00639] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Advances in materials chemistry and engineering serve as the basis for multifunctional neural interfaces that span length scales from individual neurons to neural networks, neural tissues, and complete neural systems. Such technologies exploit electrical, electrochemical, optical, and/or pharmacological modalities in sensing and neuromodulation for fundamental studies in neuroscience research, with additional potential to serve as routes for monitoring and treating neurodegenerative diseases and for rehabilitating patients. This review summarizes the essential role of chemistry in this field of research, with an emphasis on recently published results and developing trends. The focus is on enabling materials in diverse device constructs, including their latest utilization in 3D bioelectronic frameworks formed by 3D printing, self-folding, and mechanically guided assembly. A concluding section highlights key challenges and future directions.
Collapse
Affiliation(s)
- Yoonseok Park
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Ted S Chung
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Geumbee Lee
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Neurological Surgery, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|