1
|
Ghosh K, Bobev S. Yet Another Case of Lithium Metal Atoms and Germanium Atoms Sharing Chemistry in the Solid State: Synthesis and Structural Characterization of Ba 2 LiGe 3. Chemistry 2023; 29:e202302385. [PMID: 37682565 DOI: 10.1002/chem.202302385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/09/2023]
Abstract
Several Ba-Li-Ge ternary phases are known and structurally characterized, including the title compound Ba2 LiGe3 . Its structure is reported to contain [Ge6 ]10- anions that exhibit delocalized bonding with a Hückel-like aromatic character. The Ge atoms are in the same plane with the Li atoms, and if both types of atoms are considered as covalently bonded, [LiGe3 ]4- honeycomb-like layers will result. The latter are separated by slabs of Ba2+ cations. However, based on the systematic work detailed herein, it is necessary to re-evaluate the phase as Ba2 Li1-x Ge3+x (x<0.05). Although small, the homogeneity range is clearly demonstrated in the gradual change of the unit cell for four independent samples. Subsequent characterization by single-crystal X-ray diffraction methods shows that the Ba2 Li1-x Ge3+x structure, responds to the varied number of valence electrons and the changes are most pronounced for the refined lengths of the Li-Ge and Ge-Ge bonds. Indirectly, the changes in the Ge-Li/Ge distances within layers affect the stacking too, and these changes can be correlated to the variation of the c-cell parameter. Chemical bonding analysis based on TB-LMTO-ASA level calculations affirms the notion for covalent character of the Ge-Ge bonds; the Ba-Ge and Li-Ge interactions also show some degree of covalency.
Collapse
Affiliation(s)
- Kowsik Ghosh
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, 19716, United States
| | - Svilen Bobev
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, 19716, United States
| |
Collapse
|
2
|
Ghosh K, Ovchinnikov A, Baitinger M, Krnel M, Burkhardt U, Grin Y, Bobev S. Lithium metal atoms fill vacancies in the germanium network of a type-I clathrate: synthesis and structural characterization of Ba 8Li 5Ge 41. Dalton Trans 2023; 52:10310-10322. [PMID: 37221973 DOI: 10.1039/d3dt01168b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Clathrate phases with crystal structures exhibiting complex disorder have been the subject of many prior studies. Here we report syntheses, crystal and electronic structure, and chemical bonding analysis of a Li-substituted Ge-based clathrate phase with the refined chemical formula Ba8Li5.0(1)Ge41.0, which is a rare example of ternary clathrate-I where alkali metal atoms substitute framework Ge atoms. Two different synthesis methods to grow single crystals of the new clathrate phase are presented, in addition to the classical approach towards polycrystalline materials by combining pure elements in desired stoichiometric ratios. Structure elucidations for samples from different batches were carried out by single-crystal and powder X-ray diffraction methods. The ternary Ba8Li5.0(1)Ge41.0 phase crystallizes in the cubic type-I clathrate structure (space group Pm3̄n no. 223, a ≈ 10.80 Å), with the unit cell being substantially larger compared to the binary phase Ba8Ge43 (Ba8□3Ge43, a ≈ 10.63 Å). The expansion of the unit cell is the result of the Li atoms filling vacancies and substituting atoms in the Ge framework, with Li and Ge co-occupying one crystallographic (6c) site. As such, the Li atoms are situated in four-fold coordination environment surrounded by equidistant Ge atoms. Analysis of chemical bonding applying the electron density/electron localizability approach reveals ionic interaction of barium with the Li-Ge framework, while the lithium-germanium bonds are strongly polar covalent.
Collapse
Affiliation(s)
- Kowsik Ghosh
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA.
| | - Alexander Ovchinnikov
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA.
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Michael Baitinger
- Max Plank Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany
| | - Mitja Krnel
- Max Plank Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany
| | - Ulrich Burkhardt
- Max Plank Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany
| | - Yuri Grin
- Max Plank Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany
| | - Svilen Bobev
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA.
| |
Collapse
|
3
|
Liu Y, Briggs JP, Majid AAA, Furtak TE, Walker M, Singh M, Koh CA, Taylor PC, Collins RT. Formation of Type II Silicon Clathrate with Lithium Guests through Thermal Diffusion. Inorg Chem 2023; 62:6882-6892. [PMID: 36715366 DOI: 10.1021/acs.inorgchem.2c03703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
At low guest atom concentrations, Si clathrates can be viewed as semiconductors, with the guest atoms acting as dopants, potentially creating alternatives to diamond Si with exciting optoelectronic and spin properties. Studying Si clathrates with different guest atoms would not only provide insights into the electronic structure of the Si clathrates but also give insights into the unique properties that each guest can bring to the Si clathrate structure. However, the synthesis of Si clathrates with guests other than Na is challenging. In this study, we have developed an alternative approach, using thermal diffusion into type II Si clathrate with an extremely low Na concentration, to create Si clathrate with Li guests. Using time-of-flight secondary-ion mass spectroscopy, X-ray diffraction, and Raman scattering, thermal diffusion of Li into the nearly empty Si clathrate framework is detected and characterized as a function of the diffusion temperature and time. Interestingly, the Si clathrate exhibits reduced structural stability in the presence of Li, converting to polycrystalline or disordered phases for anneals at temperatures where the starting Na guest Si clathrate is quite stable. The Li atoms inserted into the Si clathrate lattice contribute free carriers, which can be detected in Raman scattering through their effect on the strength of Si-Si bonds in the framework. These carriers can also be observed in electron paramagnetic resonance (EPR). EPR shows, however, that Li guests are not simple analogues of Na guests. In particular, our results suggest that Li atoms, with their smaller size, tend to doubly occupy cages, forming "molecular-like" pairs with other Li or Na atoms. Results of this work provide a deeper insight into Li guest atoms in Si clathrate. These findings are also relevant to understanding how Li moves through and interacts with Si clathrate anodes in Li-ion batteries. Additionally, techniques presented in this work demonstrate a new method for filling the Si clathrate cages, enabling studies of a broad range of other guests in Si clathrates.
Collapse
Affiliation(s)
- Yinan Liu
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado80401, United States
| | - Joseph P Briggs
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado80401, United States
| | - Ahmad A A Majid
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado80401, United States
| | - Thomas E Furtak
- Department of Physics, Colorado School of Mines, Golden, Colorado80401, United States
| | - Michael Walker
- Department of Physics, Colorado School of Mines, Golden, Colorado80401, United States
| | - Meenakshi Singh
- Department of Physics, Colorado School of Mines, Golden, Colorado80401, United States
| | - Carolyn A Koh
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado80401, United States
| | - P Craig Taylor
- Department of Physics, Colorado School of Mines, Golden, Colorado80401, United States
| | - Reuben T Collins
- Department of Physics, Colorado School of Mines, Golden, Colorado80401, United States
| |
Collapse
|
4
|
Dopilka A, Ovchinnikov A, Childs A, Bobev S, Peng X, Chan CK. Synthesis of Type II Ge and Ge-Si Alloyed Clathrates Using Solid-State Electrochemical Oxidation of Zintl Phase Precursors. Inorg Chem 2022; 61:12363-12372. [PMID: 35876805 DOI: 10.1021/acs.inorgchem.2c01748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Germanium clathrates with the type II structure are open-framework materials that show promise for various applications, but the difficulty of achieving phase-pure products via traditional synthesis routes has hindered their development. Herein, we demonstrate the synthesis of type II Ge clathrates in a two-electrode electrochemical cell using Na4Ge4-ySiy (y = 0, 1) Zintl phase precursors as the working electrode, Na metal as the counter/reference electrode, and Na-ion conducting β″-alumina as the solid electrolyte. The galvanostatic oxidation of Na4Ge4 resulted in voltage plateaus around 0.34-0.40 V vs Na/Na+ with the formation of different products depending on the reaction temperature. When using Na4Ge3Si as a precursor, nearly phase-pure, alloyed type II Ge-Si clathrate was obtained at 350 °C. The Na atoms in the large (Ge,Si)28 cages of the clathrate occupied off-centered positions according to Rietveld refinement and density functional theory calculations. The results indicate that electrochemical oxidation of Zintl phase precursors is a promising pathway for synthesizing Ge clathrates with type II structure and that Si alloying of the Zintl phase precursor can promote selective clathrate product formation over other phases.
Collapse
Affiliation(s)
- Andrew Dopilka
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, P.O. Box 876106, Tempe, Arizona 85827, United States
| | - Alexander Ovchinnikov
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States.,Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, Stockholm 10691, Sweden
| | - Amanda Childs
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Svilen Bobev
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Xihong Peng
- College of Integrative Sciences and Arts, Arizona State University Polytechnic Campus, Mesa, Arizona 85212, United States
| | - Candace K Chan
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, P.O. Box 876106, Tempe, Arizona 85827, United States
| |
Collapse
|
5
|
Dopilka A, Childs A, Ovchinnikov A, Zhao R, Bobev S, Peng X, Chan CK. Structural and Electrochemical Properties of Type VIII Ba 8Ga 16-δSn 30+δ Clathrate (δ ≈ 1) during Lithiation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42564-42578. [PMID: 34477361 PMCID: PMC8447186 DOI: 10.1021/acsami.1c07240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Clathrates of the tetrel (Tt = Si, Ge, Sn) elements are host-guest structures that can undergo Li alloying reactions with high capacities. However, little is known about how the cage structure affects the phase transformations that take place during lithiation. To further this understanding, the structural changes of the type VIII clathrate Ba8Ga16-δSn30+δ (δ ≈ 1) during lithiation are investigated and compared to those in β-Sn with ex situ X-ray total scattering measurements and pair distribution function (PDF) analysis. The results show that the type VIII clathrate undergoes an alloying reaction to form Li-rich amorphous phases (LixBa0.17Ga0.33Sn0.67, x = 2-3) with local structures similar to those in the crystalline binary Li-Sn phases that form during the lithiation of β-Sn. As a result of the amorphous phase transition, the type VIII clathrate reacts at a lower voltage (0.25 V vs Li/Li+) compared to β-Sn (0.45 V) and goes through a solid-solution reaction after the initial conversion of the crystalline clathrate phase. Cycling experiments suggest that the amorphous phase persists after the first lithiation and results in considerably better cycling than in β-Sn. Density functional theory (DFT) calculations suggest that topotactic Li insertion into the clathrate lattice is not favorable due to the high energy of the Li sites, which is consistent with the experimentally observed amorphous phase transformation. The local structure in the clathrate featuring Ba atoms surrounded by a cage of Ga and Sn atoms is hypothesized to kinetically circumvent the formation of Li-Sn or Li-Ga crystalline phases, which results in better cycling and a lower reaction voltage. Based on the improved electrochemical performance, clathrates could act as tunable precursors to form amorphous Li alloying phases with novel electrochemical properties.
Collapse
Affiliation(s)
- Andrew Dopilka
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, P.O. Box 876106, Tempe, Arizona 85827, United
States
| | - Amanda Childs
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Alexander Ovchinnikov
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 10691 Stockholm, Sweden
| | - Ran Zhao
- School
of Molecular Sciences, Arizona State University, P.O. Box 871604, Tempe, Arizona 85287, United
States
| | - Svilen Bobev
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Xihong Peng
- College
of Integrative Sciences and Arts, Arizona
State University Polytechnic Campus, Mesa, Arizona 85212, United States
| | - Candace K. Chan
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, P.O. Box 876106, Tempe, Arizona 85827, United
States
- Department
of Heterogenous Catalysis, Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
6
|
Ovchinnikov A, Bobev S. Studied and Forgotten. A Fresh Look at the Li–Mn–Ge System. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alexander Ovchinnikov
- Department of Chemistry and Biochemistry University of Delaware 19716 Newark Delaware USA
- Department of Materials and Environmental Chemistry Stockholm University Svante Arrhenius väg 16C 10691 Stockholm Sweden
| | - Svilen Bobev
- Department of Chemistry and Biochemistry University of Delaware 19716 Newark Delaware USA
| |
Collapse
|
7
|
Ovchinnikov A, Smetana V, Mudring AV. Metallic alloys at the edge of complexity: structural aspects, chemical bonding and physical properties. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:243002. [PMID: 31935688 DOI: 10.1088/1361-648x/ab6b87] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Complex metallic alloys belong to the vast family of intermetallic compounds and are hallmarked by extremely large unit cells and, in many cases, extensive crystallographic disorder. Early studies of complex intermetallics were focusing on the elucidation of their crystal structures and classification of the underlying building principles. More recently, ab initio computational analysis and detailed examination of the physical properties have become feasible and opened new perspectives for these materials. The present review paper provides a summary of the literature data on the reported compositions with exceptional structural complexity and their properties, and highlights the factors leading to the emergence of their crystal structures and the methods of characterization and systematization of these compounds.
Collapse
Affiliation(s)
- Alexander Ovchinnikov
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 10691 Stockholm, Sweden
| | | | | |
Collapse
|
8
|
Ovchinnikov A, Bobev S. Multifaceted Sn-Sn bonding in the solid state. Synthesis and structural characterization of four new Ca-Li-Sn compounds. Dalton Trans 2019; 48:14398-14407. [PMID: 31509139 DOI: 10.1039/c9dt02803j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four novel ternary phases have been prepared in the system Ca-Li-Sn using both the metal flux method and conventional high-temperature synthesis. Each of the obtained compositions represents its own (new) structure type, and the structures feature distinct polyanionic Sn units. Ca4LiSn6 (space group Pbcm, Pearson symbol oP44) accommodates infinite chains, made up of cyclopentane-like [Sn5]-rings, which are bridged by Sn atoms. The Sn atoms in this structure are two- and three-bonded. The anionic substructure of Ca9Li6+xSn13-x (x≈ 0.28, space group C2/m, Pearson symbol mS56) displays extensive mixing of Li and Sn and combination of single-bonded and hypervalent interactions between the Sn atoms. Hypervalent bonding is also pronounced in the structure of the third compound, Ca2LiSn3 (space group Pmm2, Pearson symbol oP18) with quasi-two-dimensional polyanionic subunits and a variety of coordination environments of the Sn atoms. One-dimensional [Sn10]-chains with an intricate topology of cis- and trans-Sn-Sn bonds exist in the structure of Ca9-xLi2Sn10 (x≈ 0.16, space group C2/m, Pearson symbol mS42), and the Sn-Sn bonding in this case demonstrates the characteristics of an intermediate between single- and double- bond-order. The peculiarities of the bonding are discussed in the context of the Zintl approach, which captures the essence of the main chemical interactions. The electronic structures of all four compounds have also been analyzed in full detail using first-principles calculations.
Collapse
Affiliation(s)
- Alexander Ovchinnikov
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA. and Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Svilen Bobev
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA.
| |
Collapse
|
9
|
Ovchinnikov A, Bobev S. Layered Quaternary Germanides—Synthesis and Crystal and Electronic Structures of AELi2In2Ge2 (AE = Sr, Ba, Eu). Inorg Chem 2019; 58:7895-7904. [DOI: 10.1021/acs.inorgchem.9b00588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexander Ovchinnikov
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 10691 Stockholm, Sweden
| | - Svilen Bobev
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|