1
|
Roy S, Joseph A, Zhang X, Bhattacharyya S, Puthirath AB, Biswas A, Tiwary CS, Vajtai R, Ajayan PM. Engineered Two-Dimensional Transition Metal Dichalcogenides for Energy Conversion and Storage. Chem Rev 2024; 124:9376-9456. [PMID: 39042038 DOI: 10.1021/acs.chemrev.3c00937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Designing efficient and cost-effective materials is pivotal to solving the key scientific and technological challenges at the interface of energy, environment, and sustainability for achieving NetZero. Two-dimensional transition metal dichalcogenides (2D TMDs) represent a unique class of materials that have catered to a myriad of energy conversion and storage (ECS) applications. Their uniqueness arises from their ultra-thin nature, high fractions of atoms residing on surfaces, rich chemical compositions featuring diverse metals and chalcogens, and remarkable tunability across multiple length scales. Specifically, the rich electronic/electrical, optical, and thermal properties of 2D TMDs have been widely exploited for electrochemical energy conversion (e.g., electrocatalytic water splitting), and storage (e.g., anodes in alkali ion batteries and supercapacitors), photocatalysis, photovoltaic devices, and thermoelectric applications. Furthermore, their properties and performances can be greatly boosted by judicious structural and chemical tuning through phase, size, composition, defect, dopant, topological, and heterostructure engineering. The challenge, however, is to design and control such engineering levers, optimally and specifically, to maximize performance outcomes for targeted applications. In this review we discuss, highlight, and provide insights on the significant advancements and ongoing research directions in the design and engineering approaches of 2D TMDs for improving their performance and potential in ECS applications.
Collapse
Affiliation(s)
- Soumyabrata Roy
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Antony Joseph
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Xiang Zhang
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Sohini Bhattacharyya
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Anand B Puthirath
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Abhijit Biswas
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Chandra Sekhar Tiwary
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Robert Vajtai
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
2
|
Ma M, Wang W, Li Z, Wang Z, Wang X, Zhang Y, Wang X, Zhu X. Linear-Organic-Ions In Situ-Intercalated MoS 2 for Unveiling Capacitive Energy Storage Relies on the Chain Length. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39066694 DOI: 10.1021/acsami.4c07573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Intercalating linear-organic-ions into the MoS2 interlayer is beneficial for optimizing electrons/ions' capacitive storage behavior. The chain length, as an important parameter of linear organic ions, can lead to differences in the dispersion, polarity, critical micelle concentration of organic ions, and steric hindrance to the growth of MoS2 nanosheets. Up until now, the relationship between chain length, synthesis of intercalated-MoS2, and capacitive energy storage has not been unveiled. Herein, we have designed an in situ-intercalation route that is simple, efficient, and high yield for inserting four types of linear organic ions into the interlayer of MoS2 to synthesize four types of in situ-intercalated MoS2 samples. After organic-ion intercalation, the expanded interlayer spacing achieved the introduction of intercalation-type pseudocapacitors, as confirmed by ex situ XRD. Improved extra capacitance is verified due to the enlarged ion storage space from a synergistic spatial effect in the broken-shell-hollow ball. Additionally, the generation of high-valent Mo (+5 and +6) and S-vacancies is beneficial for energy storage. More importantly, according to density functional theory (DFT) calculations, as the chain length increases, the number of negative adsorption sites and the total adsorption ability also increase, leading to significantly improved specific capacitance. This work will provide an archetype for the preparation of in situ-intercalated layered materials and unveil capacitive energy storage that relies on the organic-ion chain length.
Collapse
Affiliation(s)
- Mingzhu Ma
- Anhui Province Key Laboratory of Intelligent Computing and Applications, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, P.R. China
| | - Weixin Wang
- Anhui Province Key Laboratory of Intelligent Computing and Applications, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, P.R. China
| | - Ziyu Li
- Anhui Province Key Laboratory of Intelligent Computing and Applications, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, P.R. China
| | - Zhongliao Wang
- Anhui Province Key Laboratory of Intelligent Computing and Applications, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, P.R. China
| | - Xin Wang
- Anhui Province Key Laboratory of Intelligent Computing and Applications, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, P.R. China
| | - Yongxing Zhang
- Anhui Province Key Laboratory of Intelligent Computing and Applications, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, P.R. China
| | - Xin Wang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, P.R. China
| | - Xuebin Zhu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, P.R. China
| |
Collapse
|
3
|
Aggarwal R, Saini D, Mitra R, Sonkar SK, Sonker AK, Westman G. From Bulk Molybdenum Disulfide (MoS 2) to Suspensions of Exfoliated MoS 2 in an Aqueous Medium and Their Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9855-9872. [PMID: 38687994 DOI: 10.1021/acs.langmuir.3c03116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Two-dimensional (2D) layered materials like graphene, transition-metal dichalcogenides (TMDs), boron nitrides, etc., exhibit unique and fascinating properties, such as high surface-to-volume ratio, inherent mechanical flexibility and robustness, tunable bandgap, and high carrier mobility, which makes them an apt candidate for flexible electronics with low consumption of power. Because of these properties, they are in tremendous demand for advancement in energy, environmental, and biomedical sectors developed through various technologies. The production and scalability of these materials must be sustainable and ecofriendly to utilize these unique properties in the real world. Here, in this current review, we review molybdenum disulfide (MoS2 nanosheets) in detail, focusing on exfoliated MoS2 in water and the applicability of aqueous MoS2 suspensions in various fields. The exfoliation of MoS2 results in the formation of single or few-layered MoS2. Therefore, this Review focuses on the few layers of exfoliated MoS2 that have the additional properties of 2D layered materials and higher excellent compatibility for integration than existing conventional Si tools. Hence, a few layers of exfoliated MoS2 are widely explored in biosensing, gas sensing, catalysis, photodetectors, energy storage devices, a light-emitting diode (LED), adsorption, etc. This review covers the numerous methodologies to exfoliate MoS2, focusing on the various published methodologies to obtain nanosheets of MoS2 from water solutions and their use.
Collapse
Affiliation(s)
- Ruchi Aggarwal
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur 302017, India
| | - Deepika Saini
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur 302017, India
| | - Richa Mitra
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
- Low Temperature Laboratory, Department of Applied Physics, Aalto University, Espoo 02150, Finland
| | - Sumit Kumar Sonkar
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur 302017, India
| | - Amit Kumar Sonker
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, 41296, Sweden
- Wallenberg Wood Science Centre (WWSC), Chalmers University of Technology, Gothenburg, 41296, Sweden
- BA5409 cellulose films and coatings, VTT Technical Research Center of Finland, Tietotie 4E, Espoo 02150, Finland
| | - Gunnar Westman
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, 41296, Sweden
- Wallenberg Wood Science Centre (WWSC), Chalmers University of Technology, Gothenburg, 41296, Sweden
| |
Collapse
|
4
|
Kang J, Peng Y, Zhu L, Tang Y, Teng F, Guo G, Xiang Y, Huang Y, Wu X, Wu X. 3D Fast Sodium Transport Network of MoS 2 Endowed by Coupling of Sulfur Vacancies and Sn Doping for Outstanding Sodium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309112. [PMID: 38150610 DOI: 10.1002/smll.202309112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/23/2023] [Indexed: 12/29/2023]
Abstract
A sulfur vacancy-rich, Sn-doped as well as carbon-coated MoS2 composite (Vs-SMS@C) is rationally synthesized via a simple hydrothermal method combined with ball-milling reduction, which enhances the sodium storage performance. Benefiting from the 3D fast Na+ transport network composed of the defective carbon coating, Mo─S─C bonds, enlarged interlayer spacing, S-vacancies, and lattice distortion in the composite, the Na+ storage kinetics is significantly accelerated. As expected, Vs-SMS@C releases an ultrahigh reversible capacity of 1089 mAh g-1 at 0.1 A g-1, higher than the theoretical capacity. It delivers a satisfactory capacity of 463 mAh g-1 at a high current density of 10 A g-1, which is the state-of-the-art rate capability compared to other MoS2 based sodium ion battery anodes to the knowledge. Moreover, a super long-term cycle stability is achieved by Vs-SMS@C, which keeps 91.6% of the initial capacity after 3000 cycles under the current density of 5 A g-1 in the voltage of 0.3-3.0 V. The sodium storage mechanism of Vs-SMS@C is investigated by employing electrochemical methods and ex situ techniques. The synergistic effect between S-vacancies and doped-Sn is evidenced by DFT calculations. This work opens new ideas for seeking excellent metal sulfide anodes.
Collapse
Affiliation(s)
- Jia Kang
- School of Physics and Electromechanical Engineering, School of Chemistry and Chemical Engineering, and Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, Jishou University, Jishou, 416000, China
| | - Yan Peng
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, and School of Physics and Optoelectronics, Xiangtan University, Hunan, 411105, China
| | - Ling Zhu
- School of Physics and Electromechanical Engineering, School of Chemistry and Chemical Engineering, and Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, Jishou University, Jishou, 416000, China
| | - Yao Tang
- School of Physics and Electromechanical Engineering, School of Chemistry and Chemical Engineering, and Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, Jishou University, Jishou, 416000, China
| | - Feiyang Teng
- School of Physics and Electromechanical Engineering, School of Chemistry and Chemical Engineering, and Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, Jishou University, Jishou, 416000, China
| | - Gencai Guo
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, and School of Physics and Optoelectronics, Xiangtan University, Hunan, 411105, China
| | - Yanhong Xiang
- School of Physics and Electromechanical Engineering, School of Chemistry and Chemical Engineering, and Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, Jishou University, Jishou, 416000, China
| | - Yonggang Huang
- School of Physics and Electromechanical Engineering, School of Chemistry and Chemical Engineering, and Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, Jishou University, Jishou, 416000, China
| | - Xianming Wu
- School of Physics and Electromechanical Engineering, School of Chemistry and Chemical Engineering, and Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, Jishou University, Jishou, 416000, China
| | - Xianwen Wu
- School of Physics and Electromechanical Engineering, School of Chemistry and Chemical Engineering, and Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, Jishou University, Jishou, 416000, China
| |
Collapse
|
5
|
Gu M, Rao AM, Zhou J, Lu B. Molecular modulation strategies for two-dimensional transition metal dichalcogenide-based high-performance electrodes for metal-ion batteries. Chem Sci 2024; 15:2323-2350. [PMID: 38362439 PMCID: PMC10866370 DOI: 10.1039/d3sc05768b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024] Open
Abstract
In the past few decades, great efforts have been made to develop advanced transition metal dichalcogenide (TMD) materials as metal-ion battery electrodes. However, due to existing conversion reactions, they still suffer from structural aggregation and restacking, unsatisfactory cycling reversibility, and limited ion storage dynamics during electrochemical cycling. To address these issues, extensive research has focused on molecular modulation strategies to optimize the physical and chemical properties of TMDs, including phase engineering, defect engineering, interlayer spacing expansion, heteroatom doping, alloy engineering, and bond modulation. A timely summary of these strategies can help deepen the understanding of their basic mechanisms and serve as a reference for future research. This review provides a comprehensive summary of recent advances in molecular modulation strategies for TMDs. A series of challenges and opportunities in the research field are also outlined. The basic mechanisms of different modulation strategies and their specific influences on the electrochemical performance of TMDs are highlighted.
Collapse
Affiliation(s)
- Mingyuan Gu
- School of Physics and Electronics, Hunan University Changsha P. R. China
| | - Apparao M Rao
- Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University Clemson SC 29634 USA
| | - Jiang Zhou
- School of Materials Science and Engineering, Central South University Changsha 410083 P. R. China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University Changsha P. R. China
| |
Collapse
|
6
|
Shi J, Zhao R, Yang Z, Yang J, Zhang W, Wang C, Zhang J. Template-free scalable growth of vertically-aligned MoS 2 nanowire array meta-structural films towards robust superlubricity. MATERIALS HORIZONS 2023; 10:4148-4162. [PMID: 37395527 DOI: 10.1039/d3mh00677h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Two-dimensional (2D) molybdenum disulfide exhibits a variety of intriguing behaviors depending on its orientation layers. Therefore, developing a template-free atomic layer orientation controllable growth approach is of great importance. Here, we demonstrate scalable, template-free, well-ordered vertically-oriented MoS2 nanowire arrays (VO-MoS2 NWAs) embedded in an Ag-MoS2 matrix, directly grown on various substrates (Si, Al, and stainless steel) via one-step sputtering. In the meta-structured film, vertically-standing few-layered MoS2 NWAs of almost micron length (∼720 nm) throughout the entire film bulk. While near the surface, MoS2 lamellae are oriented in parallel, which are beneficial for caging the bonds dangling from the basal planes. Owing to the unique T-type topological characteristics, chemically inert Ag@MoS2 nano-scrolls (NSCs) and nano-crystalline Ag (nc-Ag) nanoparticles (NPs) are in situ formed under the sliding shear force. Thus, incommensurate contact between (002) basal planes and nc-Ag NPs is observed. As a result, robust superlubricity (friction coefficient μ = 0.0039) under humid ambient conditions is reached. This study offers an unprecedented strategy for controlling the basal plane orientation of 2D transition metal dichalcogenides (TMDCs) via substrate independence, using a one-step solution-free easily scalable process without the need for a template, which promotes the potential applications of 2D TMDCs in solid superlubricity.
Collapse
Affiliation(s)
- Jing Shi
- College of Mechanical & Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Runqiang Zhao
- College of Mechanical & Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Zaixiu Yang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Jinzhu Yang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Wenhe Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Chengbing Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Junyan Zhang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
7
|
Baheri YT, Maleki M, Karimian H, Javadpoor J, Masoudpanah SM. Well-distributed 1T/2H MoS 2 nanocrystals in the N-doped nanoporous carbon framework by direct pyrolysis. Sci Rep 2023; 13:7492. [PMID: 37160947 PMCID: PMC10169800 DOI: 10.1038/s41598-023-34551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/03/2023] [Indexed: 05/11/2023] Open
Abstract
Molybdenum disulfide (MoS2) has been a promising anode material in lithium-ion batteries (LIBs) because of its high theoretical capacity and large interlayer spacing. However, its intrinsic poor electrical conductivity and large volume changes during the lithiation/delithiation reactions limit its practical application. An efficient synthesis strategy was developed to prepare the MoS2 nanocrystals well-anchored into the N-doped nanoporous carbon framework to deal with these challenges by a confined reaction space in an acrylonitrile-based porous polymer during the carbonization process. The prepared hybrid material comprises small 1T/2H-MoS2 nanoparticles surrounded by a nanoporous carbon matrix. In addition to the highly crystalline nature of the synthesized MoS2, the low ID/IG of the Raman spectrum demonstrated the development of graphitic domains in the carbon support during low-temperature pyrolysis (700 °C). This novel three-dimensional (3D) hierarchical composite shows superior advantages, such as decreased diffusion lengths of lithium ions, preventing the agglomeration of MoS2 nanocrystals, and maintaining the whole structural stability. The prepared C/MoS2 hybrid demonstrated fast rate performance and satisfactory cycling stability as an anode material for LIBs.
Collapse
Affiliation(s)
- Yalda Tarpoudi Baheri
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846, Iran
| | - Mahdi Maleki
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846, Iran.
| | - Hossein Karimian
- Department of Chemical Engineering, Golestan University, Aliabad Katoul, 45138-15739, Iran
| | - Jafar Javadpoor
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846, Iran
| | - Seyed Morteza Masoudpanah
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846, Iran
| |
Collapse
|
8
|
Ullah N, Guziejewski D, Yuan A, Shah SA. Recent Advancement and Structural Engineering in Transition Metal Dichalcogenides for Alkali Metal Ions Batteries. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2559. [PMID: 37048850 PMCID: PMC10095088 DOI: 10.3390/ma16072559] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Currently, transition metal dichalcogenides-based alkaline metal ion batteries have been extensively investigated for renewable energy applications to overcome the energy crisis and environmental pollution. The layered morphologys with a large surface area favors high electrochemical properties. Thermal stability, mechanical structural stability, and high conductivity are the primary features of layered transition metal dichalcogenides (L-TMDs). L-TMDs are used as battery materials and as supporters for other active materials. However, these materials still face aggregation, which reduces their applicability in batteries. In this review, a comprehensive study has been undertaken on recent advancements in L-TMDs-based materials, including 0D, 1D, 2D, 3D, and other carbon materials. Types of structural engineering, such as interlayer spacing, surface defects, phase control, heteroatom doping, and alloying, have been summarized. The synthetic strategy of structural engineering and its effects have been deeply discussed. Lithium- and sodium-ion battery applications have been summarized in this study. This is the first review article to summarize different morphology-based TMDs with their intrinsic properties for alkali metal ion batteries (AMIBs), so it is believed that this review article will improve overall knowledge of TMDs for AMIBS applications.
Collapse
Affiliation(s)
- Nabi Ullah
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 90-403 Lodz, Poland
| | - Dariusz Guziejewski
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 90-403 Lodz, Poland
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Sayyar Ali Shah
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| |
Collapse
|
9
|
Bian W, Li H, Zhao Z, Dou H, Cheng X, Wang X. Entropy stabilization effect and Oxygen vacancy in spinel high-entropy oxide promoting sodium ion storage. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
10
|
Constructing hierarchical SnS2 hollow micron cages anchored on S-doped graphene as anodes for superior performance alkali-ion batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Ghani U, Iqbal N, Li J, Aboalhassan AA, Sun B, Liu B, Ullah F, Zeb J, Imtiaz M, Gu J, Liu Q. Improved Na-ion Kinetics of 1T MoS2 Nanopatterned Porous Hard Carbon as an Ultra-long life Anode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Ranasinghe JC, Jain A, Wu W, Zhang K, Wang Z, Huang S. Engineered 2D materials for optical bioimaging and path toward therapy and tissue engineering. JOURNAL OF MATERIALS RESEARCH 2022; 37:1689-1713. [PMID: 35615304 PMCID: PMC9122553 DOI: 10.1557/s43578-022-00591-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) layered materials as a new class of nanomaterial are characterized by a list of exotic properties. These layered materials are investigated widely in several biomedical applications. A comprehensive understanding of the state-of-the-art developments of 2D materials designed for multiple nanoplatforms will aid researchers in various fields to broaden the scope of biomedical applications. Here, we review the advances in 2D material-based biomedical applications. First, we introduce the classification and properties of 2D materials. Next, we summarize surface and structural engineering methods of 2D materials where we discuss surface functionalization, defect, and strain engineering, and creating heterostructures based on layered materials for biomedical applications. After that, we discuss different biomedical applications. Then, we briefly introduced the emerging role of machine learning (ML) as a technological advancement to boost biomedical platforms. Finally, the current challenges, opportunities, and prospects on 2D materials in biomedical applications are discussed. Graphical abstract
Collapse
Affiliation(s)
- Jeewan C. Ranasinghe
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Arpit Jain
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Wenjing Wu
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Kunyan Zhang
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Ziyang Wang
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Shengxi Huang
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|
13
|
Li D, Zhao L, Xia Q, Liu L, Fang W, Liu Y, Zhou Z, Long Y, Han X, Zhang Y, Wang J, Wu Y, Liu H. CoS 2 Nanoparticles Anchored on MoS 2 Nanorods As a Superior Bifunctional Electrocatalyst Boosting Li 2 O 2 Heteroepitaxial Growth for Rechargeable Li-O 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105752. [PMID: 34897989 DOI: 10.1002/smll.202105752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Developing an excellent bifunctional catalyst is essential for the commercial application of Li-O2 batteries. Heterostructures exhibit great application potential in the field of energy catalysis because of the accelerated charge transfer and increased active sites on their surfaces. In this work, CoS2 nanoparticles decorated on MoS2 nanorods are constructed and act as a superior cathode catalyst for Li-O2 batteries. Coupling MoS2 and CoS2 can not only synergistically enhance their electrical conductivity and electrochemical activity, but also promote the heteroepitaxial growth of discharge products on the heterojunction interfaces, thus delivering high discharge capacity, stable cycle performance, and good rate capability.
Collapse
Affiliation(s)
- Deyuan Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Lanling Zhao
- School of Physics, Shandong University, Jinan, 250100, China
| | - Qing Xia
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Lili Liu
- School of Energy Science and Engineering, Nanjing Tech University, Jiangsu Province, Nanjing, 211816, China
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry, University (NFU), Nanjing, 210037, China
| | - Yao Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Zhaorui Zhou
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Yuxin Long
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Xue Han
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Yiming Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Jun Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Yuping Wu
- School of Energy Science and Engineering, Nanjing Tech University, Jiangsu Province, Nanjing, 211816, China
| | - Huakun Liu
- University of Wollongong, Institute for Superconducting and Electronic Materials (ISEM), Wollongong, NSW, 2522, Australia
| |
Collapse
|
14
|
Wei Z, Mao P, Liu C, Lan G, Ahmad M, Zheng R, Wang Z, Sun H, Liu Y. Covalent Pinning of Highly Dispersed Ultrathin Metallic-Phase Molybdenum Disulfide Nanosheets on the Inner Surface of Mesoporous Carbon Spheres for Durable and Rapid Sodium Storage. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58652-58664. [PMID: 34854298 DOI: 10.1021/acsami.1c18269] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Two-dimensional (2D) transition-metal dichalcogenide materials show potential for use in alkali metal ion batteries owing to their remarkable physical and chemical properties. Nevertheless, the electrochemical energy storage performance is still impaired by the tendency of aggregation, volume, and morphological change during the conversion reaction and poor intrinsic conductivity. Until now, ultrathin molybdenum disulfide nanosheets with a metallic-phase structure on the inner surface of mesoporous hollow carbon spheres (M-MoS2@HCS) have rarely been investigated as an anode for sodium-ion batteries. In this work, a novel M-MoS2@HCS anode was designed and synthesized by employing a template-assisted solvothermal reaction. Structural and chemical analyses indicate that the M-MoS2 nanosheets with a larger interlayer spacing compared to their semiconductor counterpart grow on the inner surface of HCS via covalent interactions. When used as the anode materials for Na+ storage, the M-MoS2@HCS anode presents durable and rapid sodium storage properties. The developed electrode shows a reversible capacity of 291.2 mAh g-1 at a high current density of 5 A g-1. After 100 cycles at 0.1 A g-1, the reversible capacity is 401.3 mAh g-1 with a capacity retention rate of 79%. After 2500 cycles at 1.0 A g-1, the electrode still delivers a reversible capacity of 320.1 mAh g-1 with a capacity retention rate of 75%. The excellent sodium storage capability of the MoS2@HCS electrode is explained by the special structural design, which reveals great potential to accelerate the practical applications of transition-metal dichalcogenide electrodes for sodium storage.
Collapse
Affiliation(s)
- Zhiqiang Wei
- School of Materials Science and Engineering, Northeastern University, Shenyang 110004, P. R. China
| | - Pengcheng Mao
- School of Materials Science and Engineering, Northeastern University, Shenyang 110004, P. R. China
| | - Chang Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110004, P. R. China
| | - Gongxu Lan
- School of Materials Science and Engineering, Northeastern University, Shenyang 110004, P. R. China
| | - Mashkoor Ahmad
- Nanomaterials Research Group, Physics Division, PINSTECH, Islamabad 44000, Pakistan
| | - Runguo Zheng
- School of Materials Science and Engineering, Northeastern University, Shenyang 110004, P. R. China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, P. R. China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, P. R. China
| | - Zhiyuan Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110004, P. R. China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, P. R. China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, P. R. China
| | - Hongyu Sun
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, P. R. China
| | - Yanguo Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110004, P. R. China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, P. R. China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, P. R. China
| |
Collapse
|
15
|
Han X, Jiang Q, Zhang M, Qin Z, Geng H, Sun C, Gu H. Pseudocapacitance-boosted ultrafast and stable Na-storage in NiTe 2 coupled with N-doped carbon nanosheets for advanced sodium-ion half/full batteries. Dalton Trans 2021; 50:17241-17248. [PMID: 34787140 DOI: 10.1039/d1dt03242a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing high-rate and durable anode materials for sodium-ion batteries (SIBs) is still a challenge because of the larger ion radius of sodium compared with the lithium ion during charge-discharge processes. Herein, NiTe2 coupled with N-doped carbon (NiTe2/NC) hexagonal nanosheets has been fabricated through a solvothermal and subsequent carbonisation strategy. This unique hexagonal nanosheet structure offers abundant active sites and contact area to the electrolyte, which could shorten the Na+ diffusion path. The heterostructured N-doping carbon improves the electrochemical conductivity and accelerates the kinetics of Na+ transportation. Electrochemical analysis shows that the charge-discharge process is controlled by the pseudocapacitive behavior thus leading to high-rate capability and long lifespan in half batteries. As expected, high capacities of 311 mA h g-1 to 217 mA h g-1 at 5 A g-1 to 10 A g-1 are maintained after 800 and 1200 cycles, respectively. Furthermore, a full battery equipped with a Na3V2(PO4)2O2F cathode and a NiTe2/NC anode offers a maximum energy density of 104 W h kg-1 and a maximum power density of 9116 W kg-1. The results clearly show that the NiTe2/NC hexagonal nanosheet with superior Na storage properties is an advanced new material for energy storage systems.
Collapse
Affiliation(s)
- Xu Han
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Jiangsu, 215123, P. R. China.
| | - Qilei Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Jiangsu, 215123, P. R. China.
| | - Mengling Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Jiangsu, 215123, P. R. China.
| | - Zheng Qin
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Jiangsu, 215123, P. R. China.
| | - Hongbo Geng
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China.
| | - Chencheng Sun
- School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China.
| | - Hongwei Gu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Jiangsu, 215123, P. R. China.
| |
Collapse
|
16
|
Gao L, Wang Z, Zhang L, Yang X. Potassium ion anode versus sodium ion anode: Potato starch residue derived carbon material as a case study. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-05052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Kausar A. Technological sway of polymer and nanoflower nanofiller consequent nanocomposite—state-of-the-art. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1942491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ayesha Kausar
- Nanosciences Division, National Center for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| |
Collapse
|
18
|
Yue X, Wang J, Xie Z, He Y, Liu Z, Liu C, Hao X, Abudula A, Guan G. Controllable Synthesis of Novel Orderly Layered VMoS 2 Anode Materials with Super Electrochemical Performance for Sodium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26046-26054. [PMID: 34029481 DOI: 10.1021/acsami.1c05096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sodium-ion batteries (SIBs), being an attractive candidate of lithium-ion batteries, have attracted widespread attention as a result of sufficient sodium resource with low price and their comparable suitability in the field of energy storage. However, one of the main challenges for their wide-scale application is to develop suitable anode materials with excellent electrochemical performance. Herein, a novel orderly layered VMoS2 (OL-VMS) anode material was synthesized through a facile hydrothermal self-assembly approach followed by a heating procedure. As the anode material of the SIBs, the unique structure of OL-VMS not only facilitated the rapid migration of sodium ions between the stacked layers but also provided a stable framework for the volume change in the process of intercalation/deintercalation. In addition, vanadium mediating in the framework caused more defects to produce abundant storage sites for Na+. As such, the obtained OL-VMS-based anode exhibited high reversible capacities of 602.9 mAh g-1 at 0.2 mA g-1 and 534 mAh g-1 even after 190-cycle operation at 2 A g-1. Furthermore, the OL-VMS-based anode delivered an outstanding specific capacity of 626.4 mAh g-1 after 100-cycle testing at 2 A g-1 in a voltage range from 0.01 to 3 V. In particular, even in the absence of conductive carbon, it still showed an excellent specific capacity of 260 mAh g-1 at 1 A g-1 after 130 cycles in a 0.3-3 V voltage range, which should contribute to the cost reduction and energy density increase.
Collapse
Affiliation(s)
- Xiyan Yue
- Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki 036-8560, Japan
| | - Jiajia Wang
- Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki 036-8560, Japan
| | - Zhengkun Xie
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, China
| | - Yang He
- Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki 036-8560, Japan
| | - Zhao Liu
- Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki 036-8560, Japan
| | - Changlin Liu
- Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki 036-8560, Japan
| | - Xiaogang Hao
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Abuliti Abudula
- Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki 036-8560, Japan
| | - Guoqing Guan
- Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki 036-8560, Japan
- Energy Conversion Engineering Laboratory, Institute of Regional Innovation (IRI), Hirosaki University, 2-1-3, Matsubara, Aomori 030-0813, Japan
| |
Collapse
|
19
|
Wu Y, Zhang Q, Xu Y, Xu R, Li L, Li Y, Zhang C, Zhao H, Wang S, Kaiser U, Lei Y. Enhanced Potassium Storage Capability of Two-Dimensional Transition-Metal Chalcogenides Enabled by a Collective Strategy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18838-18848. [PMID: 33848126 DOI: 10.1021/acsami.1c01891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Potassium-ion batteries (PIBs) have been considered as a promising alternative to lithium-ion batteries due to their merits of high safety and low cost. Two-dimensional transition-metal chalcogenides (2D TMCs) with high theoretical specific capacities and unique layered structures have been proven to be amenable materials for PIB anodes. However, some intrinsic properties including severe stacking and unsatisfactory conductivity restrict their electrochemical performance, especially rate capability. Herein, we prepared a heterostructure of high-crystallized ultrathin MoSe2 nanosheet-coated multiwall carbon nanotubes and investigated its electrochemical properties with a view to demonstrating the enhancement of a collective strategy for K storage of 2D TMCs. In such a heterostructure, the constructive contribution of CNTs not only suppresses the restacking of MoSe2 nanosheets but also accelerates electron transport. Meanwhile, the MoSe2 nanosheets loaded on CNTs exhibit an ultrathin feature, which can expose abundant active sites for the electrochemical reaction and shorten K+ diffusion length. Therefore, the synergistic effect between ultrathin MoSe2 and CNTs endows the resulting nanocomposite with superior structural and electrochemical properties. Additionally, the high crystallinity of the MoSe2 nanosheets further leads to the improvement of electrochemical performance. The composite electrode delivers high-rate capacities of 209.7 and 186.1 mAh g-1 at high current densities of 5.0 and 10.0 A g-1, respectively.
Collapse
Affiliation(s)
- Yuhan Wu
- Fachgebiet Angewandte Nanophysik, Institut für Physik & ZMN MacroNano (ZIK), Technische Universität Ilmenau, Ilmenau 98693, Germany
| | - Qingcheng Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Yang Xu
- Fachgebiet Angewandte Nanophysik, Institut für Physik & ZMN MacroNano (ZIK), Technische Universität Ilmenau, Ilmenau 98693, Germany
- Department of Chemistry, University College London, London WC1H 0AJ, U.K
| | - Rui Xu
- Fachgebiet Angewandte Nanophysik, Institut für Physik & ZMN MacroNano (ZIK), Technische Universität Ilmenau, Ilmenau 98693, Germany
| | - Lei Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yueliang Li
- Central Facility for Electron Microscopy, Electron Microscopy Group of Materials Science, Ulm University, Ulm 89081, Germany
| | - Chenglin Zhang
- Fachgebiet Angewandte Nanophysik, Institut für Physik & ZMN MacroNano (ZIK), Technische Universität Ilmenau, Ilmenau 98693, Germany
| | - Huaping Zhao
- Fachgebiet Angewandte Nanophysik, Institut für Physik & ZMN MacroNano (ZIK), Technische Universität Ilmenau, Ilmenau 98693, Germany
| | - Shun Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Ute Kaiser
- Central Facility for Electron Microscopy, Electron Microscopy Group of Materials Science, Ulm University, Ulm 89081, Germany
| | - Yong Lei
- Fachgebiet Angewandte Nanophysik, Institut für Physik & ZMN MacroNano (ZIK), Technische Universität Ilmenau, Ilmenau 98693, Germany
| |
Collapse
|
20
|
Wu BS, Wang P, Teng SH. Controllable synthesis and coating-thickness-dependent electrochemical properties of mesoporous carbon-coated α-Fe2O3 nanoparticles for lithium-ion batteries. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125907] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Wang LN, Wu X, Wang FT, Chen X, Xu J, Huang KJ. 1T-Phase MoS2 with large layer spacing supported on carbon cloth for high-performance Na+ storage. J Colloid Interface Sci 2021; 583:579-585. [DOI: 10.1016/j.jcis.2020.09.055] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 11/26/2022]
|
22
|
He C, Yin W, Li X, Zheng J, Tang B, Rui Y. Molybdenum disulfide synthesized by molybdenum-based metal organic framework with high activity for sodium ion battery. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137353] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Zhan W, Zhu M, Lan J, Yuan H, Wang H, Yang X, Sui G. All-in-One MoS 2 Nanosheets Tailored by Porous Nitrogen-Doped Graphene for Fast and Highly Reversible Sodium Storage. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51488-51498. [PMID: 33147944 DOI: 10.1021/acsami.0c15169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Though being a promising anode material for sodium-ion batteries (SIBs), MoS2 with high theoretical capacity shows poor rate capability and rapid capacity decay, especially involving the conversion of MoS2 to Mo metal and Na2S. Here, we report all-in-one MoS2 nanosheets tailored by porous nitrogen-doped graphene (N-RGO) for the first time to achieve superior structural stability and high cycling reversibility of MoS2 in SIBs. The all-in-one MoS2 nanosheets possess desirable structural characteristics by admirably rolling up all good qualities into one, including vertical alignment, an ultrathin layer, vacancy defects, and expanded layer spacing. Thus, the all-in-one MoS2@N-RGO composite anode exhibits an improvement in the charge transport kinetics and availability of active materials in SIBs, resulting in outstanding cycling and rate performance. More importantly, the restricted growth of all-in-one MoS2 by the porous N-RGO via a strong coupling effect dramatically improves the cycling reversibility of conversion reaction. Consequently, the all-in-one MoS2@N-RGO composite anode demonstrates excellent reversible capacity, outstanding rate capability, and superior cycling stability. This study strongly suggests that the all-in-one MoS2@N-RGO has great potential for practical application in high-performance SIBs.
Collapse
Affiliation(s)
- Wenwei Zhan
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Zhu
- Shanghai Institute of Space Power-Sources, Shanghai 200245, China
| | - Jinle Lan
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haocheng Yuan
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haijun Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Gang Sui
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
24
|
Liu X, Xu GB, Cheng TT, Yang LW, Cao JX. Effect of Crystal Structures on Electrochemical Performance of Hierarchically Porous CoSe
2
Spheres as Anodes for Sodium‐Ion Batteries. ChemElectroChem 2020. [DOI: 10.1002/celc.201902027] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xin Liu
- Department of Physics & Hunan Institute of Advanced Sensing and Information TechnologyXiangtan University Hunan 411105 China
| | - Guo B. Xu
- National-Provincial Laboratory of Special Function Thin Film Materials School of Materials Science and EngineeringXiangtan University Hunan 411105 China
| | - Ting T. Cheng
- College of Textile and EngineeringSoochow University Suzhou 215123 China
| | - Li W. Yang
- Department of Physics & Hunan Institute of Advanced Sensing and Information TechnologyXiangtan University Hunan 411105 China
| | - Jue X. Cao
- Department of Physics & Hunan Institute of Advanced Sensing and Information TechnologyXiangtan University Hunan 411105 China
| |
Collapse
|
25
|
Wang Y, Zhao X, Liu ZH. Few-layer WS2 nanosheets with oxygen-incorporated defect-sulphur entrapped by a hierarchical N, S co-doped graphene network towards advanced long-term lithium storage performances. RSC Adv 2020; 10:7134-7145. [PMID: 35493866 PMCID: PMC9049920 DOI: 10.1039/d0ra00558d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/09/2020] [Indexed: 11/30/2022] Open
Abstract
Tungsten sulfide (WS2) with two-dimensional layered graphene-like structure as an anode for lithium-ion batteries (LIBs) has attracted large attention owing to its high theoretical capacity and unique S–W–S layer structure. However, it also always suffers from poor electrical conductivity and volume expansion during lithiation/delithiation process in the practical application. Herein, we demonstrate the successful synergistic regulation of both structural and electronic modulation by simultaneous oxygen incorporation in defect-sulphur WS2 nanosheets embedded into a conductive nitrogen and sulfur co-doped graphene framework (denoted as O-DS-WS2/NSG), leading to dramatically enhanced lithium storage. Such a unique structure not only increases the accessible active sites for Li+ and enhances the kinetics of ion/electron transport, but also relieves the volume effect of WS2. Furthermore, the surface defects and heteroatom incorporation can effectively regulate the electronic structure, improve the intrinsic conductivity and offer more active sites. Consequently, electrochemical performance results demonstrate that the obtained O-DS-WS2/NSG nanocomposites possess great application prospects in LIBs with high specific capacity, superior rate performance as well as excellent cycle stability. One-step preparation of few-layer oxygen incorporation in defect-sulphur WS2 nanosheets embedded into the NSG framework exhibits excellent Li-ion storage properties.![]()
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
- P. R. China
| | - Xiaojun Zhao
- Key Laboratory for Macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
- P. R. China
| | - Zhi-Hong Liu
- Key Laboratory for Macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
- P. R. China
| |
Collapse
|
26
|
Sun D, Miao X, He Y, Wang L, Zhou X, Ma G, Lei Z. 3D Interconnected Porous Graphitic Carbon@MoS2 Anchored on Carbonized Cotton Cloth as an Anode for Enhanced Lithium Storage Performance. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134616] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Wang N, Zhou Y, Yousif S, Majima T, Zhu L. Hydrogen Bond between Molybdate and Glucose for the Formation of Carbon-Loaded MoS 2 Nanocomposites with High Electrochemical Performance. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34430-34440. [PMID: 31460738 DOI: 10.1021/acsami.9b12013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The effects of glucose on the growth and surface properties of MoS2 with a nanosheet structure were investigated in detail. In the presence of glucose, the hydrothermal reaction of sodium molybdate and thiourea yields carbon-loaded MoS2 nanocomposites (C/MoS2). Compared with bare MoS2 nanosheets with more than six layers obtained in the absence of glucose and carbon spheres with a diameter of 500 nm prepared from the carbonization of glucose, C/MoS2 consists of one- or three-layered MoS2 and carbon spheres with a diameter less than 1 nm to give a large Brunauer-Emmett-Teller surface area (3-20 times larger than the individual materials). The surface characterizations reveal that both MoS2 and carbon spheres of C/MoS2 have a negative charge on the surface, suggesting that the previously reported explanation, in which the adsorption of MoS2 and/or molybdate ions on carbon spheres inhibits the growth and aggregation of MoS2, is not correct. Based on Fourier transform infrared and 1H NMR spectra, it is demonstrated that glucose acts as the hydrogen bond donor toward polyoxomolybdate species such as Mo8O264-, Mo7O246-, and MoO42- in the range of pH = 2-12. The intermolecular hydrogen bond not only inhibits the growth of both the (002) plane of MoS2 and carbon spheres, but also enables the formation of C-O-Mo bonds in the in situ generated C/MoS2. Compared with bare MoS2, C/MoS2 not only show a lower over-potential by 60 mV for the electrocatalytic evolution of hydrogen, but also has a larger mass specific capacitance by three times, due to the larger surface area and the interfacial interaction through the C-O-Mo bonds.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Yuqi Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Sarmad Yousif
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Tetsuro Majima
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Lihua Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| |
Collapse
|
28
|
Yang Z, Yang J, Zong L, Ren L, Guli M. Simple and Controllable Synthesis of Three‐Dimensional Spheroidal Structure of MoS
2
/rGO under Lower Temperature for Enhanced Properties in Lithium Battery. ChemistrySelect 2019. [DOI: 10.1002/slct.201901368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zezhou Yang
- Beijing Key Laboratory of Energy Safety and Clean UtilizationNorth China Electric Power University Beijing 102206 China
- Beijing Key Laboratory of Novel Thin Film Solar CellsSchool of Renewable EnergyNorth China Electric Power University Beijing 102206 China
| | - Jingjing Yang
- Beijing Key Laboratory of Energy Safety and Clean UtilizationNorth China Electric Power University Beijing 102206 China
- Beijing Key Laboratory of Novel Thin Film Solar CellsSchool of Renewable EnergyNorth China Electric Power University Beijing 102206 China
| | - Liming Zong
- Beijing Key Laboratory of Energy Safety and Clean UtilizationNorth China Electric Power University Beijing 102206 China
- Beijing Key Laboratory of Novel Thin Film Solar CellsSchool of Renewable EnergyNorth China Electric Power University Beijing 102206 China
| | - Lan Ren
- Beijing Key Laboratory of Energy Safety and Clean UtilizationNorth China Electric Power University Beijing 102206 China
- Beijing Key Laboratory of Novel Thin Film Solar CellsSchool of Renewable EnergyNorth China Electric Power University Beijing 102206 China
| | - Mina Guli
- Beijing Key Laboratory of Energy Safety and Clean UtilizationNorth China Electric Power University Beijing 102206 China
- Beijing Key Laboratory of Novel Thin Film Solar CellsSchool of Renewable EnergyNorth China Electric Power University Beijing 102206 China
| |
Collapse
|
29
|
Zhan J, Wu K, Yu X, Yang M, Cao X, Lei B, Pan D, Jiang H, Wu M. α-Fe 2 O 3 Nanoparticles Decorated C@MoS 2 Nanosheet Arrays with Expanded Spacing of (002) Plane for Ultrafast and High Li/Na-Ion Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901083. [PMID: 30993869 DOI: 10.1002/smll.201901083] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/23/2019] [Indexed: 06/09/2023]
Abstract
MoS2 nanosheets as a promising 2D nanomaterial have extensive applications in energy storage and conversion, but their electrochemical performance is still unsatisfactory as an anode for efficient Li+ /Na+ storage. In this work, the design and synthesis of vertically grown MoS2 nanosheet arrays, decorated with graphite carbon and Fe2 O3 nanoparticles, on flexible carbon fiber cloth (denoted as Fe2 O3 @C@MoS2 /CFC) is reported. When evaluated as an anode for lithium-ion batteries, the Fe2 O3 @C@MoS2 /CFC electrode manifests an outstanding electrochemical performance with a high discharge capacity of 1541.2 mAh g-1 at 0.1 A g-1 and a good capacity retention of 80.1% at 1.0 A g-1 after 500 cycles. As for sodium-ion batteries, it retains a high reversible capacity of 889.4 mAh g-1 at 0.5 A g-1 over 200 cycles. The superior electrochemical performance mainly results from the unique 3D ordered Fe2 O3 @C@MoS2 array-type nanostructures and the synergistic effect between the C@MoS2 nanosheet arrays and Fe2 O3 nanoparticles. The Fe2 O3 nanoparticles act as spacers to steady the structure, and the graphite carbon could be incorporated into MoS2 nanosheets to improve the conductivity of the whole electrode and strengthen the integration of MoS2 nanosheets and CFC by the adhesive role, together ensuring high conductivity and mechanical stability.
Collapse
Affiliation(s)
- Jing Zhan
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Kuan Wu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Xue Yu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Mengjia Yang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Xu Cao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Bo Lei
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Dengyu Pan
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Hu Jiang
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Minghong Wu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| |
Collapse
|
30
|
Zhang Y, Tao H, Du S, Yang X. Conversion of MoS 2 to a Ternary MoS 2- xSe x Alloy for High-Performance Sodium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11327-11337. [PMID: 30839188 DOI: 10.1021/acsami.8b19701] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
MoS2 has attracted tremendous attention as an anode for Na-ion batteries (NIBs) owing to its high specific capacity and layered graphite-like structure. Herein, MoS2 is converted to a ternary MoS2- xSe x alloy through the selenizing process in order to boost the electrochemical performance for Na-ion batteries. Conversion of MoS2 to MoS2- xSe x expands interlayer spacing, improves electronic conductivity, and creates more defects. The expanded interlayer spacing decreases Na+ diffusion resistance and facilitates Na+ fast transfer. The integrated graphene as a conductive network offers effective pathway for electron migration and maintains structural stability of electrodes during cycles. The ternary MoS1.2Se0.8/graphene (MoS1.2Se0.8/G) electrode demonstrates an extremely high reversible capacity of 509 mA h g-1 after 200 cycles at 0.1 A g-1 (capacity retention of 109%) as an anode for sodium-ion batteries. Even at 2 A g-1 and after 700 cycles, the MoS1.2Se0.8/G electrode also displays a relatively high reversible capacity of 178 mA h g-1. Full cells assembled with Na3V2(PO4)2F3 cathodes and MoS1.2Se0.8/G anodes reveal high charge/discharge capacities. This work demonstrates that the ternary MoS2- xSe x alloy could be a potential anode material for Na-ion storage.
Collapse
Affiliation(s)
- Yaqiong Zhang
- College of Materials and Chemical Engineering , China Three Gorges University , Yichang , Hubei 443002 , China
| | - Huachao Tao
- College of Materials and Chemical Engineering , China Three Gorges University , Yichang , Hubei 443002 , China
- Collaborative Innovation Center for Microgrid of New Energy , Yichang , Hubei 443002 , China
| | - Shaolin Du
- College of Materials and Chemical Engineering , China Three Gorges University , Yichang , Hubei 443002 , China
| | - Xuelin Yang
- College of Materials and Chemical Engineering , China Three Gorges University , Yichang , Hubei 443002 , China
- Collaborative Innovation Center for Microgrid of New Energy , Yichang , Hubei 443002 , China
| |
Collapse
|
31
|
Li Y, Chang K, Shangguan E, Guo D, Zhou W, Hou Y, Tang H, Li B, Chang Z. Powder exfoliated MoS 2 nanosheets with highly monolayer-rich structures as high-performance lithium-/sodium-ion-battery electrodes. NANOSCALE 2019; 11:1887-1900. [PMID: 30643912 DOI: 10.1039/c8nr08511k] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Due to their low yield and easy aggregation during the electrode preparation process, exfoliated MoS2 monolayers cannot fulfill the requirements of alkali-metal-ion battery tests. Hence, we have developed a facile process to fabricate powder exfoliated MoS2 nanosheets capable of large-scale production and having highly monolayer-rich structures. This process contains two steps: liquid-phase exfoliation of the edge-rich MoS2 precursor and a freeze-drying procedure. The proposed MoS2 precursors contain rich edge fractions that are easily exfoliated by this method, and the freeze-drying procedure can maintain the unique monolayer-rich structure of MoS2 in the powder phase. The electrochemical evaluations of both lithium- and sodium-ion batteries reveal that the proposed powder exfoliated monolayer-rich MoS2 electrode exhibits remarkable specific capacities and stable cyclic performances. In particular, the monolayer-rich MoS2 nanosheet electrode delivers a superior lithium-storage capacity of ∼1400 mA h g-1. The exfoliated MoS2 nanosheet electrode can withstand over 1000 cycles even at 1 A g-1. The mechanism reveals that these unique MoS2 nanosheets not only have a large surface area but also their inclusive monolayer structures exhibit much higher charge mobility than those of bulk MoS2.
Collapse
Affiliation(s)
- Yihui Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|