1
|
Shen X, Chen G, Peng X, Qi F, Liu H, Hao W, Ouyang Q. Ultrathin, Friendly Environmental, and Flexible CsPb(Cl/Br) 3-Silica Composite Film for Blue-Light-Emitting Diodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:130-139. [PMID: 39729285 DOI: 10.1021/acs.langmuir.4c03070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2024]
Abstract
Due to intrinsic defects in blue-light-emitting perovskite materials, the charge carriers are prone to being trapped by the trap states. Therefore, the preparation of efficient blue-light-emitting perovskite materials remains a significant challenge. Herein, CsPb(Cl/Br)3 nanocrystal (NCs)@SiO2 structures were fabricated through hydrolyzing (3-aminopropyl)-triethoxysilane (APTS). SiO2 can passivate the surface trap states of NCs, suppress the nonradiative recombination pathways of NCs, and effectively stabilize the surface of NCs. CsPb(Cl/Br)3 NCs@SiO2 exhibits higher photoluminescence (PL) intensity and lifetime compared to those of the pure CsPb(Cl/Br)3 NCs. The enhancement of the exciton binding energy (Eb) leads to increased PL intensity and lifetime in CsPb(Cl/Br)3 NCs @SiO2, as demonstrated by temperature-dependent PL spectra. Subsequently, a 0.3 mm film of CsPb(Cl/Br)3 NCs@SiO2/poly(methyl methacrylate) (PMMA) was fabricated through optimizing the casting method. Due to the effective protection provided by SiO2 and PMMA, CsPb(Cl/Br)3 NCs@SiO2/PMMA film exhibits excellent thermal, water, and air stability. Moreover, the CsPb(Cl/Br)3 NCs@SiO2/PMMA film also exhibits good flexibility, maintaining the PL intensity unchanged under bending conditions. Importantly, lead can be well encapsulated in SiO2 and PMMA, effectively preventing lead from leaking into the environment. This research demonstrates the potential of a CsPb(Cl/Br)3 NCs@SiO2/PMMA film for applications in the friendly environmental field of optoelectronics, including light-emitting diodes (LEDs) and flexible displays.
Collapse
Affiliation(s)
- Xiong Shen
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
| | - Gaozhao Chen
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
| | - Xin Peng
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
| | - Fanfan Qi
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
| | - He Liu
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
| | - Wentao Hao
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
| | - Qiuyun Ouyang
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
2
|
Song W, Chong KC, Qi G, Xiao Y, Chen G, Li B, Tang Y, Zhang X, Yao Y, Lin Z, Zou Z, Liu B. Unraveling the Transformation from Type-II to Z-Scheme in Perovskite-Based Heterostructures for Enhanced Photocatalytic CO 2 Reduction. J Am Chem Soc 2024; 146:3303-3314. [PMID: 38271212 DOI: 10.1021/jacs.3c12073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/27/2024]
Abstract
The ability to create perovskite-based heterostructures with desirable charge transfer characteristics represents an important endeavor to render a set of perovskite materials and devices with tunable optoelectronic properties. However, due to similar material selection and band alignment in type-II and Z-scheme heterostructures, it remains challenging to obtain perovskite-based heterostructures with a favorable electron transfer pathway for photocatalysis. Herein, we report a robust tailoring of effective charge transfer pathway in perovskite-based heterostructures via a type-II to Z-scheme transformation for highly efficient and selective photocatalytic CO2 reduction. Specifically, CsPbBr3/TiO2 and CsPbBr3/Au/TiO2 heterostructures are synthesized and then investigated by ultrafast spectroscopy. Moreover, taking CsPbBr3/TiO2 and CsPbBr3/Au/TiO2 as examples, operando experiments and theoretical calculations confirm that the type-II heterostructure could be readily transformed into a Z-scheme heterostructure through establishing a low-resistance Ohmic contact, which indicates that a fast electron transfer pathway is crucial in Z-scheme construction, as further demonstrated by CsPbBr3/Ag/TiO2 and CsPbBr3/MoS2 heterostructures. In contrast to pristine CsPbBr3 and CsPbBr3/TiO2, the CsPbBr3/Au/TiO2 heterostructure exhibits 5.4- and 3.0-fold enhancement of electron consumption rate in photocatalytic CO2 reduction. DFT calculations and in situ diffuse reflectance infrared Fourier transform spectroscopy unveil that the superior CO selectivity is attributed to the lower energy of *CO desorption than that of hydrogenation to *HCO. This meticulous design sheds light on the modification of perovskite-based multifunctional materials and enlightens conscious optimization of semiconductor-based heterostructures with desirable charge transfer for catalysis and optoelectronic applications.
Collapse
Affiliation(s)
- Wentao Song
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Kok Chan Chong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Guobin Qi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yukun Xiao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Ganwen Chen
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Bowen Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yufu Tang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xinyue Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Yingfang Yao
- Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing 210093, China
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid-State Microstructures, Department of Physics, Nanjing University, No. 22 Hankou Road, Nanjing 210093, China
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Zhigang Zou
- Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing 210093, China
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid-State Microstructures, Department of Physics, Nanjing University, No. 22 Hankou Road, Nanjing 210093, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
3
|
Shen X, Wang Z, Chen L, Wei J, Ouyang Q. Enhanced Photoelectric Properties of CsPbBr 3 by SiO 2 and TiO 2 Bilayer Heterostructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2719-2728. [PMID: 38277777 DOI: 10.1021/acs.langmuir.3c03334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/28/2024]
Abstract
CsPbBr3/SiO2 heterostructures were synthesized by the hydrolysis reaction of a mixture of CsPbBr3 nanocrystals (NCs) and (3-aminopropyl)triethoxysilane (APTS) in air. Compared with CsPbBr3 NCs, the CsPbBr3/SiO2 heterostructures exhibit stronger photoluminescence (PL) intensity, longer lifetime of PL (∼40.5 ns), and higher PL-quantum yield (PLQY, ∼86%). The carrier dynamics of CsPbBr3/SiO2 was detected by the transient absorption (TA) spectrum. The experimental results show that SiO2 passivates the surface traps of CsPbBr3 NCs and enhances the PL intensity. However, photoelectrochemical impedance spectra (PEIS) demonstrate that the impedance of CsPbBr3/SiO2 is higher than that of CsPbBr3 NCs, which reduces carrier transport and extraction. Because the application of CsPbBr3/SiO2 in optoelectronics is limited, CsPbBr3/SiO2/TiO2 heterostructures were synthesized by the further reaction of tetrabutyl titanate (TBT). The TiO2 coating can reduce the impedance of the CsPbBr3/SiO2. Importantly, ∼68% of the PL intensity of CsPbBr3/SiO2 is retained. Compared with CsPbBr3/SiO2 and CsPbBr3 NCs, the CsPbBr3/SiO2/TiO2 demonstrates faster carrier transport (κct = 2.4 × 109 s-1) and higher photocurrent density (J = 76 nA cm-2). In addition, CsPbBr3/SiO2/TiO2 shows good stability under (ultraviolet) UV irradiation, along with water stability and thermal stability. Therefore, the double protection approach can enhance the stability of CsPbBr3 NCs and tune the optoelectronic properties of CsPbBr3 NCs.
Collapse
Affiliation(s)
- Xiong Shen
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
| | - Zhongming Wang
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
| | - Lin Chen
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jinhe Wei
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
| | - Qiuyun Ouyang
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
4
|
Bommireddy PR, B JB, Sunku S, C KB, Suh Y, M CS, Park SH. Highly stable CsPbBr 3/ PMA perovskite nanocrystals for improved optical performance. Heliyon 2024; 10:e24497. [PMID: 38298666 PMCID: PMC10828704 DOI: 10.1016/j.heliyon.2024.e24497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/21/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
In this study, to address the stability issues, we synthesized a CsPbBr3-coated poly (maleic anhydride-alt-1-octadecene) (CsPbBr3/PMA) using a modified hot-injection method. The CsPbBr3/PMA perovskite nanocrystals (PNCs) exhibited effective green emission at 522 nm with an improved photoluminescence quantum yield (86.8 %) compared to traditional CsPbBr3 PNCs (54.2 %). The ligands in the polymer coating can bond with the uncoordinated Pb and Br ions on the surface of PNCs to minimize surface defects and avoid exposure to the external environment, enhancing the stability of the perovskites. Time-resolved photoluminescence spectra showed longer lifetimes for CsPbBr3/PMA PNCs, while transient absorption measurements provided valuable insights into the intraband hot-exciton relaxation and recombination. We demonstrate the potential application of CSPbBr3/PMA in a down-conversion white-light-emitting diode (LED) by coupling green CsPbBr3/PMA and red K2SiF6:Mn4+ phosphor-coated glass slides onto a 455-nm blue GaN LED. The white LED produced a white light with the International Commission on Illumination color coordinates of (0.323, 0.345), luminous efficiency of 58.4 lm/W, and color rendering index of 83.2. The fabricated, white-LED system obtained a wide color gamut of 125.3 % of the National Television Standards Committee and 98.9 % of Rec. 2020. The findings demonstrate that CsPbBr3/PMA can be an efficient down-conversion material for white LEDs and backlighting.
Collapse
Affiliation(s)
- Purusottam Reddy Bommireddy
- Department of Electronic Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongsanbuk-do, South Korea
| | - Jagadeesh Babu B
- Department of Physics, Madanapalle Institute of Technology and Science, Madanapalle, 517325, India
| | - Sreedhar Sunku
- Department of Physics, Madanapalle Institute of Technology and Science, Madanapalle, 517325, India
| | - Kamal Basha C
- Department of Electrical and Electronics Engineering, Madanapalle Institute of Technology and Science, Madanapalle, 517325, India
| | - Youngsuk Suh
- Department of Electronic Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongsanbuk-do, South Korea
| | - Chandra Sekhar M
- Department of Physics, Madanapalle Institute of Technology and Science, Madanapalle, 517325, India
| | - Si-Hyun Park
- Department of Electronic Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongsanbuk-do, South Korea
| |
Collapse
|
5
|
Daboczi M, Cui J, Temerov F, Eslava S. Scalable All-Inorganic Halide Perovskite Photoanodes with >100 h Operational Stability Containing Earth-Abundant Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304350. [PMID: 37667871 DOI: 10.1002/adma.202304350] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/09/2023] [Revised: 08/09/2023] [Indexed: 09/06/2023]
Abstract
The application of halide perovskites in the photoelectrochemical generation of solar fuels and feedstocks is hindered by the instability of perovskites in aqueous electrolytes and the use of expensive electrode and catalyst materials, particularly in photoanodes driving kinetically slow water oxidation. Here, solely earth-abundant materials are incorporated to fabricate a CsPbBr3 -based photoanode that reaches a low onset potential of +0.4 VRHE and 8 mA cm-2 photocurrent density at +1.23 VRHE for water oxidation, close to the radiative efficiency limit of CsPbBr3 . This photoanode retains 100% of its stabilized photocurrent density for more than 100 h of operation by replacing once the inexpensive graphite sheet upon signs of deterioration. The improved performance is due to an efficiently electrodeposited NiFeOOH catalyst on a protective self-adhesive graphite sheet, and enhanced charge transfer achieved by phase engineering of CsPbBr3 . Devices with >1 cm2 area, and low-temperature processing demonstrate the potential for low capital cost, stable, and scalable perovskite photoanodes.
Collapse
Affiliation(s)
- Matyas Daboczi
- Department of Chemical Engineering and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Junyi Cui
- Department of Chemical Engineering and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Filipp Temerov
- Department of Chemical Engineering and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
- Nano and Molecular Systems Research Unit, University of Oulu, Oulu, FI-90014, Finland
| | - Salvador Eslava
- Department of Chemical Engineering and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
6
|
Zhang T, Bai Y, Feng S, Xue Q, Hu X, Xu X, Liu H, Luponosov YN, Niazi MBK, Li X. Mechanical milling processed highly luminescent Cs-Pb-Br perovskite emitters. Chem Commun (Camb) 2023; 59:11827-11830. [PMID: 37712301 DOI: 10.1039/d3cc01345f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 09/16/2023]
Abstract
We report well-dispersed highly emitting perovskite emitters synthesized via the surfactant-assisted ball-milling method. Both the emitting peaks and the colour purity of the synthesized perovskite emitters can be effectively tuned through additive functionalization and precursor engineering.
Collapse
Affiliation(s)
- Teng Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.
| | - Youru Bai
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.
| | - Shaohuan Feng
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.
| | - Qifan Xue
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| | - Xiaotian Hu
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC)/Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Xueqing Xu
- Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| | - Heyuan Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.
| | - Yuriy N Luponosov
- Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Moscow 117393, Russia
| | - Muhammad Bilal Khan Niazi
- School of Chemical & Materials Engineering, National University of Sciences & Technology, Islamabad, Pakistan
| | - Xiyou Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.
| |
Collapse
|
7
|
Yang JN, Wang JJ, Yin YC, Yao HB. Mitigating halide ion migration by resurfacing lead halide perovskite nanocrystals for stable light-emitting diodes. Chem Soc Rev 2023; 52:5516-5540. [PMID: 37482807 DOI: 10.1039/d3cs00179b] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 07/25/2023]
Abstract
Lead halide perovskite nanocrystals are promising for next-generation high-definition displays, especially in light of their tunable bandgaps, high color purities, and high carrier mobility. Within the past few years, the external quantum efficiency of perovskite nanocrystal-based light-emitting diodes has progressed rapidly, reaching the standard for commercial applications. However, the low operational stability of these perovskite nanocrystal-based light-emitting diodes remains a crucial issue for their industrial development. Recent experimental evidence indicates that the migration of ionic species is the primary factor giving rise to the performance degradation of perovskite nanocrystal-based light-emitting diodes, and ion migration is closely related to the defects on the surface of perovskite nanocrystals and at the grain boundaries of their thin films. In this review, we focus on the central idea of surface reconstruction of perovskite nanocrystals, discuss the influence of surface defects on halide ion migration, and summarize recent advances in resurfacing perovskite nanocrystal strategies toward mitigating halide ion migration to improve the stability of the as-fabricated light-emitting diode devices. From the perspective of perovskite nanocrystal resurfacing, we set out a promising research direction for improving both the spectral and operational stability of perovskite nanocrystal-based light-emitting diodes.
Collapse
Affiliation(s)
- Jun-Nan Yang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230088, China.
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jing-Jing Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230088, China.
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi-Chen Yin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230088, China.
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hong-Bin Yao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230088, China.
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
8
|
Li X, Liu J, Jiang G, Lin X, Wang J, Li Z. Self-supported CsPbBr 3/Ti 3C 2T x MXene aerogels towards efficient photocatalytic CO 2 reduction. J Colloid Interface Sci 2023; 643:174-182. [PMID: 37058892 DOI: 10.1016/j.jcis.2023.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/02/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
Abstract
Aerogels, especially MXene aerogels, are an ideal multifunctional platform for developing efficient photocatalysts for CO2 reduction because they are featured by abundant catalytic sites, high electrical conductivity, high gas absorption ability and self-supported structure. However, the pristine MXene aerogel has almost no ability to utilize light, which requires additional photosensitizers to assist it in achieving efficient light harvesting. Herein, we immobilized colloidal CsPbBr3 nanocrystals (NCs) onto the self-supported Ti3C2Tx (where Tx represents surface terminations such as fluorine, oxygen, and hydroxyl groups) MXene aerogels for photocatalytic CO2 reduction. The resultant CsPbBr3/Ti3C2Tx MXene aerogels exhibit a remarkable photocatalytic activity toward CO2 reduction with total electron consumption rate of 112.6 μmol g-1h-1, which is 6.6-fold higher than that of the pristine CsPbBr3 NC powders. The improvement of the photocatalytic performance is presumably attributed to the strong light absorption, effective charge separation and CO2 adsorption in the CsPbBr3/Ti3C2Tx MXene aerogels. This work presents an effective perovskite-based photocatalyst in aerogel form and opens a new avenue for their solar-to-fuel conversions.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, Zhejiang, P.R. China
| | - Jiale Liu
- Zhejiang Institute of Optoelectronics, Zhejiang Normal University, Jinhua 321004, Zhejiang, P.R. China; Zhejiang Provincial Key Laboratory of Solid State Optoelectronic Devicces, Zhejiang Normal University, Jinhua 321004, Zhejiang, P.R. China
| | - Guocan Jiang
- Zhejiang Institute of Optoelectronics, Zhejiang Normal University, Jinhua 321004, Zhejiang, P.R. China; Zhejiang Provincial Key Laboratory of Solid State Optoelectronic Devicces, Zhejiang Normal University, Jinhua 321004, Zhejiang, P.R. China.
| | - Xinyu Lin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, Zhejiang, P.R. China
| | - Jin Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, Zhejiang, P.R. China; Zhejiang Institute of Optoelectronics, Zhejiang Normal University, Jinhua 321004, Zhejiang, P.R. China.
| | - Zhengquan Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, Zhejiang, P.R. China; Zhejiang Institute of Optoelectronics, Zhejiang Normal University, Jinhua 321004, Zhejiang, P.R. China.
| |
Collapse
|
9
|
Zhang Z, Liao JF, Xing G. Regulating the coordination geometry of polyhedra in zero-dimensional metal halides for tunable emission. NANOSCALE 2023; 15:5241-5248. [PMID: 36790119 DOI: 10.1039/d2nr06975j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/18/2023]
Abstract
Although self-trapped exciton (STE) emissions in zero-dimensional metal halides have been intensively investigated, the understanding of the relationship between the coordination geometries of the metal halides and their photophysical properties is still lacking. In this work, we successfully synthesized single crystals, with strong STE emissions, of the bimetallic materials (Bmpip)9[Pb3Br11](ZnBr4)2 (PbZn-Br) and (Bmpip)9[Pb3Br11](MnBr4)2 (PbMn-Br), where Bmpip+ is 1-butyl-1-methyl-piperidinium (C10H22N+), via a facile anti-solvent crystallization strategy. With respect to the monometallic material, (Bmpip)2[PbBr4] (Pb-Br), the introduction of Zn2+ and Mn2+ effectively alters the coordination geometry of the lead bromide polyhedral configuration from a PbBr42- tetrahedron to a Pb3Br115- trimer. As a result, the maximum emission peak of PbZn-Br exhibits an obvious red shift and the full width at half maximum is almost two-fold wider than that of Pb-Br due to stronger electron-phonon coupling. Moreover, due to the intrinsic emission of the Mn2+ ions, an intriguing tunable emission was achieved in PbMn-Br with an impressively high photoluminescence quantum yield of up to 67%. The ultra-stable PbMn-Br single crystals show potential as an ideal down-conversion phosphor for use in UV-pumped white light-emitting diode devices.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078 P. R. China.
| | - Jin-Feng Liao
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078 P. R. China.
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078 P. R. China.
| |
Collapse
|
10
|
Kumar V, Chauhan HC, Nagal V, Hafiz AK, Singh K. Lattice-Distortion-Induced Change in the Magnetic Properties in Br-Defect Host CsPbBr 3 Perovskite Quantum Dots. J Phys Chem Lett 2023; 14:888-896. [PMID: 36662270 DOI: 10.1021/acs.jpclett.2c03576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/17/2023]
Abstract
Herein, we report temperature- and field-induced magnetic states in CsPbBr3 perovskite quantum dots (PQDs) attributed to Br defects. We find that temperature-dependent structural distortion is the main source of various temperature-induced magnetic states in Br-defect host CsPbBr3 PQDs. Comprehensively examined magnetization data through Arrott plots, Langevin and Brillouin function fitting, and structural analysis reveal the presence of various oxidation states (i.e., Pb0, Pb+, Pb2+, and Pb3+) yielding different magnetic states, such as diamagnetic states above 90 K, paramagnetic states below ≈90 K, and perhaps locally ordered states between 58 and 90 K. It is realized from theoretical fits that paramagnetic ions exist (i.e., superparamagnetic behavior) due to Br defects causing Pb+ (and/or Pb3+ ions) in the diamagnetic region. We anticipate that our findings will spur future research of the development of spin-optoelectronics, such as spin light-emitting diodes, and spintronics devices based on CsPbBr3 PQDs.
Collapse
Affiliation(s)
- Virendra Kumar
- School of Physical Sciences, Jawaharlal Nehru University (JNU), New Delhi110067, India
| | - Harish Chandr Chauhan
- School of Physical Sciences, Jawaharlal Nehru University (JNU), New Delhi110067, India
| | - Vandana Nagal
- Quantum and Nano-photonics Research Laboratory, Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia (A Central University), New Delhi110025, India
| | - Aurangzeb Khurram Hafiz
- Quantum and Nano-photonics Research Laboratory, Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia (A Central University), New Delhi110025, India
| | - Kedar Singh
- School of Physical Sciences, Jawaharlal Nehru University (JNU), New Delhi110067, India
| |
Collapse
|
11
|
Roy S, Mahato MK, Prasad E. Electronic effect of substituents on the charge-transfer dynamics at the CsPbBr 3 perovskite-small molecule interface. Phys Chem Chem Phys 2023; 25:4121-4131. [PMID: 36651827 DOI: 10.1039/d2cp04599k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/12/2023]
Abstract
To push the boundary of the efficiency of perovskite nanocrystal-based photovoltaics, understanding the charge transfer at the interface of these nanocrystals is necessary. In an effort to understand the electronic effects of the substituents in the charge acceptor moiety, three electronically different small molecules (namely, chloranilic acid (CA), p-benzoquinone (BQ), and duroquinone (DQ)) were chosen and their detailed charge transfer dynamics were studied at the CsPbBr3 perovskite nanocrystal-small organic molecule interface using steady state and time-resolved spectroscopic methods. The steady-state absorption and time-resolved emission studies reveal that all three molecules interact with the NCs in the excited state. Femtosecond transient absorption experiments indicate a faster ground-state bleach recovery in the presence of the three acceptors, compared with the pristine NCs. Utilizing band alignment analysis, the faster bleach recovery of the NCs in presence of the acceptors was confirmed to be because of electron transfer from the photo-excited NCs to the acceptor molecules. Moreover, the electron transfer rates fall in the Marcus normal region and can be explained based on the electronic effects of the substituents present on the acceptor molecules.
Collapse
Affiliation(s)
- Soumi Roy
- Department of Chemistry, Indian Institute of Technology Madras (IITM), Chennai 600036, India.
| | - Malay Krishna Mahato
- Department of Chemistry, Indian Institute of Technology Madras (IITM), Chennai 600036, India.
| | - Edamana Prasad
- Department of Chemistry, Indian Institute of Technology Madras (IITM), Chennai 600036, India.
| |
Collapse
|
12
|
Naresh V, Jang T, Pang Y, Lee N. Highly luminescent dual-phase CsPbBr 3/Cs 4PbBr 6 microcrystals for a wide color gamut for backlight displays. NANOSCALE 2022; 14:17789-17801. [PMID: 36440545 DOI: 10.1039/d2nr05653d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/16/2023]
Abstract
Cesium lead bromide perovskite nanocrystals (NCs) embedded in Cs4PbBr6 or CsPb2Br5 matrices forming core/shell structures are promising luminescent materials that exhibit remarkable photoluminescence properties meeting the need in a wide range of applications while overcoming stability challenges. Here, we report the large-scale, ligand-free synthesis of dual-phase Cs4PbBr6/CsPbBr3 microcrystals (MCs) using ultrasonication at room temperature, exhibiting a high photoluminescence quantum yield (PLQY) of 82.7% and good stability. High-resolution transmission electron microscopy and X-ray photoelectron characterization confirm that CsPbBr3 NCs are embedded in the Cs4PbBr6 matrix-forming CsPbBr3/Cs4PbBr6 dual-phase structure. The evolution of the luminescence properties with temperature suggests that the strong green emission results from direct exciton recombination in the isolated [PbBr6]4- octahedra, which possess a large exciton binding energy of 283.6 meV. As revealed from their emission intensities, the dual-phase CsPbBr3/Cs4PbBr6 MCs demonstrate excellent stability against ultraviolet irradiation (76%), good moisture resistance (42.7%), and good thermal tolerance (51%). It is understood that such excellent PLQY and stability are due to the surface passivation of the CsPbBr3 NCs attributed to the large bandgap as well as the isolated [PbBr6]4- octahedra separated by Cs+ ions in the Cs4PbBr6 crystal lattice. Finally, the suitability of the green-emitting CsPbBr3/Cs4PbBr6 material for achieving white-light emission and a wide color gamut is evaluated by constructing a prototype white light-emitting diode (w-LED) using CsPbBr3/Cs4PbBr6 and red-emitting K2SiF6:Mn4+ materials taken in different weight ratios and combined with a blue light-emitting InGaN LED chip (λ = 455 nm). The constructed w-LED device exhibits the color coordinates (0.3315, 0.3289), an efficacy of 68 lm W-1, a color rendering index of 87%, a color temperature of 5564 K, and a wide color gamut of ∼118.78% (NTSC) and ∼88.69% (Rec. 2020) with RGB color filters in the CIE 1931 color space. Therefore, based on our present findings, we strongly believe that the dual-phase CsPbBr3/Cs4PbBr6 material is a promising green-emitting phosphor for use in w-LEDs as the backlight of display systems.
Collapse
Affiliation(s)
- V Naresh
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Republic of Korea.
| | - Taehyung Jang
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Gwangju 61005, Republic of Korea
| | - Yoonsoo Pang
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Gwangju 61005, Republic of Korea
| | - Nohyun Lee
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Republic of Korea.
| |
Collapse
|
13
|
Titanium oxide mediated rapid charge separation in halide perovskite for efficient photocatalytic CO2 reduction. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
|
14
|
Gau D, Ramírez D, Iikawa F, Riveros G, Díaz P, Verdugo J, Núñez G, Lizama S, Lazo P, Dalchiele EA, Contreras L, Idigoras J, Anta J, Marotti RE. Photophysical and photoelectrochemical properties of CsPbBr3 films grown by an electrochemically assisted deposition. Chemphyschem 2022; 23:e202200286. [PMID: 35759412 DOI: 10.1002/cphc.202200286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/26/2022] [Revised: 06/24/2022] [Indexed: 11/08/2022]
Abstract
Perovskite have had a great impact on the solid-state physics world in the last decade not only achieving great success in photovoltaics but, more recently, also in the implementation of other optoelectronic devices. One of the main obstacles for the adoption of Pb-based perovskite technologies are the high amounts of Pb needed in the conventional preparation methods. Here we present for the first time a detailed analysis of the photophysical and photoelectrochemical properties of CsPbBr3 films directly grown on FTO coated glass through a novel technique based in the electrodeposition of PbO2 as CsPbBr3 precursor. This technique allows to save up to 90 % of the Pb used compared to traditional methods and can be scalable compared with the commonly used spin-coating process. The low temperature analysis of their photoluminescence spectra, performed in both steady state and time dependence, revealed a strong interaction between electrons and longitudinal optical phonons dominant at high temperatures. On the other hand, the electrochemical and photoelectrochemical analysis proves that CsPbBr3 prepared using this new method has state-of-the-art features, showing a p-type behavior under depletion regime. This is also confirmed by photoelectrochemical measurements using p-benzoquinone as target molecule. These results prove that the proposed method can be used to produce excellent CsPbBr3 films, saving much of the lead waste.
Collapse
Affiliation(s)
- Daniel Gau
- Universidad de la Republica Facultad de Ingenieria, Physics, Julio Herrera y Reissig 565, 11300, Montevideo, URUGUAY
| | - Daniel Ramírez
- Universidad de Valparaiso, Instituto de Química, Avenida Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile, 2362735, Valparaíso, CHILE
| | - Fernando Iikawa
- State University of Campinas: Universidade Estadual de Campinas, Institute of Physics "Gleb Wataghin", 13083-859 Campinas, São Paulo, Brazil, 13083-872, Campinas, BRAZIL
| | - Gonzalo Riveros
- Universidad de Valparaiso, bInstituto de Química y Bioquímica, Avenida Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile, 2362735, Valparaíso, CHILE
| | - Patricia Díaz
- Universidad de Valparaiso, Instituto de Química y Bioquímica, Avenida Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile, 2362735, Valparaíso, CHILE
| | - Javier Verdugo
- Universidad de Valparaiso, Instituto de Química y Bioquímica, Avenida Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile, 2362735, Valparaíso, CHILE
| | - Gerard Núñez
- Universidad de Valparaiso, Instituto de Química y Bioquímica, Avenida Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile, 2362735, Valparaíso, CHILE
| | - Susy Lizama
- Universidad de Valparaiso, Instituto de Química y Bioquímica, Avenida, Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile, Playa Ancha, Valparaíso, Chile, 2362735, Valparaíso, CHILE
| | - Pamela Lazo
- Universidad de Valparaiso, Instituto de Química y Bioquímica, Avenida Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile, 2362735, Valparaíso, CHILE
| | - Enrique A Dalchiele
- Universidad de la Republica Uruguay, Instituto de Física - Facultad de Ingeniería, Herrera y Reissig 565, Montevideo, Uruguay, 11300, Montevideo, URUGUAY
| | - Lidia Contreras
- Universidad Pablo de Olavide, Área de Química Física, Departamento de Sistemas Físicos, Químicos y Naturales, E-41013, Sevilla, Spain, 41013, Sevilla, SPAIN
| | - Jesús Idigoras
- Universidad Pablo de Olavide, Área de Química Física, Departamento de Sistemas Físicos, Químicos y Naturales, E-41013, Sevilla, Spain, 41013, Sevilla, SPAIN
| | - Juan Anta
- Universidad Pablo de Olavide, Área de Química Física, Departamento de Sistemas Físicos, Químicos y, Naturales, E-41013, Sevilla, Spain, 41013, Sevilla, SPAIN
| | - Ricardo E Marotti
- Universidad de la Republica Uruguay, Institutod de Física, Facultad de Ingeniería, Herrera y Reissig 565, Montevideo, Uruguay, 11000, Montevideo, URUGUAY
| |
Collapse
|
15
|
Hou J, Chen P, Shukla A, Krajnc A, Wang T, Li X, Doasa R, Tizei LHG, Chan B, Johnstone DN, Lin R, Schülli TU, Martens I, Appadoo D, Ari MS, Wang Z, Wei T, Lo SC, Lu M, Li S, Namdas EB, Mali G, Cheetham AK, Collins SM, Chen V, Wang L, Bennett TD. Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses. Science 2021; 374:621-625. [PMID: 34709926 DOI: 10.1126/science.abf4460] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072 Australia
| | - Peng Chen
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072 Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072 Australia
| | - Atul Shukla
- School of Mathematics and Physics, The University of Queensland, St Lucia, QLD, 4072 Australia.,Centre for Organic Photonics and Electronics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Andraž Krajnc
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, 1001 Ljubljana, Slovenia
| | - Tiesheng Wang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuemei Li
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072 Australia
| | - Rana Doasa
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Luiz H G Tizei
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France
| | - Bun Chan
- Graduate School of Engineering, Nagasaki University, Nagasaki 852-8521 Japan
| | - Duncan N Johnstone
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Rijia Lin
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072 Australia
| | - Tobias U Schülli
- The European Synchrotron Radiation Facility (ESRF), 38000 Grenoble, France
| | - Isaac Martens
- The European Synchrotron Radiation Facility (ESRF), 38000 Grenoble, France
| | | | - Mark S' Ari
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Zhiliang Wang
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072 Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072 Australia
| | - Tong Wei
- College of Science, Civil Aviation University of China, Tianjin 300300, China
| | - Shih-Chun Lo
- Centre for Organic Photonics and Electronics, The University of Queensland, Brisbane, QLD 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072 Australia
| | - Mingyuan Lu
- School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, QLD, 4072 Australia
| | - Shichun Li
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Ebinazar B Namdas
- School of Mathematics and Physics, The University of Queensland, St Lucia, QLD, 4072 Australia.,Centre for Organic Photonics and Electronics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gregor Mali
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, 1001 Ljubljana, Slovenia
| | - Anthony K Cheetham
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA.,Department of Materials Science and Engineering, National University of Singapore, Singapore, 117576 Singapore
| | - Sean M Collins
- School of Chemical and Process Engineering and School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Vicki Chen
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072 Australia
| | - Lianzhou Wang
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072 Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072 Australia
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
| |
Collapse
|
16
|
Kumar V, Nagal V, Srivastava S, Kumar M, Gupta BK, Hafiz AK, Singh K. Power Dependent Hot Carrier Cooling Dynamics in Trioctylphosphine Capped CsPbBr
3
Perovskite Quantum Dots Using Ultrafast Spectroscopy. ChemistrySelect 2021. [DOI: 10.1002/slct.202102450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022]
Affiliation(s)
- Virendra Kumar
- Nanotechnology Lab School of Physical Sciences Jawaharlal Nehru University (JNU) New Delhi 110067 India
| | - Vandana Nagal
- Quantum and Nano-photonics Research Laboratory Centre for Nanoscience and Nanotechnology Jamia Millia Islamia (A Central University) New Delhi 110025 India
| | - Shubhda Srivastava
- CSIR - National Physical Laboratory Dr. K. S. Krishnan Road New Delhi 110012 India
| | - Mahesh Kumar
- CSIR - National Physical Laboratory Dr. K. S. Krishnan Road New Delhi 110012 India
| | - Bipin K. Gupta
- CSIR - National Physical Laboratory Dr. K. S. Krishnan Road New Delhi 110012 India
| | - Aurangzeb K. Hafiz
- Quantum and Nano-photonics Research Laboratory Centre for Nanoscience and Nanotechnology Jamia Millia Islamia (A Central University) New Delhi 110025 India
| | - Kedar Singh
- Nanotechnology Lab School of Physical Sciences Jawaharlal Nehru University (JNU) New Delhi 110067 India
| |
Collapse
|
17
|
Kumar P, Mulmi S, Laishram D, Alam KM, Thakur UK, Thangadurai V, Shankar K. Water-splitting photoelectrodes consisting of heterojunctions of carbon nitride with a p-type low bandgap double perovskite oxide. NANOTECHNOLOGY 2021; 32:485407. [PMID: 33706303 DOI: 10.1088/1361-6528/abedec] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/27/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Quinary and senary non-stoichiometric double perovskites such as Ba2Ca0.66Nb1.34-xFexO6-δ(BCNF) have been utilized for gas sensing, solid oxide fuel cells and thermochemical CO2reduction. Herein, we examined their potential as narrow bandgap semiconductors for use in solar energy harvesting. A cobalt co-doped BCNF, Ba2Ca0.66Nb0.68Fe0.33Co0.33O6-δ(BCNFCo), exhibited an optical absorption edge at ∼800 nm,p-type conduction and a distinct photoresponse up to 640 nm while demonstrating high thermochemical stability. A nanocomposite of BCNFCo and g-C3N4(CN) was prepared via a facile solvent-assisted exfoliation/blending approach using dichlorobenzene and glycerol at a moderate temperature. The exfoliation of g-C3N4followed by wrapping on perovskite established an effective heterojunction between the materials for charge separation. The conjugated 2D sheets of CN enabled better charge migration resulting in increased photoelectrochemical performance. A blend composed of 40 wt% perovskites and CN performed optimally, whilst achieving a photocurrent density as high as 1.5 mA cm-2for sunlight-driven water-splitting with a Faradaic efficiency as high as ∼88%.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton, Alberta, T6G 1H9, Canada
| | - Suresh Mulmi
- Department of Chemistry, University of Calgary, 2500 University Dr NW, Calgary, Alberta, T2N 1N4, Canada
| | - Devika Laishram
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton, Alberta, T6G 1H9, Canada
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342011, India
| | - Kazi M Alam
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton, Alberta, T6G 1H9, Canada
| | - Ujwal K Thakur
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton, Alberta, T6G 1H9, Canada
| | - Venkataraman Thangadurai
- Department of Chemistry, University of Calgary, 2500 University Dr NW, Calgary, Alberta, T2N 1N4, Canada
| | - Karthik Shankar
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton, Alberta, T6G 1H9, Canada
| |
Collapse
|
18
|
Shao S, Xie C, Zhang L, Wei S, Kim HW, Kim SS. CsPbI 3NC-Sensitized SnO 2/Multiple-Walled Carbon Nanotube Self-Assembled Nanomaterials with Highly Selective and Sensitive NH 3 Sensing Performance at Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14447-14457. [PMID: 33739099 DOI: 10.1021/acsami.0c20566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/12/2023]
Abstract
It is an effective strategy to enhance the sensitivity of semiconductor metal oxides (SMOs) being sensitized with CsPbI3 nanocrystals (NCs) by adjusting the heterostructure between CsPbI3NC and SMO nanomaterials. In this work, for the first time, a porous 3D multiple-walled carbon nanotube (MWCNT) network uniformly coated with SnO2 quantum nanoparticles (QNPs) and CsPbI3 nanocrystals were prepared via a simple solvent vapor-induced self-assembly method. The fabricated CsPbI3NC-SnO2QNP/MWCNT nanocomposite with vapor-induced self-assembly exhibits superior stability against the moisture as well as an excellent sensing response. The results imply that the rational design of the metal halide perovskite NC/SMO heterostructure can not only improve the stability but also meet the requirements of sensing application. The self-assembled SnO2QNP/MWCNT can facilitate the dispersion of small-sized nanoparticles and efficaciously prevent the detachment of CsPbI3NC. Compared with pristine SnO2QNP and SnO2/MWCNT sensors, the CsPbI3NC-modified SnO2QNP/MWCNT nanostructure exhibited a remarkable sensitivity of 39.2 for 0.2 ppm NH3, rapid response/recovery time of 17/18 s, and excellent selectivity towards NH3. In particular, we applied machine learning methods, including principal component analysis (PCA) and support vector machines (SVMs), to analyze the sensing performance of the CsPbI3NC-SnO2QNP/MWCNT sensor and found that the combined effects of CsPbI3NC-SnO2QNP/MWCNT heterointerfaces contributed to the improvement of selectivity of sensors. The excellent NH3 for sub-ppm level concentration is ascribed to the high sensing activity of the CsPbI3 NC-based heterojunction. This work may not only enrich the family of high-performance breath detection materials but also provide a good example for designing reasonable composite materials with specific properties in the field of metal halide perovskite/SMO heterojunctions.
Collapse
Affiliation(s)
- Shaofeng Shao
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, 210044 Nanjing, China
| | - Chunyu Xie
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, 210044 Nanjing, China
| | - Lei Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, 210044 Nanjing, China
| | - Song Wei
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, 210044 Nanjing, China
| | - Hyoun Woo Kim
- Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sang Sub Kim
- Department of Materials Science and Engineering, Inha University, Incheon 402-751, Republic of Korea
| |
Collapse
|
19
|
Abstract
Metal-halide perovskites transformed optoelectronics research and development during the past decade. They have also gained a foothold in photocatalytic and photoelectrochemical processes recently, but their sensitivity to the most commonly applied solvents and electrolytes together with their susceptibility to photocorrosion hinders such applications. Understanding the elementary steps of photocorrosion of these materials can aid the endeavor of realizing stable devices. In this Perspective, we discuss both thermodynamic and kinetic aspects of photocorrosion processes occurring at the interface of perovskite photocatalysts and photoelectrodes with different electrolytes. We show how combined in situ and operando electrochemical techniques can reveal the underlying mechanisms. Finally, we also discuss emerging strategies to mitigate photocorrosion (such as surface protection, materials and electrolyte engineering, etc.).
Collapse
Affiliation(s)
- Gergely F Samu
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Rerrich Square 1, Szeged H-6720, Hungary.,ELI-ALPS Research Institute, Wolfgang Sandner Street 3, Szeged H-6728, Hungary
| | - Csaba Janáky
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Rerrich Square 1, Szeged H-6720, Hungary.,ELI-ALPS Research Institute, Wolfgang Sandner Street 3, Szeged H-6728, Hungary
| |
Collapse
|
20
|
Monitoring of reaction kinetics and determination of trace water in hydrophobic organic solvents by a smartphone-based ratiometric fluorescence device. Mikrochim Acta 2020; 187:564. [PMID: 32920653 DOI: 10.1007/s00604-020-04551-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/10/2020] [Accepted: 09/04/2020] [Indexed: 02/01/2023]
Abstract
A smartphone-based ratiometric fluorescence device was designed to monitor the reaction kinetic process under vigorous mixing conditions, demonstrated by the hydrolysis of Cs4PbBr6 nanocrystals (NCs). In the presence of trace water, part of Cs4PbBr6 NCs (non-fluorescent) was converted to CsPbBr3 NCs (strong fluorescent). Using anthracene as the reference fluorophore, the brightness ratio of the green (from CsPbBr3 NCs) to blue (from anthracene) components in the fluorescence image which was recorded in situ by the smartphone camera was measured as the signal for kinetic analysis. It was shown that the water-triggered conversion reaction from Cs4PbBr6 NCs to CsPbBr3 NCs follows the pseudo-second-order kinetic model in the early rapid hydrolysis stage (up to 4 min). With increasing water content, the hydrolysis of Cs4PbBr6 NCs is promoted to yield more CsPbBr3 NCs, which was used to determine trace water in n-hexane, dichloromethane, and toluene with detection limits of 0.031, 0.043, and 0.057 μL mL-1, respectively. The device offers the advantages of portability and low cost for rapid field determination of trace water in hydrophobic organic solvents. Graphical abstract.
Collapse
|
21
|
Wani SI, Rafiuddin. Synthesis, properties and application of titania incorporated potassium iodoplumbite nanocomposite solid electrolyte for the manufacture of high value capacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022]
|
22
|
Liang J, Chen D, Yao X, Zhang K, Qu F, Qin L, Huang Y, Li J. Recent Progress and Development in Inorganic Halide Perovskite Quantum Dots for Photoelectrochemical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903398. [PMID: 31583803 DOI: 10.1002/smll.201903398] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/30/2019] [Revised: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Inorganic halide perovskite quantum dots (IHPQDs) have recently emerged as a new class of optoelectronic nanomaterials that can outperform the existing hybrid organometallic halide perovskite (OHP), II-VI and III-V groups semiconductor nanocrystals, mainly due to their relatively high stability, excellent photophysical properties, and promising applications in wide-ranging and diverse fields. In particular, IHPQDs have attracted much recent attention in the field of photoelectrochemistry, with the potential to harness their superb optical and charge transport properties as well as spectacular characteristics of quantum confinement effect for opening up new opportunities in next-generation photoelectrochemical (PEC) systems. Over the past few years, numerous efforts have been made to design and prepare IHPQD-based materials for a wide range of applications in photoelectrochemistry, ranging from photocatalytic degradation, photocatalytic CO2 reduction and PEC sensing, to photovoltaic devices. In this review, the recent advances in the development of IHPQD-based materials are summarized from the standpoint of photoelectrochemistry. The prospects and further developments of IHPQDs in this exciting field are also discussed.
Collapse
Affiliation(s)
- Junhui Liang
- College of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Da Chen
- College of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Xin Yao
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Kaixiang Zhang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Fengli Qu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Laishun Qin
- College of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Yuexiang Huang
- College of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
23
|
|
24
|
Li Z, Kang Q, Chen L, Zhang B, Zou G, Shen D. Enhancing aqueous stability and radiative-charge-transfer efficiency of CsPbBr3 perovskite nanocrystals via conductive silica gel coating. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/26/2023]
|
25
|
Kumar V, Nagal V, Kumar R, Srivastava S, Gupta BK, Kumar M, Hafiz AK, Singh K. Influence of the rate of radiation energy on the charge-carrier kinetics application of all-inorganic CsPbBr 3 perovskite nanocrystals. RSC Adv 2020; 10:34651-34657. [PMID: 35514400 PMCID: PMC9056796 DOI: 10.1039/d0ra05766e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/02/2020] [Accepted: 08/28/2020] [Indexed: 11/30/2022] Open
Abstract
In the field of optoelectronics, all-inorganic CsPbBr3 perovskite nanocrystals (PNCs) have gained significant interest on account of their superb processability and ultra-high stability among all the counterparts. In this study, we conducted an in-depth analysis of CsPbBr3 PNCs using joint transient optical spectroscopies (time-resolved photoluminescence and ultrafast transient absorption) in a very comprehensive manner. In order to understand the in-depth analysis of excited-state kinetics, the transient absorption spectroscopy has been performed. The structure of interest of CsPbBr3 PNCs was subjected to the rates of the radiation energy of 0.10 mW (κr/κnr = ∼0.62) and 0.30 mW (κr/κnr = ∼0.64). With the rate of radiation energy 0.30 mW, it was observed that there was a significant increase in hot carrier relaxation together with high radiative recombination, resulting in a decrease in charge trappings. Herein, we demonstrate that the tuning of the rate of radiation energies helps to understand the charge-carrier kinetics of CsPbBr3 PNCs, which would thus improve the manufacturing of efficient photovoltaic devices. A mechanistic framework for hot carrier cooling process in CsPbBr3 PNC is depicted via transient absorption spectroscopy.![]()
Collapse
Affiliation(s)
- Virendra Kumar
- Nanotechnology Lab
- School of Physical Sciences
- Jawaharlal Nehru University (JNU)
- New Delhi-110067
- India
| | - Vandana Nagal
- Quantum and Nanophotonics Research Laboratory
- Centre for Nanoscience and Nanotechnology
- Jamia Millia Islamia (A Central University)
- New Delhi-110025
- India
| | - Rahul Kumar
- Nanotechnology Lab
- School of Physical Sciences
- Jawaharlal Nehru University (JNU)
- New Delhi-110067
- India
| | - Shubhda Srivastava
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad-201002
- India
- CSIR – National Physical Laboratory
- New Delhi-110012
| | | | - Mahesh Kumar
- CSIR – National Physical Laboratory
- New Delhi-110012
- India
| | - Aurangzeb Khurram Hafiz
- Quantum and Nanophotonics Research Laboratory
- Centre for Nanoscience and Nanotechnology
- Jamia Millia Islamia (A Central University)
- New Delhi-110025
- India
| | - Kedar Singh
- Nanotechnology Lab
- School of Physical Sciences
- Jawaharlal Nehru University (JNU)
- New Delhi-110067
- India
| |
Collapse
|
26
|
Thawarkar S, Rana PJS, Narayan R, Singh SP. Ni-Doped CsPbBr 3 Perovskite: Synthesis of Highly Stable Nanocubes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:17150-17155. [PMID: 31746613 DOI: 10.1021/acs.langmuir.9b02450] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/10/2023]
Abstract
A nanocube of Ni-doped CsPbBr3nanocrystals (NCs) has been successfully synthesized and characterized by various spectroscopy techniques such as High-resolution transmission electron microscopy (HR-TEM), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), etc. The optoelectronic properties of NCs have been investigated with different solvents. HR-TEM and FE-SEM reveal that the obtained Ni-doped CsPbBr3NCs exhibit cubic-rectangular morphologies with different sizes. Furthermore, the radiative exciton kinetics of NCs was examined using the time-correlated single photon counting (TCSPC) technique. The present study ravels that synthesized nanocubes are highly stable.
Collapse
Affiliation(s)
- Sachin Thawarkar
- Polymers and Functional Materials Division , CSIR-Indian Institute of Chemical Technology (IICT) , Uppal Road , Tarnaka, Hyderabad 500 007 , India
| | - Prem Jyoti Singh Rana
- Polymers and Functional Materials Division , CSIR-Indian Institute of Chemical Technology (IICT) , Uppal Road , Tarnaka, Hyderabad 500 007 , India
| | - Ramanuj Narayan
- Polymers and Functional Materials Division , CSIR-Indian Institute of Chemical Technology (IICT) , Uppal Road , Tarnaka, Hyderabad 500 007 , India
- Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201002 , India
| | - Surya Prakash Singh
- Polymers and Functional Materials Division , CSIR-Indian Institute of Chemical Technology (IICT) , Uppal Road , Tarnaka, Hyderabad 500 007 , India
- Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201002 , India
| |
Collapse
|
27
|
Pradhan B, Mushtaq A, Roy D, Sain S, Das B, Ghorai UK, Pal SK, Acharya S. Postsynthesis Spontaneous Coalescence of Mixed-Halide Perovskite Nanocubes into Phase-Stable Single-Crystalline Uniform Luminescent Nanowires. J Phys Chem Lett 2019; 10:1805-1812. [PMID: 30929427 DOI: 10.1021/acs.jpclett.9b00832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 05/08/2023]
Abstract
All inorganic mixed-halide perovskite, CsPb(Br xI1- x)3 (0 ≤ x ≤ 1), nanocrystals possess tunable photoluminescence with high quantum yield in the visible window. However, the photoluminescence degrades rapidly with postsynthetic aging due to the spontaneous ion separation and phase instability. Here we show that the postsynthetic aging of CsPb(Br xI1- x)3 nanocubes spontaneously forms highly uniform single-crystalline nanowires with a diameter of 9 ± 0.5 nm and length of up to several micrometers. The nanowires show bright photoluminescence with an absolute photoluminescence quantum yield of 41%. Rietveld refinement identifies the stable orthorhombic phase of the nanowires, implying a phase transition from the cubic crystallographic phase of the nanocubes during the morphology evolution. Transient absorption spectroscopy reveals a faster excited-state decay dynamic with a large exciton delocalization length in 1D nanowires. Our findings elucidate the insights into the postsynthesis morphology evolution of mixed-halide perovskite nanocrystals leading to luminescent nanowires with excellent crystal phase stability for potential optoelectronic applications.
Collapse
Affiliation(s)
| | - Aamir Mushtaq
- School of Basic Sciences and Advanced Material Research Center , Indian Institute of Technology Mandi , Kamand , Himachal Pradesh 175005 , India
| | | | | | | | - Uttam Kumar Ghorai
- Department of Industrial & Applied Chemistry, Swami Vivekananda Research Center , Ramakrishna Mission Vidyamandira , Belur Math, Howrah , West Bengal 711202 , India
| | - Suman Kalyan Pal
- School of Basic Sciences and Advanced Material Research Center , Indian Institute of Technology Mandi , Kamand , Himachal Pradesh 175005 , India
| | | |
Collapse
|
28
|
Su L, Tong P, Zhang L, Luo Z, Fu C, Tang D, Zhang Y. Photoelectrochemical immunoassay of aflatoxin B1 in foodstuff based on amorphous TiO2 and CsPbBr3 perovskite nanocrystals. Analyst 2019; 144:4880-4886. [DOI: 10.1039/c9an00994a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/20/2023]
Abstract
A split-type photoelectrochemical immunoassay was designed to detect AFB1 in foodstuffs using amorphous TiO2 and CsPbBr3 perovskite nanocrystals.
Collapse
Affiliation(s)
- Lingshan Su
- College of Biological Science and Engineering
- Testing Center
- & Key Laboratory for Analytic Science of Food Safety and Biology (MOE & Fujian Province)
- Department of Chemistry
- Fuzhou University
| | - Ping Tong
- College of Biological Science and Engineering
- Testing Center
- & Key Laboratory for Analytic Science of Food Safety and Biology (MOE & Fujian Province)
- Department of Chemistry
- Fuzhou University
| | - Lijia Zhang
- College of Biological Science and Engineering
- Testing Center
- & Key Laboratory for Analytic Science of Food Safety and Biology (MOE & Fujian Province)
- Department of Chemistry
- Fuzhou University
| | - Zhongbin Luo
- College of Biological Science and Engineering
- Testing Center
- & Key Laboratory for Analytic Science of Food Safety and Biology (MOE & Fujian Province)
- Department of Chemistry
- Fuzhou University
| | - Caili Fu
- College of Biological Science and Engineering
- Testing Center
- & Key Laboratory for Analytic Science of Food Safety and Biology (MOE & Fujian Province)
- Department of Chemistry
- Fuzhou University
| | - Dianping Tang
- College of Biological Science and Engineering
- Testing Center
- & Key Laboratory for Analytic Science of Food Safety and Biology (MOE & Fujian Province)
- Department of Chemistry
- Fuzhou University
| | - Yuyu Zhang
- School of Food and Chemical Engineering
- Beijing Technology and Business University
- Beijing
- China
| |
Collapse
|