1
|
Li S, Zheng C, Tu L, Cai D, Huang Y, Gao C, Lu Y, Xue L. Construction of PDA-PEI/ZIF-L@PE tight ultra-filtration (TUF) membranes on porous polyethylene (PE) substrates for efficient dye/salt separation. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133727. [PMID: 38367434 DOI: 10.1016/j.jhazmat.2024.133727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/19/2024]
Abstract
Tight ultra-filtration (TUF) membranes were constructed by in situ growing zinc imidazole frameworks micro-crystalline leaves (ZIF-L) in polyethylene imine (PEI) and polydopamine (PDA) deposit layers on porous polyethylene (PE) substrates. The effects of preparation conditions on the surface physical and chemical structures as well as on the dye/salt separation performance of the formed TUF membranes were systematically investigated. By inserting selective water permeation channels and increasing contacting surface areas, in situ-grown ZIF-L arrays tightly cross-linked in the coating matrix greatly increased water permeation without trading off dye/salt retention selectivity. The morphology of the included ZIF-L particles could be varied by adjusting the ligand/Zn molar ratio (α) in the preparation processes. Optimized PDA-PEI/ZIF-L@PE TUF membranes containing ZIF-L of cross-cross block morphology showed very high pure water permeability of 180 ± 20 L·m-2·h-1·bar-1 (LMHB) and retention selectivity (SCR/Na2SO4 and SMB/Na2SO4) of 267 and 43, respectively, as well as excellent stability and anti-fouling properties.
Collapse
Affiliation(s)
- Shiyang Li
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Institute of New Materials & Industrial Technologies, Wenzhou University, Wenzhou 325024, China
| | - Chenchen Zheng
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Longdou Tu
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Dajian Cai
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yangxiang Huang
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Congjie Gao
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yeqiang Lu
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Lixin Xue
- College of Chemistry and Materials Engineering, Wenzhou University. Wenzhou, Zhejiang 325035, China; Institute of New Materials & Industrial Technologies, Wenzhou University, Wenzhou 325024, China.
| |
Collapse
|
2
|
Zhang Y, Wang H, Guo J, Cheng X, Han G, Lau CH, Lin H, Liu S, Ma J, Shao L. Ice-confined synthesis of highly ionized 3D-quasilayered polyamide nanofiltration membranes. Science 2023; 382:202-206. [PMID: 37824644 DOI: 10.1126/science.adi9531] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023]
Abstract
Existing polyamide (PA) membrane synthesis protocols are underpinned by controlling diffusion-dominant liquid-phase reactions that yield subpar spatial architectures and ionization behavior. We report an ice-confined interfacial polymerization strategy to enable the effective kinetic control of the interfacial reaction and thermodynamic manipulation of the hexagonal polytype (Ih) ice phase containing monomers to rationally synthesize a three-dimensional quasilayered PA membrane for nanofiltration. Experiments and molecular simulations confirmed the underlying membrane formation mechanism. Our ice-confined PA nanofiltration membrane features high-density ionized structure and exceptional transport channels, realizing superior water permeance and excellent ion selectivity.
Collapse
Affiliation(s)
- Yanqiu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- School of Environment, Harbin Institute of Technology, Harbin 150009, China
| | - Hao Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jing Guo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xiquan Cheng
- School of Marine Science and Technology, Sino-European Membrane Technology Research Institute, Harbin Institute of Technology, Weihai 264209, China
| | - Gang Han
- College of Environmental Science and Engineering, Nankai University, Jinnan District, Tianjin 300350, China
| | - Cher Hon Lau
- School of Engineering, The University of Edinburgh, Edinburgh EH9 3JL, UK
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Shaomin Liu
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University Perth, Perth, Western Australia
| | - Jun Ma
- School of Environment, Harbin Institute of Technology, Harbin 150009, China
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
3
|
Zhu H, Yuan B, Li Y. Title Preparation and Desalination of Semi-Aromatic Polyamide Reverse Osmosis Membranes (ROMs). Polymers (Basel) 2023; 15:polym15071683. [PMID: 37050299 PMCID: PMC10096747 DOI: 10.3390/polym15071683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Reverse osmosis membrane (ROM) technology has a series of advantages, such as a simple process, no secondary pollution, high efficiency, energy saving, environmental protection, and good separation and purification effects. High-performance semi-aromatic polyamide reverse osmosis membranes (ROMs) were prepared by interfacial polymerization (IP) of novel cyclopentanecarbonyl chloride (CPTC) and m-phenylenediamine (MPD) monomers. The surface morphology, hydrophilicity and charge of the ROMs were characterized by field-emission scanning electron microscopy (SEM), a contact angle tester and a solid-surface zeta potential analyzer. The effects of CPTC concentration, MPD concentration, oil-phase solvent type, IP reaction time and additive concentration on the performance of semi-aromatic polyamide ROMs were studied. SEM morphology characterization showed that the surface of the prepared polyamide ROMs presented a multinodal structure. The performance test showed that when the concentration of MPD in the aqueous phase was 2.5 wt.%, the concentration of sodium dodecylbenzene sulfonate (SDBS) was 0.2%, the residence time in the aqueous phase was 2 min, the concentration of CPTC/cyclohexane in the oil phase was 0.13 wt.%, the IP reaction was 20 s, the NaCl rejection rate of the semi-aromatic polyamide ROM was 98.28% and the flux was 65.38 L/m2·h, showing good desalination performance. Compared with an NF 90 commercial membrane, it has a good anti-BSA pollution ability.
Collapse
|
4
|
Shi L, Liu S, Hung WS, Shi W, Lu X, Wu C. The tailoring of nanofiltration membrane structure for mono/divalent anions separation via precisely adjusting the reaction site distance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
5
|
Cerqueira e Silva KF, Rabelo RS, Feltre G, Hubinger M. Bitter substances recovery from hot trub: A study of polymeric membranes performance in a sequential mode with fouling investigation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Bai J, Gong L, Xiao L, Lai W, Zhang Y, Fan H, Shan L, Luo S. Interface-Confined Channels Facilitating Water Transport through an IL-Enriched Nanocomposite Membrane. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53390-53397. [PMID: 36394911 DOI: 10.1021/acsami.2c14629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Improving the permeance of the polyamide (PA) membrane while maintaining the rejection is crucial for promoting the development of membrane separation technology in the practical water-treatment industry. Herein, a novel metal-ionic liquid (Zn-IL) coordination compound was synthesized by in situ growth to improve the water permeance of PA nanofiltration membranes, using an amine-functionalized IL (1-aminopropyl-3-methylimidazolium chloride, [AEMIm][Cl]) as a ligand to react with Zn(NO3)2·6H2O. Piperazine (PIP) and trimesoyl chloride (TMC) were adopted to prepare the PA layer covering the Zn-IL complex. Due to the unique property of the Zn-IL complex, the Zn-IL/PIP-TMC absorbing force to water was increased, enabling the fast transport of water molecules through the membrane pore channels in the form of free water. The resulting Zn-IL/PIP-TMC nanocomposite membrane exhibited a high permeance of up to 26.5 L m-2 h-1 bar-1, which is 3 times that of the PIP-TMC membrane (8.8 L m-2 h-1 bar-1), combined with rejection above 99% for dyes such as methyl blue.
Collapse
Affiliation(s)
- Ju Bai
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Lili Gong
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Luqi Xiao
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Wei Lai
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yazhuo Zhang
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Hongwei Fan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Linglong Shan
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- Langfang Green Industrial Technology Center, Langfang 065008, Hebei, PR China
| | - Shuangjiang Luo
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- Langfang Green Industrial Technology Center, Langfang 065008, Hebei, PR China
| |
Collapse
|
7
|
Plisko T, Burts K, Zolotarev A, Bildyukevich A, Dmitrenko M, Kuzminova A, Ermakov S, Penkova A. Development and Investigation of Hierarchically Structured Thin-Film Nanocomposite Membranes from Polyamide/Chitosan Succinate Embedded with a Metal-Organic Framework (Fe-BTC) for Pervaporation. MEMBRANES 2022; 12:967. [PMID: 36295726 PMCID: PMC9611024 DOI: 10.3390/membranes12100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Thin-film composite membranes (TFC) obtained by the formation of a selective layer on a porous membrane-substrate via interfacial polymerization (IP) are indispensable for separation procedures in reverse osmosis, nanofiltration, pervaporation, and gas separation. Achieving high selectivity and permeability for TFC membranes is still one of the main challenges in membrane science and technology. This study focuses on the development of thin film nanocomposite (TFN) membranes with a hierarchically structured polyamide (PA)/chitosan succinate (ChS) selective layer embedded with a metal-organic framework of iron 1,3,5-benzenetricarboxylate (Fe-BTC) for the enhanced pervaporation dehydration of isopropanol. The aim of this work was to study the effect of Fe-BTC incorporation into the ChS interlayer and PA selective layer, obtained via IP, on the structure, properties, and performance of pervaporation TFN membranes. The structure and hydrophilicity of the developed TFN membranes were investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM), along with water contact angle measurements. The developed TFN membranes were studied in the pervaporation dehydration of isopropanol (12-30 wt % water). It was found that incorporation of Fe-BTC into the ChS interlayer yielded the formation of a smoother, more uniform, and defect-free PA ultrathin selective layer via IP, due to the amorpho-crystalline structure of particles serving as the amine storage reservoir and led to an increase in membrane selectivity toward water, and a slight decrease in permeation flux compared to the ChS interlayered TFC membranes. The best pervaporation performance was demonstrated by the TFN membrane with a ChS-Fe-BTC interlayer and the addition of 0.03 wt % Fe-BTC in the PA layer, yielding a permeation flux of 197-826 g·m-2·h-1 and 98.50-99.99 wt % water in the permeate, in the pervaporation separation of isopropanol/water mixtures (12-30 wt % water).
Collapse
Affiliation(s)
- Tatiana Plisko
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Katsiaryna Burts
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Andrey Zolotarev
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Alexandr Bildyukevich
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Mariia Dmitrenko
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Anna Kuzminova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Sergey Ermakov
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| |
Collapse
|
8
|
Yuan B, Zhao S, Xu S, Wang N, Hu P, Chen K, Jiang J, Cui J, Zhang X, You M, Niu QJ. Aliphatic polyamide nanofilm with ordered nanostripe, synergistic pore size and charge density for the enhancement of cation sieving. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Al-Nahari A, Li S, Su B. Negatively charged nanofiltration membrane with high performance via the synergetic effect of benzidinedisulfonic acid and trimethylamine during interfacial polymerization. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Zhang S, Shen L, Deng H, Liu Q, You X, Yuan J, Jiang Z, Zhang S. Ultrathin Membranes for Separations: A New Era Driven by Advanced Nanotechnology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108457. [PMID: 35238090 DOI: 10.1002/adma.202108457] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Ultrathin membranes are at the forefront of membrane research, offering great opportunities in revolutionizing separations with ultrafast transport. Driven by advanced nanomaterials and manufacturing technology, tremendous progresses are made over the last 15 years in the fabrications and applications of sub-50 nm membranes. Here, an overview of state-of-the-art ultrathin membranes is first introduced, followed by a summary of the fabrication techniques with an emphasis on how to realize such extremely low thickness. Then, different types of ultrathin membranes, categorized based on their structures, that is, network, laminar, or framework structures, are discussed with a focus on the interplays among structure, fabrication methods, and separation performances. Recent research and development trends are highlighted. Meanwhile, the performances and applications of current ultrathin membranes for representative separations (gas separation and liquid separation) are thoroughly analyzed and compared. Last, the challenges in material design, structure construction, and coordination are given, in order to fully realize the potential of ultrathin membranes and facilitate the translation from scientific achievements to industrial productions.
Collapse
Affiliation(s)
- Shiyu Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Liang Shen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Hao Deng
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qinze Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Xinda You
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Jinqiu Yuan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Zhongyi Jiang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Sui Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
11
|
Zhang H, Xie F, Zhao Z, Afsar NU, Sheng F, Ge L, Li X, Zhang X, Xu T. Novel Poly(ester amide) Membranes with Tunable Crosslinked Structures for Nanofiltration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10782-10792. [PMID: 35188363 DOI: 10.1021/acsami.1c21862] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tuning the crosslinking density of interfacial-polymerized nanofiltration (NF) membranes varying from loose to dense structures can make them meet the demand of various applications. The properties (e.g., pore size and porosity) of NF membranes can be tuned by choosing monomers with different structures and reactivities. Herein, tris(hydroxymethyl)aminomethane (THAM), a low-cost and green monomer, is first employed for the preparation of poly(ester amide) (PEA) thin-film composite membranes via interfacial polymerization. The moderate reactivity of THAM enables rational regulation of the crosslinking density of PEA membranes from loose to dense structures by varying the THAM concentration, which can hardly be achieved for traditional polyamide or polyester membranes. The developed PEA membranes with a wide tunability range of crosslinking densities broaden their potential utility in NF. PEA membranes with dense structures show exceptional desalination performance with a water permeance of 11.1 L m-2 h-1 bar-1 and a Na2SO4 rejection of 97.1%. However, loose PEA membranes exhibit good dye/salt separation performance with a dye removal rate over 95.0% and negligible NaCl rejection (<7.5%), as well as high water permeance (>45 L m-2 h-1 bar-1). This work implies that PEA membranes with tunable crosslinked structures provide new possibilities for the development of task-specific separation membranes.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Fei Xie
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Membrane Science and Engineering R&D Laboratory, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Zhang Zhao
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Noor Ul Afsar
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Fangmeng Sheng
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Liang Ge
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xingya Li
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiwang Zhang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tongwen Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
12
|
Feng X, Peng D, Zhu J, Wang Y, Zhang Y. Recent advances of loose nanofiltration membranes for dye/salt separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120228] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Wang K, Wang X, Januszewski B, Liu Y, Li D, Fu R, Elimelech M, Huang X. Tailored design of nanofiltration membranes for water treatment based on synthesis-property-performance relationships. Chem Soc Rev 2021; 51:672-719. [PMID: 34932047 DOI: 10.1039/d0cs01599g] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tailored design of high-performance nanofiltration (NF) membranes is desirable because the requirements for membrane performance, particularly ion/salt rejection and selectivity, differ among the various applications of NF technology ranging from drinking water production to resource mining. However, this customization greatly relies on a comprehensive understanding of the influence of membrane fabrication methods and conditions on membrane properties and the relationships between the membrane structural and physicochemical properties and membrane performance. Since the inception of NF, much progress has been made in forming the foundation of tailored design of NF membranes and the underlying governing principles. This progress includes theories regarding NF mass transfer and solute rejection, further exploitation of the classical interfacial polymerization technique, and development of novel materials and membrane fabrication methods. In this critical review, we first summarize the progress made in controllable design of NF membrane properties in recent years from the perspective of optimizing interfacial polymerization techniques and adopting new manufacturing processes and materials. We then discuss the property-performance relationships based on solvent/solute mass transfer theories and mathematical models, and draw conclusions on membrane structural and physicochemical parameter regulation by modifying the fabrication process to improve membrane separation performance. Next, existing and potential applications of these NF membranes in water treatment processes are systematically discussed according to the different separation requirements. Finally, we point out the prospects and challenges of tailored design of NF membranes for water treatment applications. This review bridges the long-existing gaps between the pressing demand for suitable NF membranes from the industrial community and the surge of publications by the scientific community in recent years.
Collapse
Affiliation(s)
- Kunpeng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Xiaomao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Brielle Januszewski
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Yanling Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China. .,State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Danyang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Ruoyu Fu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
14
|
Feng X, Liu D, Ye H, Peng D, Wang J, Han S, Zhang Y. High-flux polyamide membrane with improved chlorine resistance for efficient dye/salt separation based on a new N-rich amine monomer. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119533] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Xu Q, Ji X, Tian J, Jin X, Wu L. Inner Surface Hydrophilic Modification of PVDF Membrane with Tea Polyphenols/Silica Composite Coating. Polymers (Basel) 2021; 13:polym13234186. [PMID: 34883689 PMCID: PMC8659430 DOI: 10.3390/polym13234186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/21/2022] Open
Abstract
The use of Polyvinylidene fluoride (PVDF) membranes is constrained in wastewater treatment because of their hydrophobic nature. Therefore, a large number of researchers have been working on the hydrophilic modification of their surfaces. In this work, a superhydrophilic tea polyphenols/silica composite coating was developed by a one-step process. The composite coating can achieve not only superhydrophilic modification of the surface, but also the inner surface of the porous PVDF membrane, which endows the modified membrane with excellent water permeability. The modified membrane possesses ultrahigh water flux (15,353 L·m−2·h−1). Besides this, the modified membrane can realize a highly efficient separation of oil/water emulsions (above 96%).
Collapse
Affiliation(s)
- Qiang Xu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Q.X.); (X.J.); (J.T.)
| | - Xiaoli Ji
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Q.X.); (X.J.); (J.T.)
| | - Jiaying Tian
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Q.X.); (X.J.); (J.T.)
| | - Xiaogang Jin
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Q.X.); (X.J.); (J.T.)
- Correspondence: (X.J.); (L.W.)
| | - Lili Wu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Q.X.); (X.J.); (J.T.)
- Advanced Engineering Technology Research Institute of Zhongshan City, Wuhan University of Technology, Xiangxing Road 6, Zhongshan 528400, China
- Correspondence: (X.J.); (L.W.)
| |
Collapse
|
16
|
Ding J, Wu H, Wu P. Multirole Regulations of Interfacial Polymerization Using Poly(acrylic acid) for Nanofiltration Membrane Development. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53120-53130. [PMID: 34714059 DOI: 10.1021/acsami.1c17086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Effective control of monomer diffusion and reaction rate is the key to achieving a controlled interfacial polymerization (IP) and a high-performance nanofiltration (NF) membrane. Herein, an integration of multirole regulations was synchronously realized using poly(acrylic acid) (PAA) as an active additive in a piperazine (PIP) aqueous phase. Thanks to synergistic interactions, including hydrogen bonding, electrostatic interaction, and covalent bonding between PAA and PIP molecules, together with the increased viscosity of the solution, PIP diffusion was rationally controlled. Moreover, interfacial polycondensation was also restrained via the modestly reduced pH of the aqueous solution. These contribute to the formation of a thinner, looser, more hydrophilic, and higher negatively charged PAA-decorated polyamide selective layer with a unique nanostrand-nodule morphology. The harvested NF-PAA/PIP membrane showed an ∼70% rise in water permeability (up to 23.5 L·m-2·h-1·bar-1) while retaining high Na2SO4 and dye rejections. Furthermore, the optimized NF-PAA/PIP membrane presented a superior fouling resistance capability for typical pollutants, as well as long-term stability during successive filtration. Thus, this work offers a straightforward and impactful approach to regulating IP and promoting NF membrane properties.
Collapse
Affiliation(s)
- Jincheng Ding
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Huiqing Wu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Peiyi Wu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| |
Collapse
|
17
|
Cao N, Wang Y, Pang J, Jiang Z, Zhang H. Controllable preparation of separation membrane with nano-ridge structure surface through Cyclam induced interfacial polymerization. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Tian J, Chang H, Gao S, Zong Y, Van der Bruggen B, Zhang R. Direct generation of an ultrathin (8.5 nm) polyamide film with ultrahigh water permeance via in-situ interfacial polymerization on commercial substrate membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119450] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Shao DD, Wang L, Yan XY, Cao XL, Shi T, Sun SP. Amine–carbon quantum dots (CQDs–NH2) tailored polymeric loose nanofiltration membrane for precise molecular separation. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Wang S, Bing S, Li Y, Zhou Y, Zhang L, Gao C. Polyamide membrane with nanocluster assembly structure for desalination. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119230] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
21
|
Sun H, Chen Y, Liu J, Chai D, Li P, Wang M, Hou Y, Jason Niu Q. A novel chlorine-resistant polyacrylate nanofiltration membrane constructed from oligomeric phenolic resin. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Shen YJ, Kong QR, Fang LF, Qiu ZL, Zhu BK. Construction of covalently-bonded tannic acid/polyhedral oligomeric silsesquioxanes nanochannel layer for antibiotics/salt separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Zhao S, Li L, Wang M, Tao L, Hou Y, Niu QJ. Rapid in-situ covalent crosslinking to construct a novel azo-based interlayer for high-performance nanofiltration membrane. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118029] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
Mastropietro TF, Bruno R, Pardo E, Armentano D. Reverse osmosis and nanofiltration membranes for highly efficient PFASs removal: overview, challenges and future perspectives. Dalton Trans 2021; 50:5398-5410. [DOI: 10.1039/d1dt00360g] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PFASs are called “forever chemicals” because they do not fully degrade. They have become so ubiquitous in the environment that it is difficult to prevent exposure. This review aims to provide a set of improved technologies to remove PFASs from water.
Collapse
Affiliation(s)
| | - Rosaria Bruno
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- Italy
| | - Emilio Pardo
- Departament de Química Inorgànica
- Instituto de Ciencia Molecular (ICMOL)
- Universitat de València
- 46980 Paterna
- Spain
| | | |
Collapse
|
25
|
Zhu X, Tang X, Luo X, Yang Z, Cheng X, Gan Z, Xu D, Li G, Liang H. Stainless steel mesh supported thin-film composite nanofiltration membranes for enhanced permeability and regeneration potential. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118738] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Yuan B, Zhao S, Hu P, Cui J, Niu QJ. Asymmetric polyamide nanofilms with highly ordered nanovoids for water purification. Nat Commun 2020; 11:6102. [PMID: 33257695 PMCID: PMC7705655 DOI: 10.1038/s41467-020-19809-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/29/2020] [Indexed: 02/04/2023] Open
Abstract
Tailor-made structure and morphology are critical to the highly permeable and selective polyamide membranes used for water purification. Here we report an asymmetric polyamide nanofilm having a two-layer structure, in which the lower is a spherical polyamide dendrimer porous layer, and the upper is a polyamide dense layer with highly ordered nanovoids structure. The dendrimer porous layer was covalently assembled in situ on the surface of the polysulfone (PSF) support by a diazotization-coupling reaction, and then the asymmetric polyamide nanofilm with highly ordered hollow nanostrips structure was formed by interfacial polymerization (IP) thereon. Tuning the number of the spherical dendrimer porous layers and IP time enabled control of the nanostrips morphology in the polyamide nanofilm. The asymmetric polyamide membrane exhibits a water flux of 3.7−4.3 times that of the traditional monolayer polyamide membrane, showing an improved divalent salt rejection rate (more than 99%), which thus surpasses the upper bound line of the permeability−selectivity performance of the existing various structural polyamide membranes. We estimate that this work might inspire the preparation of highly permeable and selective reverse osmosis (RO), organic solvent nanofiltration (OSNF) and pervaporation (PV) membranes. Structure and morphology are critical to the performance of permeable and selective polyamide membranes in water purification. Here, the authors report a two layer asymmetric polyamide nanofilm in which a spherical polyamide dendrimer porous lower and a polyamide dense upper layer form hierarchical nanovoids.
Collapse
Affiliation(s)
- Bingbing Yuan
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, 453007, Xinxiang, Henan, China.
| | - Shengchao Zhao
- Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, Guangdong, China.,State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 266555, Qingdao, Shandong, China
| | - Ping Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, 453007, Xinxiang, Henan, China
| | - Jiabao Cui
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, 453007, Xinxiang, Henan, China
| | - Q Jason Niu
- Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, Guangdong, China. .,State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 266555, Qingdao, Shandong, China.
| |
Collapse
|
27
|
Li SL, Wu P, Wang J, Hu Y. High-performance zwitterionic TFC polyamide nanofiltration membrane based on a novel triamine precursor. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Cao Y, Chen X, Feng S, Wan Y, Luo J. Nanofiltration for Decolorization: Membrane Fabrication, Applications and Challenges. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04277] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yang Cao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiangrong Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Shichao Feng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
29
|
Jeon S, Park CH, Shin SS, Lee JH. Fabrication and structural tailoring of reverse osmosis membranes using β-cyclodextrin-cored star polymers. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118415] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Kang Y, Jang J, Kim S, Lim J, Lee Y, Kim IS. PIP/TMC Interfacial Polymerization with Electrospray: Novel Loose Nanofiltration Membrane for Dye Wastewater Treatment. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36148-36158. [PMID: 32697565 DOI: 10.1021/acsami.0c09510] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A loose nanofiltration (NF) membrane with excellent dye rejection and high permeation of inorganic salt is required to fractionate dye/salt mixture in dye wastewater treatment. In this study, we fabricated the loose NF membrane by using the electrospray interfacial polymerization (EIP) method. It is a novel and facile interfacial polymerization method, which controls the thickness of the poly(piperazine-amide) (PPA) layer in nanometers (1 nm/min) and changes cross-linking degree of PPA layer and pore size by varying the electrospray time; consequently, water permeance and dye/salt rejection ratio can be handled. The fabricated EIP membrane with an optimized fabrication condition (M30, electrospray time was 30 min) possessed excellent pure water permeance (20.2 LMH/bar), high dye rejection (e.g., 99.6% for congo red (CR)), and low salt rejection (e.g., 6.3% for NaCl). Moreover, the EIP membrane exhibited enhanced antifouling property than commercial NF membrane (NF90) with a high flux recovery rate (FRR) of 87.1% and low irreversible fouling (Rir) of 12.9% after fouled by bovine serum albumin (BSA) due to its great smooth surface (average roughness (Ra) is 12.2 nm), hydrophilicity property, enhanced zeta potential, and low protein adsorption. The results indicate that the EIP loose NF membrane had a high potential for dye wastewater treatment.
Collapse
Affiliation(s)
- Yesol Kang
- Global Desalination Research Center (GDRC), School of Earth Sciences and Environmental Engineering (SESE), Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jaewon Jang
- Global Desalination Research Center (GDRC), School of Earth Sciences and Environmental Engineering (SESE), Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Suhun Kim
- Global Desalination Research Center (GDRC), School of Earth Sciences and Environmental Engineering (SESE), Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Joohwan Lim
- Global Desalination Research Center (GDRC), School of Earth Sciences and Environmental Engineering (SESE), Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering (SESE), Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - In S Kim
- Global Desalination Research Center (GDRC), School of Earth Sciences and Environmental Engineering (SESE), Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
31
|
Singto S, Sajomsang W, Ratanatawanate C, Zhang F. Flexible and Hydrophilic Copolyamide Thin-Film Composites on Hollow Fiber Membranes for Enhanced Nanofiltration Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28624-28634. [PMID: 32519549 DOI: 10.1021/acsami.0c05775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Flexible and hydrophilic copolyamide (Co-PA) thin-film composite (TFC) membranes were fabricated as a selective layer on the outer surface of the polyvinylidene fluoride hollow fiber membrane substrate. The fabrication process was carried out by the dip-coating method to create three TFC membranes. The first layer is tannic acid and the second layer is (3-aminopropyl)triethoxysilane, which is followed by Co-PA as a final selective layer. The Co-PA TFC membrane was prepared through interfacial polymerization via the combination of various short-chain aliphatic diamines and conventional aromatic diamines with trimesoyl chloride. The influence of coating layers and total diamine concentration on the Co-PA TFC membrane was investigated in terms of the membrane's physicochemical and mechanical properties, morphology, surface thickness and roughness, water contact angle, surface charge, and nanofiltration (NF) performance. The obtained Co-PA TFC membrane system was operated under low pressure (2 bar) with pure water flux in the range of 23.8-83.9 L m-2 h-1 and exhibited better hydrophilicity, flexibility, molecular weight cutoff, and NF performance compared to the conventional PA TFC membrane. The superior properties of Co-PA are due to the increased chain mobilities provided by short-chain aliphatic diamines in its structure. The best Co-PA TFC membranes, which were synthesized using diamines containing four carbon atoms, achieved a significant improvement in NF membrane performance and selectivity (pure water flux = 56.9 L m-2 h-1 and salt and dye rejection in the range of 46.2-99.2%). This Co-PA TFC membrane is a promising membrane for its high flexibility, hydrophilicity, and selectivity of the NF membrane.
Collapse
Affiliation(s)
- Sudkanueng Singto
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Warayuth Sajomsang
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Chalita Ratanatawanate
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Fang Zhang
- The Education Ministry Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
32
|
Superior nanofiltration membranes with gradient cross-linked selective layer fabricated via controlled hydrolysis. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118067] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
|
34
|
Ma ZY, Zhang X, Liu C, Dong SN, Yang J, Wu GP, Xu ZK. Polyamide nanofilms synthesized via controlled interfacial polymerization on a "jelly" surface. Chem Commun (Camb) 2020; 56:7249-7252. [PMID: 32467954 DOI: 10.1039/d0cc02555k] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A thermal-sensitive "jelly" was used to control the diffusion of a diamine monomer for synthesizing polyamide free-standing nanofilms with an adjustable thickness of 5-35 nm. The reduced reaction rate of the interfacial polymerization at the hexane-"jelly" interface made the synthesized nanofilms show high water permeation flux and suitable salt rejection, and they also have highly negative surface charges and fairly smooth surfaces.
Collapse
Affiliation(s)
- Zhao-Yu Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China.
| | | | | | | | | | | | | |
Collapse
|
35
|
Dual-functional acyl chloride monomer for interfacial polymerization: Toward enhanced water softening and antifouling performance. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116362] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Hu P, Tian B, Xu Z, Jason Niu Q. Fabrication of high performance nanofiltration membrane on a coordination-driven assembled interlayer for water purification. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116192] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Ding J, Wu H, Wu P. Development of nanofiltration membranes using mussel-inspired sulfonated dopamine for interfacial polymerization. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117658] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Liu M, Zhu X, Liao Q, Chen R, Ye D, Chen G, Wang K. Catalytic Membrane Microreactors with an Ultrathin Freestanding Membrane for Nitrobenzene Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9806-9813. [PMID: 32023029 DOI: 10.1021/acsami.9b22345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A catalytic membrane microreactor is a potential tool for the application in multiphase catalytic reactions. Currently, the installation of a permeable ultrathin membrane to separate the reactants with different phases and the grafting of a catalyst layer on the membrane in a microreactor remain challenging. In this work, a catalytic ultrathin membrane microreactor with an ultrathin freestanding supporting membrane was developed for nitrobenzene hydrogenation, which was formed by the interfacial polycondensation reaction with parallel laminar flow in a microchannel, followed by catalyst layer immobilization on one side of the ultrathin membrane surface using the layer-by-layer self-assembly technique and in situ reduction. The ultrathin freestanding membrane ensured a stable gas/liquid contact interface and good hydrogen permeability. The developed membrane microreactor could exhibit high catalytic performance under mild conditions, demonstrating its superior mass transport. In addition, the effects of the thickness of the ultrathin freestanding membrane, flow rates, and inlet nitrobenzene concentration were investigated to obtain the optimum operating conditions. The experimental results demonstrate that this newly developed membrane microreactor is a promising candidate for multiphase catalytic reactions.
Collapse
Affiliation(s)
- Ming Liu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University) , Ministry of Education , Chongqing 400030 , China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering , Chongqing University , Chongqing 400030 , China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University) , Ministry of Education , Chongqing 400030 , China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering , Chongqing University , Chongqing 400030 , China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University) , Ministry of Education , Chongqing 400030 , China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering , Chongqing University , Chongqing 400030 , China
| | - Rong Chen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University) , Ministry of Education , Chongqing 400030 , China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering , Chongqing University , Chongqing 400030 , China
| | - Dingding Ye
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University) , Ministry of Education , Chongqing 400030 , China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering , Chongqing University , Chongqing 400030 , China
| | - Gang Chen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University) , Ministry of Education , Chongqing 400030 , China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering , Chongqing University , Chongqing 400030 , China
| | - Kun Wang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University) , Ministry of Education , Chongqing 400030 , China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering , Chongqing University , Chongqing 400030 , China
| |
Collapse
|
39
|
Polyarylate membrane constructed from porous organic cage for high-performance organic solvent nanofiltration. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117505] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Li SL, Shan X, Zhao Y, Hu Y. Fabrication of a Novel Nanofiltration Membrane with Enhanced Performance via Interfacial Polymerization through the Incorporation of a New Zwitterionic Diamine Monomer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42846-42855. [PMID: 31633329 DOI: 10.1021/acsami.9b15811] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It is known that the polyamide (PA) barrier layer's inherent microstructure and surface physicochemical properties of thin film composite nanofiltration membrane are crucial for its separation performance. Herein, we designed and synthesized a new zwitterionic aromatic diamine monomer 3-(4-(2-((4-aminophenyl)amino)ethyl)morpholino-4-ium)propane-1-sulfonate (PPD-MEPS) through a three steps reaction, and this hydrophilic molecule was incorporated into the active layer to tailor the poly(piperazine-amide)-based nanofiltration membranes with significantly improved water permeability and antifouling properties. As a p-phenylenediamine (PPD) derivative, PPD-MEPS possesses two active amine units, which can react with trimesoyl chloride in the organic phase during the interfacial polymerization reaction process. Thus, the super-hydrophilic zwitterions were not only on the membrane surface but also across the whole PA layer to facilitate water molecule transportation. The successful augmentation of zwitterions into the PA layer was well illustrated by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) results and X-ray photoelectron spectroscopy analysis. With increasing loading content of PPD-MEPS in PIP aqueous solution, the as-fabricated nanofiltration membranes (NFMs) exhibited higher hydrophilicity, increased active layer thickness, and molecular weight cut off. When the zwitterionic monomer reached 60% to PIP for NFM-4, the water permeability went up to 9.82 L m-2 h-1 bar-1, increasing by 45%; meanwhile, the Na2SO4/NaCl selectivity increased from 2.54 to 4.03. In addition, the fouling experiments illustrated that the fouling resistance of the zwitterion-modified NFMs to bovine serum albumin was significantly improved.
Collapse
Affiliation(s)
- Shao-Lu Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, National Center for International Research on Membrane Science and Technology , Tianjin Polytechnic University , Tianjin 300387 , P. R. China
| | - Xinyao Shan
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, National Center for International Research on Membrane Science and Technology , Tianjin Polytechnic University , Tianjin 300387 , P. R. China
| | - Yuanfei Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, National Center for International Research on Membrane Science and Technology , Tianjin Polytechnic University , Tianjin 300387 , P. R. China
| | - Yunxia Hu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, National Center for International Research on Membrane Science and Technology , Tianjin Polytechnic University , Tianjin 300387 , P. R. China
| |
Collapse
|
41
|
Yuan B, Li P, Wang P, Yang H, Sun H, Li P, Sun H, Niu QJ. Novel aliphatic polyamide membrane with high mono-/divalent ion selectivity, excellent Ca2+, Mg2+ rejection, and improved antifouling properties. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Yuan B, Sun H, Zhao S, Yang H, Wang P, Li P, Sun H, Jason Niu Q. Semi-aromatic polyamide nanofiltration membranes with tuned surface charge and pore size distribution designed for the efficient removal of Ca2+ and Mg2+. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|