1
|
He H, Ma Z, Zhang S, Cai A, Ye H, Fan X, Peng W, Li Y. Boosting Suzuki coupling reaction via pore expanding and palladium-zinc alloying. J Colloid Interface Sci 2025; 679:152-160. [PMID: 39362140 DOI: 10.1016/j.jcis.2024.09.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
A palladium-zinc alloy nanoparticles decorated nitrogen-doped porous carbon catalyst (PdZn30-NC) was synthesized and utilized for Suzuki coupling reaction. The alloying palladium (Pd) with zinc (Zn) and pore expanding are realized simultaneously. Density functional theory (DFT) calculations and experimental studies reveal that the alloying Pd with Zn can lower the energy barrier in Suzuki coupling reaction. Nitrogen adsorption-desorption measurements uncover that pore expansion caused by the zinc nitrate hexahydrate assisted calcination gives rise to the multiplication of mesopore with a pore diameter of 6 nm, which facilitates mass transfer during the reaction. As a result, the alloying Pd with Zn and pore expanding together endow PdZn30-NC with excellent catalytic activity. PdZn30-NC demonstrates exceptional catalytic activity and stability in Suzuki coupling reaction. A high biphenyl yield of 97.7 % within 40 min and stable reusability of 93.3 % yield after five reuse cycles can be achieved. This work not only offers a viable method for Suzuki coupling reaction, but also provides insights for designing new catalysts toward Suzuki coupling reaction.
Collapse
Affiliation(s)
- Hongwei He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China
| | - Zhoulin Ma
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China
| | - Shuya Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China
| | - An Cai
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China
| | - Huan Ye
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China; Institute of Shaoxing, Tianjin University, Zhejiang 312300, PR China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China; Institute of Shaoxing, Tianjin University, Zhejiang 312300, PR China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China; Institute of Shaoxing, Tianjin University, Zhejiang 312300, PR China.
| |
Collapse
|
2
|
Cui C, Ma H, Du J, Xie L, Chen A. Recent Advances in the Design and Application of Asymmetric Carbon-Based Materials. SMALL METHODS 2025:e2401580. [PMID: 39865857 DOI: 10.1002/smtd.202401580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/15/2025] [Indexed: 01/28/2025]
Abstract
Asymmetric carbon-based materials (ACBMs) have received significant attention in scientific research due to their unique structures and properties. Through the introduction of heterogeneous atoms and the construction of asymmetric ordered/disordered structures, ACBMs are optimized in terms of electrical conductivity, pore structure, and chemical composition and exhibit multiple properties such as hydrophilicity, hydrophobicity, optical characteristics, and magnetic behavior. Here, the recent research progress of ACBMs is reviewed, focusing on the potential of these materials for electrochemical, catalysis, and biomedical applications and their unique advantages over conventional symmetric carbon-based materials. Meanwhile, a variety of construction strategies of asymmetric structures, including template method, nanoemulsion assembly method, and self-assembly method, are described in detail. In addition, the contradictions between material synthesis and application are pointed out, such as the limitations of synthesis methods and morphology modulation means, as well as the trade-off between property improvement and production costs. Finally, the future development path of ACBMs is envisioned, emphasizing the importance of the close integration of theory and practice, and looking forward to promoting the research and development of a new generation of high-performance materials through the in-depth understanding of the design principles and action mechanisms of ACBMs.
Collapse
Affiliation(s)
- Chenqi Cui
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China
| | - Haoxuan Ma
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China
| | - Juan Du
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China
| | - Lei Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Aibing Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China
| |
Collapse
|
3
|
Guo R, Yang Z, Pan X, Ma X, Qiu Y, Li J. NiS Nanosheets Decorated on Hollow Carbon Spheres from Liquefied Wood for Supercapacitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6924-6931. [PMID: 37129080 DOI: 10.1021/acs.langmuir.3c00627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Carbon-based supercapacitors with high performance have a wide foreground among various energy storage devices. In this work, wood-based hollow carbon spheres (WHCS) were prepared from liquefied wood through the processes of emulsification, curing, carbonization, and activation. Then, the hydrodeposition method was used to introduce nickel sulfide (NiS) to the surface of the microspheres, obtaining NiS/WHCS as the supercapacitor electrode. The results show that NiS/WHCS microspheres exhibited a core-shell structure and flower-like morphology with a specific surface (307.55 m2 g-1) and a large total pore volume (0.14 cm3 g-1). Also, the capacitance could be up to 1533.6 F g-1 at a current density of 1 A g-1. In addition, after 1000 charge/discharge cycles, the specific capacitance remained at 72.8% at the initial current density of 5 A g-1. Hence, NiS/WHCS with excellent durability and high specific capacitance is a potential candidate for electrode materials.
Collapse
Affiliation(s)
- Ranran Guo
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Zhaozhao Yang
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Xiaosen Pan
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Xiaojun Ma
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Yujuan Qiu
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Jie Li
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300222, China
| |
Collapse
|
4
|
Nitrogen-Doped porous carbon embedded Sn/SnO nanoparticles as high-performance lithium-ion battery anode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Liu L, Lu Y, Qiu D, Wang D, Ding Y, Wang G, Liang Z, Shen Z, Li A, Chen X, Song H. Sodium alginate-derived porous carbon: Self-template carbonization mechanism and application in capacitive energy storage. J Colloid Interface Sci 2022; 620:284-292. [DOI: 10.1016/j.jcis.2022.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022]
|
6
|
Liu L, Li Y, Wang S, Lu Y, Zhang J, Wang D, Ding Y, Qiu D, Niu J, Yu Y, Chen X, Song H. High Sulfur-doped hollow carbon sphere with multicavity for high-performance Potassium-ion hybrid capacitors. J Colloid Interface Sci 2022; 628:975-983. [DOI: 10.1016/j.jcis.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022]
|
7
|
Sun J, Xue W, Zhang L, Dai L, Bi J, Yao F, Deng J, Xiong P, Fu Y, Zhu J. Gradient Supramolecular Preorganization Endows the Derived N/P Dual-Doped Carbon Nanosheets with Tunable Storage Performance toward Sodium-Ion Batteries. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jingwen Sun
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wenkang Xue
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Litong Zhang
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Liming Dai
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiabao Bi
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Fanglei Yao
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jingyao Deng
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Pan Xiong
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yongsheng Fu
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junwu Zhu
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
8
|
Yi Y, Zeng Z, Lian X, Dou S, Sun J. Homologous Nitrogen-Doped Hierarchical Carbon Architectures Enabling Compatible Anode and Cathode for Potassium-Ion Hybrid Capacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107139. [PMID: 35098652 DOI: 10.1002/smll.202107139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Potassium-ion hybrid capacitors (PIHCs) have been considered as an emerging device to render grid-scale energy storage. Nevertheless, the sluggish kinetics at the anode side and limited capacity output at the cathode side remain daunting challenges for the overall performances of PIHCs. Herein, an exquisite "homologous strategy" to devise multi-dimensional N-doped carbon nanopolyhedron@nanosheet anode and activated N-doped hierarchical carbon cathode targeting high-performance PIHCs is reported. The anode material harnessing a dual-carbon structure and the cathode candidate affording a high specific surface area (2651 m2 g-1 ) act in concert with a concentrated ether-based electrolyte, resulting in an excellent half cell performance. The related storage mechanism is systematically revealed by in situ electrokinetic characterizations. More encouragingly, the thus-derived PIHC full cell demonstrates a favorable energy output (157 Wh kg-1 ), showing distinct advantages over the state-of-the-art PIHC counterparts.
Collapse
Affiliation(s)
- Yuyang Yi
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Zhihan Zeng
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Xueyu Lian
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Shixue Dou
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jingyu Sun
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, P. R. China
| |
Collapse
|
9
|
Du J, Chen A, Gao X, Zhang Y, Lv H. Reasonable Construction of Hollow Carbon Spheres with an Adjustable Shell Surface for Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11750-11757. [PMID: 35212539 DOI: 10.1021/acsami.1c21009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hollow carbon spheres (HCS) manifest specific merit in achieving large interior void space, high permeability, wide contactable area, and strong stacking ability with negligible aggregation and have attracted attention due to their high supercapacitor activity. As the key factor affecting supercapacitor performance, the surface chemical properties, shell thickness, roughness, and pore volumes of HCS are the focus of research in this field. Herein, the surface chemical properties and structures of HCS are simultaneously adjusted by a feasible and simple process of in situ activation during assembly of resin and potassium chloride (KCl). This strategy involves KCl participating in resin polymerization and the superior performance of potassium species on activating carbon. The surface N/O content, thickness, defects, and roughness degree of HCS can be controlled by adjusting the dosage of KCl. Electrochemical tests show that optimized HCS has suitable roughness, high surface area, and abundant surface N/O functional groups, which endow it with excellent electrochemical capacitance properties, showing its high potential in supercapacitors.
Collapse
Affiliation(s)
- Juan Du
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 70 Yuhua Road, Shijiazhuang 050018, China
| | - Aibing Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 70 Yuhua Road, Shijiazhuang 050018, China
| | - Xueqing Gao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 70 Yuhua Road, Shijiazhuang 050018, China
| | - Yue Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 70 Yuhua Road, Shijiazhuang 050018, China
| | - Haijun Lv
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 70 Yuhua Road, Shijiazhuang 050018, China
| |
Collapse
|
10
|
Ruan J, Zang J, Hu J, Che R, Fang F, Wang F, Song Y, Sun D. Respective Roles of Inner and Outer Carbon in Boosting the K + Storage Performance of Dual-Carbon-Confined ZnSe. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104822. [PMID: 34927387 PMCID: PMC8844574 DOI: 10.1002/advs.202104822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 05/07/2023]
Abstract
Potassium-ion batteries (PIBs) have been considered as potential alternatives for lithium-ion batteries since there is a demand for better anode with superior energy, excellent rate capability, and long cyclability. The high-capacity zinc selenide (ZnSe) anode, which combines the merits of conversion and alloying reactions, is promising for PIBs but suffers from poor cyclability and low electronic conductivity. To effectively boost electrochemical performance of ZnSe, a "dual-carbon-confined" structure is constructed, in which an inner N-doped microporous carbon (NMC)-coated ZnSe wrapped by outer-rGO (ZnSe@i-NMC@o-rGO) is synthesized. Combining finite element simulation, dynamic analysis, and density functional theory calculations, the respective roles of inner- and outer-carbon in boosting performance are revealed. The inner-NMC increased the reactivity of ZnSe with K+ and alleviated the volume expansion of ZnSe, while outer-rGO further stabilized the structure and promoted the reaction kinetics. Benefiting from the synergistic effect of dual-carbon, ZnSe@i-NMC@o-rGO exhibited a high specific capacity 233.4 mAh g-1 after 1500 cycles at 2.0 A g-1 . Coupled with activated carbon, a potassium-ion hybrid capacitor displayed a high energy density of 176.6 Wh kg-1 at 1800 W kg-1 and a superior capacity retention of 82.51% at 2.0 A g-1 after 11000 cycles.
Collapse
Affiliation(s)
- Jiafeng Ruan
- Department of Materials ScienceFudan UniversityShanghai200433P. R. China
| | - Jiahe Zang
- Department of Materials ScienceFudan UniversityShanghai200433P. R. China
| | - Jiaming Hu
- Department of Materials ScienceFudan UniversityShanghai200433P. R. China
| | - Renchao Che
- Department of Materials ScienceFudan UniversityShanghai200433P. R. China
| | - Fang Fang
- Department of Materials ScienceFudan UniversityShanghai200433P. R. China
| | - Fei Wang
- Department of Materials ScienceFudan UniversityShanghai200433P. R. China
| | - Yun Song
- Department of Materials ScienceFudan UniversityShanghai200433P. R. China
| | - Dalin Sun
- Department of Materials ScienceFudan UniversityShanghai200433P. R. China
| |
Collapse
|
11
|
Qiu D, Yue C, Qiu C, Xian L, Li M, Wang F, Yang R. Three-dimensional nitrogen-doped dual carbon network anode enabling high-performance sodium-ion hybrid capacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Li H, Chen L, Li X, Sun D, Zhang H. Recent Progress on Asymmetric Carbon- and Silica-Based Nanomaterials: From Synthetic Strategies to Their Applications. NANO-MICRO LETTERS 2022; 14:45. [PMID: 35038075 PMCID: PMC8764017 DOI: 10.1007/s40820-021-00789-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/09/2021] [Indexed: 05/15/2023]
Abstract
HIGHLIGHTS The synthetic strategies and fundamental mechanisms of various asymmetric carbon- and silica-based nanomaterials were systematically summarized. The advantages of asymmetric structure on their related applications were clarified by some representative applications of asymmetric carbon- and silica-based nanomaterials. The future development prospects and challenges of asymmetric carbon- and silica-based nanomaterials were proposed. ABSTRACT Carbon- and silica-based nanomaterials possess a set of merits including large surface area, good structural stability, diversified morphology, adjustable structure, and biocompatibility. These outstanding features make them widely applied in different fields. However, limited by the surface free energy effect, the current studies mainly focus on the symmetric structures, such as nanospheres, nanoflowers, nanowires, nanosheets, and core–shell structured composites. By comparison, the asymmetric structure with ingenious adjustability not only exhibits a larger effective surface area accompanied with more active sites, but also enables each component to work independently or corporately to harness their own merits, thus showing the unusual performances in some specific applications. The current review mainly focuses on the recent progress of design principles and synthesis methods of asymmetric carbon- and silica-based nanomaterials, and their applications in energy storage, catalysis, and biomedicine. Particularly, we provide some deep insights into their unique advantages in related fields from the perspective of materials’ structure–performance relationship. Furthermore, the challenges and development prospects on the synthesis and applications of asymmetric carbon- and silica-based nanomaterials are also presented and highlighted. [Image: see text]
Collapse
Affiliation(s)
- Haitao Li
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Liang Chen
- Department of Chemistry, Laboratory of Advanced Nanomaterials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Nanomaterials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Nanomaterials (2011-iChEM), Fudan University, Shanghai, 200433, People's Republic of China
| | - Xiaomin Li
- Department of Chemistry, Laboratory of Advanced Nanomaterials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Nanomaterials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Nanomaterials (2011-iChEM), Fudan University, Shanghai, 200433, People's Republic of China
| | - Daoguang Sun
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Haijiao Zhang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
13
|
Naskar P, Kundu D, Maiti A, Chakraborty P, Biswas B, Banerjee A. Frontiers in Hybrid Ion Capacitors: A Review on Advanced Materials and Emerging Devices. ChemElectroChem 2021. [DOI: 10.1002/celc.202100029] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pappu Naskar
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| | - Debojyoti Kundu
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| | - Apurba Maiti
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| | - Priyanka Chakraborty
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| | - Biplab Biswas
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| | - Anjan Banerjee
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| |
Collapse
|
14
|
Liang J, Kong J, Zhang J. Hollow Concave Zinc‐Doped Co
3
O
4
Nanosheets/Carbon Composites as Ultrahigh Capacity Anode Materials for Lithium‐Ion Batteries. ChemElectroChem 2021. [DOI: 10.1002/celc.202001416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jin Liang
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions Shaanxi Key Laboratory of Macromolecular Science and Technology School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710129 P. R. China
| | - Jie Kong
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions Shaanxi Key Laboratory of Macromolecular Science and Technology School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710129 P. R. China
| | - Jian Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710129 P. R. China
| |
Collapse
|
15
|
Xiong W, Li X, Ye X, Huang T, Feng X, Huang Z, Ye S, Ren X, Zhang Q, Liu J. Synthesis of V-notched half-open polymer microspheres via facile solvent-tuned self-assembly. NEW J CHEM 2021. [DOI: 10.1039/d1nj02279b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polymer microspheres with a special V-notched half-open architecture were synthesized in a mixed solvent of water/ethanol (1 : 1 v/v) at room temperature.
Collapse
|
16
|
Xie L, Yuan K, Xu J, Zhu Y, Xu L, Li N, Du J. Comparative Study on Supercapacitive Performances of Hierarchically Nanoporous Carbon Materials With Morphologies From Submicrosphere to Hexagonal Microprism. Front Chem 2020; 8:599981. [PMID: 33282842 PMCID: PMC7705105 DOI: 10.3389/fchem.2020.599981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/12/2020] [Indexed: 11/13/2022] Open
Abstract
Hierarchically nanoporous carbon materials (HNCMs) with well-defined morphology and excellent electrochemical properties are promising in fabrication of energy storage devices. In this work, we made a comparative study on the supercapacitive performances of HNCMs with different morphologies. To this end, four types of HNCMs with well-defined morphologies including submicrospheres (HNCMs-S), hexagonal nanoplates (HNCMs-N), dumbbell-like particles (HNCMs-D), and hexagonal microprisms (HNCMs-P) were successfully synthesized by dual-template strategy. The relationship of structural-electrochemical property was revealed by comparing the electrochemical performances of these HNCMs-based electrodes using a three-electrode system. The results demonstrated that the HNCMs-S-based electrode exhibited the highest specific capacitance of 233.8 F g-1 at the current density of 1 A g-1 due to the large surface area and well-defined hierarchically nanoporous structure. Moreover, the as-prepared HNCMs were further fabricated into symmetrical supercapacitor devices (HNCMs-X//HNCMs-X) using KOH as the electrolyte and their supercapacitive performances were checked. Notably, the assembled HNCMs-S//HNCMs-S symmetric supercapacitors displayed superior supercapacitive performances including high specific capacitance of 55.5 F g-1 at 0.5 A g-1, good rate capability (retained 71.9% even at 20 A g-1), high energy density of 7.7 Wh kg-1 at a power density of 250 W kg-1, and excellent cycle stability after 10,000 cycles at 1 A g-1. These results further revealed the promising prospects of the prepared HNCMs-S for high-performance energy storage devices.
Collapse
Affiliation(s)
- Lei Xie
- College of Packaging and Material Engineering, Hunan University of Technology, Zhuzhou, China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, China
- Hunan Key Laboratory of Electrochemical Green Metallurgy Technology, College of Metallurgy and Materials Engineering, Hunan University of Technology, Zhuzhou, China
| | - Kai Yuan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, China
- Hunan Key Laboratory of Electrochemical Green Metallurgy Technology, College of Metallurgy and Materials Engineering, Hunan University of Technology, Zhuzhou, China
| | - Jianxiong Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, China
- National and Local Joint Engineering Research Center of Advanced Packaging Materials Developing Technology, Hunan University of Technology, Zhuzhou, China
| | - Yirong Zhu
- Hunan Key Laboratory of Electrochemical Green Metallurgy Technology, College of Metallurgy and Materials Engineering, Hunan University of Technology, Zhuzhou, China
| | - Lijian Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, China
- National and Local Joint Engineering Research Center of Advanced Packaging Materials Developing Technology, Hunan University of Technology, Zhuzhou, China
| | - Na Li
- Hunan Key Laboratory of Electrochemical Green Metallurgy Technology, College of Metallurgy and Materials Engineering, Hunan University of Technology, Zhuzhou, China
- National and Local Joint Engineering Research Center of Advanced Packaging Materials Developing Technology, Hunan University of Technology, Zhuzhou, China
| | - Jingjing Du
- College of Packaging and Material Engineering, Hunan University of Technology, Zhuzhou, China
- National and Local Joint Engineering Research Center of Advanced Packaging Materials Developing Technology, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|
17
|
Yuan J, Hu X, Liu Y, Zhong G, Yu B, Wen Z. Recent progress in sodium/potassium hybrid capacitors. Chem Commun (Camb) 2020; 56:13933-13949. [PMID: 33111735 DOI: 10.1039/d0cc05476c] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Metal ion hybrid capacitors (MIHCs) have been recognized as one of the most promising power sources owing to their combined merits of high energy density in batteries and high power output in supercapacitors. The kinetics mismatch between the capacitor-type cathode and battery-type anode yet must be well addressed before implementing their practical feasibility. Here, we overview the recent progress in sodium and potassium ion hybrid capacitors (SIHCs and PIHCs) and discuss the major challenges and give an outlook on the future directions in this field. The fundamental knowledge and the history will be firstly introduced, and special emphasis is then laid on the development of a variety of electrode materials in recent years. The prospects of future research of MIHCs are finally proposed towards their practical applications. We wish that this feature article can not only educate newcomers starting their reasearch in this field, but also inspire experieced researchers to contribute to the development of high-performance MIHC devices.
Collapse
Affiliation(s)
- Jun Yuan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | | | | | | | | | | |
Collapse
|
18
|
Qiu D, Li M, Kang C, Wei J, Wang F, Yang R. Cucurbit[6]uril-Derived Sub-4 nm Pores-Dominated Hierarchical Porous Carbon for Supercapacitors: Operating Voltage Expansion and Pore Size Matching. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002718. [PMID: 32830405 DOI: 10.1002/smll.202002718] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/24/2020] [Indexed: 06/11/2023]
Abstract
The intrinsic properties of carbon-based material and the voltage window of electrolyte are the two key barriers to restrict the energy density of carbon-based supercapacitors (SCs). Herein, a cucurbit[6]uril-derived nitrogen-doped hierarchical porous carbon (CBCx) with unique pore structure characteristics is synthesized and successfully applied to construct SCs based on different electrolyte systems. Owing to narrow pore size distribution (0.5-4 nm), colossal ion-accessible pore volume, prominent supermesopore volume, and reasonable heteroatom configuration, the CBCx-based SCs demonstrate excellent electrochemical performances with high operating voltages in two distinct systems. The optimal SCs can output a maximum energy/power density of 18 Wh kg-1 (11.1 Wh L-1 )/20 kW kg-1 (12.3 kW L-1 ) with an operating voltage of 1.2 V in potassium hydroxide aqueous electrolyte, as well as an ultralong cycle life of up to 50 000 cycles (0.046% decay per 100 cycles). Furthermore, the optimal SCs deliver an exceptionally high energy/power density of 95 Wh kg-1 (58.4 Wh L-1 )/70 kW kg-1 (43 kW L-1 ) with an ultrahigh operating voltage of 3.5 V in 1-ethyl-3-methylimidazolium tetrafluoroborate electrolyte. This work opens up a new application field for cucurbit[6]uril and provides an alternative avenue for optimizing the performances of carbon-based materials for SCs.
Collapse
Affiliation(s)
- Daping Qiu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Min Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Cuihua Kang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jinying Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Feng Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ru Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
19
|
Zhang Y, Jiang J, An Y, Wu L, Dou H, Zhang J, Zhang Y, Wu S, Dong M, Zhang X, Guo Z. Sodium-ion capacitors: Materials, Mechanism, and Challenges. CHEMSUSCHEM 2020; 13:2522-2539. [PMID: 32045509 DOI: 10.1002/cssc.201903440] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/19/2020] [Indexed: 05/12/2023]
Abstract
Sodium-ion capacitors (SICs), designed to attain high energy density, rapid energy delivery, and long lifespan, have attracted much attention because of their comparable performance to lithium-ion capacitors (LICs), alongside abundant sodium resources. Conventional SIC design is based on battery-like anodes and capacitive cathodes, in which the battery-like anode materials involve various reactions, such as insertion, alloying, and conversion reactions, and the capacitive cathode materials usually depend on activated carbon (AC). However, researchers have attempted to construct SICs based on battery-like cathodes and capacitive anodes or a combination of both in recent years. In this Minireview, charge storage mechanisms and material design strategies for SICs are summarized, with a focus on the battery-like anode materials from both inorganic and organic sources. Additionally, the challenges in the fabrication of SICs and future research directions are discussed.
Collapse
Affiliation(s)
- Yadi Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P.R. China
- Integrated Composites Laboratory, Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jiangmin Jiang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P.R. China
| | - Yufeng An
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P.R. China
| | - Langyuan Wu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P.R. China
| | - Hui Dou
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P.R. China
| | - Jiaoxia Zhang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P.R. China
- Integrated Composites Laboratory, Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Yu Zhang
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, P.R. China
| | - Shide Wu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, P.R. China
| | - Mengyao Dong
- Key Laboratory of Materials Processing and Mold, Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450001, P.R. China
- Integrated Composites Laboratory, Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P.R. China
| | - Zhanhu Guo
- Integrated Composites Laboratory, Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
20
|
Wei J, Qiu D, Li M, Xie Z, Gao A, Liu H, Yin S, Yang D, Yang R. Controllable synthesis of aluminum doped peony-like α-Ni(OH) 2 with ultrahigh rate capability for asymmetric supercapacitors. RSC Adv 2019; 9:10237-10244. [PMID: 35520903 PMCID: PMC9062355 DOI: 10.1039/c9ra00883g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/03/2019] [Indexed: 01/15/2023] Open
Abstract
Ion substitution and micromorphology control are two efficient strategies to ameliorate the electrochemical performance of supercapacitors electrode materials. Here, Al3+ doped α-Ni(OH)2 with peony-like morphology and porous structure has been successfully synthesized through a facile one-pot hydrothermal process. The Al3+ doped α-Ni(OH)2 electrode shows an ultrahigh specific capacitance of 1750 F g-1 at 1 A g-1, and an outstanding electrochemical stability of 72% after running 2000 cycles. In addition, the Al3+ doped α-Ni(OH)2 electrode demonstrates an excellent rate capability (92% retention at 10 A g-1). Furthermore, by using this unique Al3+ doped α-Ni(OH)2 as the positive electrode and a hierarchical porous carbon (HPC) as the negative electrode, the assembled asymmetric supercapacitor can demonstrate a high energy/power density (49.6 W h kg-1 and 14 kW kg-1). This work proves that synthesizing an Al3+ doped structure is an effective means to improve the electrochemical properties of α-Ni(OH)2. This scheme could be extended to other transition metal hydroxides to enhance their electrochemical performance.
Collapse
Affiliation(s)
- Jinying Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology Beijing 100029 China +86 10 64436736
| | - Daping Qiu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology Beijing 100029 China +86 10 64436736
| | - Min Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology Beijing 100029 China +86 10 64436736
| | - Zhenyu Xie
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology Beijing 100029 China +86 10 64436736
| | - Ang Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology Beijing 100029 China +86 10 64436736
| | - Hongru Liu
- Central Research Institute of China Chemical Science and Technology Co., Ltd. Beijing 100029 China
| | - Suhong Yin
- Central Research Institute of China Chemical Science and Technology Co., Ltd. Beijing 100029 China
| | - Dongsheng Yang
- Central Research Institute of China Chemical Science and Technology Co., Ltd. Beijing 100029 China
| | - Ru Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology Beijing 100029 China +86 10 64436736
| |
Collapse
|