1
|
Wang Y, Li R, Shu W, Chen X, Lin Y, Wan J. Designed Nanomaterials-Assisted Proteomics and Metabolomics Analysis for In Vitro Diagnosis. SMALL METHODS 2024; 8:e2301192. [PMID: 37922520 DOI: 10.1002/smtd.202301192] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/12/2023] [Indexed: 11/05/2023]
Abstract
In vitro diagnosis (IVD) is pivotal in modern medicine, enabling early disease detection and treatment optimization. Omics technologies, particularly proteomics and metabolomics, offer profound insights into IVD. Despite its significance, omics analyses for IVD face challenges, including low analyte concentrations and the complexity of biological environments. In addition, the direct omics analysis by mass spectrometry (MS) is often hampered by issues like large sample volume requirements and poor ionization efficiency. Through manipulating their size, surface charge, and functionalization, as well as the nanoparticle-fluid incubation conditions, nanomaterials have emerged as a promising solution to extract biomolecules and enhance the desorption/ionization efficiency in MS detection. This review delves into the last five years of nanomaterial applications in omics, focusing on their role in the enrichment, separation, and ionization analysis of proteins and metabolites for IVD. It aims to provide a comprehensive update on nanomaterial design and application in omics, highlighting their potential to revolutionize IVD.
Collapse
Affiliation(s)
- Yanhui Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Rongxin Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Weikang Shu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Xiaonan Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yingying Lin
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
2
|
Ouyang D, Wang C, Zhong C, Lin J, Xu G, Wang G, Lin Z. Organic metal chalcogenide-assisted metabolic molecular diagnosis of central precocious puberty. Chem Sci 2023; 15:278-284. [PMID: 38131069 PMCID: PMC10732007 DOI: 10.1039/d3sc05633c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023] Open
Abstract
Metabolic analysis in biofluids based on laser desorption/ionization mass spectrometry (LDI-MS), featuring rapidity, simplicity, small sample volume and high throughput, is expected to be a powerful diagnostic tool. Nevertheless, the signals of most metabolic biomarkers obtained by matrix-assisted LDI-MS are too limited to achieve a highly accurate diagnosis due to serious background interference. To address this issue, nanomaterials have been frequently adopted in LDI-MS as substrates. However, the "trial and error" approach still dominates the development of new substrates. Therefore, rational design of novel LDI-MS substrates showing high desorption/ionization efficiency and no background interference is extremely desired. Herein, four few-layered organic metal chalcogenides (OMCs) were precisely designed and for the first time investigated as substrates in LDI-MS, which allowed a favorable internal energy and charge transfer by changing the functional groups of organic ligands and metal nodes. As a result, the optimized OMC-assisted platform satisfyingly enhanced the mass signal by ≈10 000 fold in detecting typical metabolites and successfully detected different saccharides. In addition, a high accuracy diagnosis of central precocious puberty (CPP) with potential biomarkers of 12 metabolites was realized. This work is not only expected to provide a universal detection tool for large-scale clinical diagnosis, but also provides an idea for the design and selection of LDI-MS substrates.
Collapse
Affiliation(s)
- Dan Ouyang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University Fuzhou Fujian 350108 China
| | - Chuanzhe Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) Fuzhou Fujian 350002 China
| | - Chao Zhong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University Fuzhou Fujian 350108 China
| | - Juan Lin
- Department of Cardiology, Fujian Provincial Governmental Hospital Fuzhou 350003 China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) Fuzhou Fujian 350002 China
| | - Guane Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) Fuzhou Fujian 350002 China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University Fuzhou Fujian 350108 China
| |
Collapse
|
3
|
Li W, He Q, Li J, Zhou X, Hu Q, Ma C, Wang X. In Situ Self-Assembled Formation of Nitrogen-Rich Ag@Ti 3C 2 Film for Sensitive Detection and Spatial Imaging of Pesticides with Laser Desorption/Ionization Mass Spectrometry (LDI-MS). ACS APPLIED MATERIALS & INTERFACES 2023; 15:18402-18413. [PMID: 37009649 DOI: 10.1021/acsami.2c22347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Pesticide residues are hazardous to human health; thus, developing a rapid and sensitive method for pesticide detection is an urgent need. Herein, novel nitrogen-rich Ag@Ti3C2 (Ag@N-Ti3C2) was synthesized via an ecofriendly, ultraviolet-assisted strategy, followed by in situ formation of a highly homogeneous film on target carriers via a facile water evaporation-induced self-assembly process. Ag@N-Ti3C2 shows greater surface area, electrical conductivity, and thermal conductivity than Ti3C2. This Ag@N-Ti3C2 film overcomes the limitations of conventional matrixes and allows laser desorption/ionization mass spectrometry (LDI-MS) to provide fast and high-throughput analysis of pesticides (e.g., carbendazim, thiamethoxam, propoxur, dimethoate, malathion, and cypermethrin) with ultrahigh sensitivity (detection limits of 0.5-200 ng/L), enhanced reproducibility, extremely low background, and good salt tolerance. Furthermore, the levels of pesticides were quantified with a linear range of 0-4 μg/L (R2 > 0.99). This Ag@N-Ti3C2 film was used for high-throughput analysis of pesticides spiked in traditional Chinese herbs and soft drink samples. Meanwhile, high-resolution Ag@N-Ti3C2 film-assisted LDI-MS imaging (LDI MSI) was used to successfully explore spatial distributions of xenobiotic pesticides and other endogenous small molecules (e.g., amino acids, saccharides, hormones, and saponin) in the roots of plants. This study presents the new Ag@N-Ti3C2 self-assembled film equably deposits on the ITO slides and provides a dual platform for pesticide monitoring and has the advantages of high conductivity, accuracy, simplicity, rapid analysis, minimal sample volume requirement, and an imaging function.
Collapse
Affiliation(s)
- Wenhan Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| | - Qing He
- Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Jingchao Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| | - Xiuteng Zhou
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Qiongzheng Hu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| | - Chunxia Ma
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| |
Collapse
|
4
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Liu X, Chen Z, Wang T, Jiang X, Qu X, Duan W, Xi F, He Z, Wu J. Tissue Imprinting on 2D Nanoflakes-Capped Silicon Nanowires for Lipidomic Mass Spectrometry Imaging and Cancer Diagnosis. ACS NANO 2022; 16:6916-6928. [PMID: 35416655 DOI: 10.1021/acsnano.2c02616] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Spatially resolved tissue lipidomics is essential for accurate intraoperative and postoperative cancer diagnosis by revealing molecular information in the tumor microenvironment. Matrix-free laser desorption ionization mass spectrometry imaging (LDI-MSI) is an emerging attractive technology for label-free visualization of metabolites distributions in biological specimens. However, the development of LDI-MSI technology that could conveniently and authentically reveal molecular distribution on tissue samples is still a challenge. Herein, we present a tissue imprinting technology by retaining tissue lipids on 2D nanoflakes-capped silicon nanowires (SiNWs) for further mass spectrometry imaging and cancer diagnosis. The 2D nanoflakes were prepared by liquid exfoliation of molybdenum disulfide (MoS2) with nitrogen-doped graphene quantum dots (NGQDs), which serve as both intercalation agent and dispersant. The obtained NGQD@MoS2 nanoflakes were then decorated on the tip of vertical SiNWs, forming a hybrid NGQD@MoS2/SiNWs nanostructure, which display excellent lipid extraction ability, enhanced LDI efficiency and molecule imaging capability. The peak number and total ion intensity of different lipids species on animal lung tissues obtained by tissue imprinting LDI-MSI on NGQD@MoS2/SiNWs were ∼4-5 times greater than those on SiNWs substrate. As a proof-of-concept demonstration, the NGQD@MoS2/SiNWs nanostructure was further applied to visualize phospholipids on sliced non small cell lung cancer (NSCLC) tissue along with the adjacent normal tissue. On the basis of selected feature lipids and machine learning algorithm, a prediction model was constructed to discriminate NSCLC tissues from the adjacent normal tissues with an accuracy of 100% for the discovery cohort and 91.7% for the independent validation cohort.
Collapse
Affiliation(s)
- Xingyue Liu
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhao Chen
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, P. R. China
| | - Tao Wang
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xinrong Jiang
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xuetong Qu
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Wei Duan
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Fengna Xi
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Zhengfu He
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, P. R. China
| | - Jianmin Wu
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
6
|
Luo Y, Zhao X, Gao Z, Wang H, Liu Y, Guo C, Pan Y. Pd nanoparticles decorated thiol-functionalized MOF as an efficient matrix for differentiation and quantitation of oligosaccharide isomers by laser desorption/ionization mass spectrometry. Anal Chim Acta 2022; 1202:339665. [DOI: 10.1016/j.aca.2022.339665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 11/27/2022]
|
7
|
Zhao H, Li Y, Zhao H, Zhao Z, Wang J, Zhang R. Yolk-shell Ni/NiO anchored on N-doped graphene synthesized as dual-ion MALDI matrix for detecting and imaging bioactive small molecules. J Colloid Interface Sci 2021; 613:285-296. [PMID: 35042029 DOI: 10.1016/j.jcis.2021.12.105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/19/2021] [Accepted: 12/16/2021] [Indexed: 01/03/2023]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is an attractive tool to analyze the bioactive small molecules but remains a great challenge owing to the serious background interference from conventional matrix with m/z < 1000. Herein, we reported a dual-ion MALDI matrix of yolk-shell Ni/NiO nanoparticles anchored on nitrogen-doped graphene (Ni/NiO/N-Gr) to enhance MALDI performance. The Ni/NiO/N-Gr was synthesized via the pyrolysis and controllable oxidation strategy based on the nanoscale regulation of Kirkendall effect. The novel matrix showed the superior behavior for the analysis of various small molecular metabolites (amino acids, saccharides, spermidine, creatinine, hippuric acid, dopamine, and ascorbic acid) with high sensitivity, excellent salt tolerance, and favorable reproducibility in dual-ion modes compared to the traditional α-cyano-4-hydroxycinnamic acid (CHCA) and control substances (Ni/N-Gr and NiO/N-Gr). Meanwhile, we have realized accurate quantitation of blood glucose in mice with a linearity concentration range of 0.2-7.5 mM and qualitative detection of various endogenous small molecular metabolites in mice serum and urine samples. Especially, the Ni/NiO/N-Gr assisted LDI MS imaging (MSI) has exhibited the excellent spatial distribution of lipids in hippocampus region of mice brain. These results may provide an approach to explore the MALDI MS and MSI applications in clinical diagnosis.
Collapse
Affiliation(s)
- Huifang Zhao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China; The Radiology Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan 030032, China
| | - Yanqiu Li
- CAS Key Laboratory of Carbon Materials, Analytical Instrumentation Center & State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Huayu Zhao
- The Radiology Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan 030032, China
| | - Zheng Zhao
- CAS Key Laboratory of Carbon Materials, Analytical Instrumentation Center & State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Junying Wang
- CAS Key Laboratory of Carbon Materials, Analytical Instrumentation Center & State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.
| | - Ruiping Zhang
- The Radiology Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan 030032, China.
| |
Collapse
|
8
|
Zheng M, Xu Q, Tian R, Lu C. Enhanced photocatalytic performance of heterogeneous hydrotalcite by spontaneously polarized ferroelectric. J Colloid Interface Sci 2021; 600:473-479. [PMID: 34030007 DOI: 10.1016/j.jcis.2021.05.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/29/2022]
Abstract
Two-dimensional photocatalytic materials have attracted great attention due to their large specific surface area and abundant active sites. Suppressing the recombination of photo-excited carriers is an effective approach to improve the performances of photocatalytic materials. Herein, we introduced ferroelectric PbTiO3 into the two-dimensional layered double hydroxides (LDHs) to improve the carrier separation efficiency and photocatalytic performances. A built-in electric field was generated in the polarized PbTiO3, resulting in the improvement of the carrier separation efficiency and the promotion of the lifetime of photo-excited carriers in the LDHs-PbTiO3 composites. As a result, the LDHs-PbTiO3 composites showed the decent photocatalytic performances towards water splitting under visible light irradiation. The oxygen production rate of the proposed LDHs-PbTiO3 composites was almost twice than that of pristine LDHs. These results have addressed the significance of photo-excited carriers in photocatalytic materials. This approach could undoubtedly provide the valuable information in design and construction of high efficiency photocatalysts.
Collapse
Affiliation(s)
- Minrou Zheng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qi Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rui Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
9
|
Xu Q, Tian R, Lu C. Mass Spectrometry Imaging of Low-Molecular-Weight Phenols Liberated from Plastics. Anal Chem 2021; 93:13703-13710. [PMID: 34570463 DOI: 10.1021/acs.analchem.1c03397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The abundant and heterogeneous distribution of toxic phenol from plastics has drawn worldwide attention. However, the common analysis methods failed to identify the accurate species of these phenolic hazards from plastics in a direct and nondestructive approach. Herein, we demonstrate the layered double hydroxides (LDHs) as a novel matrix in matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) for low-molecular-weight phenols leaked from plastics. LDHs own abundant hydroxyl groups to facilitate chemoselectivity and ionization of phenols through the formation of hydrogen bonds with these phenols. More importantly, the LDH matrix could provide a distinguishable signal for the homolog and isomeride of these phenolic hazards. The developed method could realize nondestructive and in situ mapping of phenolic hazards in plastics. Our success could help to track the low-molecular-weight compounds liberated from plastics and supply spatial information for polluted plastics. We anticipated that the proposed approach could provide sufficient information to evaluate and alarm the safety of food packaging plastics.
Collapse
Affiliation(s)
- Qi Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rui Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
10
|
Ma W, Li J, Li X, Bai Y, Liu H. Nanostructured Substrates as Matrices for Surface Assisted Laser Desorption/Ionization Mass Spectrometry: A Progress Report from Material Research to Biomedical Applications. SMALL METHODS 2021; 5:e2100762. [PMID: 34927930 DOI: 10.1002/smtd.202100762] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/13/2021] [Indexed: 06/14/2023]
Abstract
Within the past two decades, the escalation of research output in nanotechnology fields has boosted the development of novel nanoparticles and nanostructured substrates for use as matrices in surface assisted laser desorption/ionization mass spectrometry (SALDI-MS). The application of nanomaterials as matrices, rather than organic matrices, offers remarkable characteristics that allow the analysis of small molecules with fewer matrix interfering peaks, and share higher detection sensitivity, specificity, and reproducibility. The technological advancement of SALDI-MS has in turn, propelled the application of the analytical technique in the field of biomedical analysis. In this review, the properties and fabrication methods of nanostructured substrates in SALDI-MS such as metallic-, carbon-, and silicon-based nanostructures, quantum dots, metal-organic frameworks, and covalent-organic frameworks are described. Additionally, the latest progress (most within 5 years) of biomedical applications in small molecule, large biomolecule, and MS imaging analysis including metabolite profiling, drug monitoring, bacteria identification, disease diagnosis, and therapeutic evaluation are demonstrated. Key parameters that govern nanomaterial's SALDI efficiency in biomolecule analysis are also discussed. Finally, perspectives of the future development are given to provide a better advancement and promote practical application in clinical MS.
Collapse
Affiliation(s)
- Wen Ma
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jun Li
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xianjiang Li
- Division of Metrology in Chemistry, National Institute of Metrology, Beijing, 100029, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
11
|
Xu H, Zhang Z, Wang Y, Lu W, Min Q. Engineering of nanomaterials for mass spectrometry analysis of biomolecules. Analyst 2021; 146:5779-5799. [PMID: 34397044 DOI: 10.1039/d1an00860a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mass spectrometry (MS) based analysis has received intense attention in diverse biological fields. However, direct MS interrogation of target biomolecules in complex biological samples is still challenging, due to the extremely low abundance and poor ionization potency of target biological species. Innovations in nanomaterials create new auxiliary tools for deep and comprehensive MS characterization of biomolecules. More recently, growing research interest has been directed to the compositional and structural engineering of nanomaterials for enriching target biomolecules prior to MS analysis, enhancing the ionization efficiency in MS detection and designing biosensing nanoprobes in sensitive MS readout. In this review, we mainly focus on the recent advances in the engineering of nanomaterials towards their applications in sample pre-treatment, desorption/ionization matrices and ion signal amplification for MS profiling of biomolecules. This review will provide a toolbox of nanomaterials for researchers devoted to developing analytical methods and practical applications in the biological MS field.
Collapse
Affiliation(s)
- Hongmei Xu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China. and Institute of Environmental Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Zhenzhen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Yihan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Weifeng Lu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
12
|
Kulkarni AS, Huang L, Qian K. Material-assisted mass spectrometric analysis of low molecular weight compounds for biomedical applications. J Mater Chem B 2021; 9:3622-3639. [PMID: 33871513 DOI: 10.1039/d1tb00289a] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Low molecular weight compounds play an important role in encoding the current physiological state of an individual. Laser desorption/ionization mass spectrometry (LDI MS) offers high sensitivity with low cost for molecular detection, but it is not able to cover small molecules due to the drawbacks of the conventional matrix. Advanced materials are better alternatives, showing little background interference and high LDI efficiency. Herein, we first classify the current materials with a summary of compositions and structures. Matrix preparation protocols are then reviewed, to enhance the selectivity and reproducibility of MS data better. Finally, we highlight the biomedical applications of material-assisted LDI MS, at the tissue, bio-fluid, and cellular levels. We foresee that the advanced materials will bring far-reaching implications in LDI MS towards real-case applications, especially in clinical settings.
Collapse
Affiliation(s)
- Anuja Shreeram Kulkarni
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China and School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.
| | - Lin Huang
- Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China.
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China and School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.
| |
Collapse
|
13
|
Li R, Zhou Y, Liu C, Pei C, Shu W, Zhang C, Liu L, Zhou L, Wan J. Design of Multi‐Shelled Hollow Cr
2
O
3
Spheres for Metabolic Fingerprinting. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rongxin Li
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
| | - Yongjie Zhou
- Department of Psychiatric Rehabilitation Shenzhen Kangning Hospital Shenzhen Guangdong 518118 P. R. China
| | - Chao Liu
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
| | - Congcong Pei
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
| | - Weikang Shu
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
| | - Chaoqi Zhang
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
| | - Lianzhong Liu
- Wuhan Mental Health Center Tongji Medical College of Huazhong University of Science and Technology Wuhan Hubei 430032 P. R. China
| | - Liang Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan Hubei 430070 P. R. China
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
| |
Collapse
|
14
|
Pei C, Wan J. Nanocomposite-Based Matrices in Laser Desorption/Ionization Mass Spectrometry for Small-Molecule Analysis. Chempluschem 2021; 85:2419-2427. [PMID: 33155769 DOI: 10.1002/cplu.202000619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/19/2020] [Indexed: 12/17/2022]
Abstract
The efficient detection of small molecules is of significance for environmental monitoring, pharmacology, metabolomics, and lipidomics. The laser desorption/ionization mass spectrometry (LDI MS) platform enables high sensitivity, accuracy, resolution, and throughput in molecular analysis, but its analytical capability with respect to small molecules is limited due to inherent drawbacks arising from conventional organic matrices. The selection of an appropriate matrix is thus a precondition for small molecule detection by LDI MS. To date, various inorganic matrices have been developed, with a growing interest in composite materials displaying synergetic effects. This Minireview highlights the development of nanocomposites as LDI matrices driven by numerous innovations in material science, and their emerging use in small-molecule analysis.
Collapse
Affiliation(s)
- Congcong Pei
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
15
|
Li R, Zhou Y, Liu C, Pei C, Shu W, Zhang C, Liu L, Zhou L, Wan J. Design of Multi-Shelled Hollow Cr 2 O 3 Spheres for Metabolic Fingerprinting. Angew Chem Int Ed Engl 2021; 60:12504-12512. [PMID: 33721392 DOI: 10.1002/anie.202101007] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/08/2021] [Indexed: 12/15/2022]
Abstract
Schizophrenia (SZ) detection enables effective treatment to improve the clinical outcome, but objective and reliable SZ diagnostics are still limited. An ideal diagnosis of SZ suited for robust clinical screening must address detection throughput, low invasiveness, and diagnosis accuracy. Herein, we built a multi-shelled hollow Cr2 O3 spheres (MHCSs) assisted laser desorption/ionization mass spectrometry (LDI MS) platform for the direct metabolic profiling of biofluids towards SZ diagnostics. The MHCSs displayed strong light absorption for enhanced ionization and microscale surface roughness with stability for the effective LDI of metabolites. We profiled urine and serum metabolites (≈1 μL) with the enhanced LDI efficacy in seconds. We discriminated SZ patients (SZs) from healthy controls (HCs) with the highest area under the curve (AUC) value of 1.000 for the blind test. We identified four compounds with optimal diagnostic power as a simplified metabolite panel for SZ and demonstrated the metabolite quantification for clinic use. Our approach accelerates the growth of new platforms toward a precision diagnosis in the near future.
Collapse
Affiliation(s)
- Rongxin Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yongjie Zhou
- Department of Psychiatric Rehabilitation, Shenzhen Kangning Hospital, Shenzhen, Guangdong, 518118, P. R. China
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Congcong Pei
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Weikang Shu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Chaoqi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Lianzhong Liu
- Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, 430032, P. R. China
| | - Liang Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
16
|
Wang XN, Tang W, Gordon A, Wang HY, Xu L, Li P, Li B. Porous TiO 2 Film Immobilized with Gold Nanoparticles for Dual-Polarity SALDI MS Detection and Imaging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42567-42575. [PMID: 32852188 DOI: 10.1021/acsami.0c12949] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface-assisted laser desorption/ionization (SALDI) mass spectrometry (MS) has become an attractive complementary approach to matrix-assisted laser desorption/ionization (MALDI) MS. SALDI MS has great potential for the detection of small molecules because of the absence of applied matrix. In this work, a functionalized porous TiO2 film immobilized with gold nanoparticles (AuNPs-FPTDF) was prepared to enhance SALDI MS performance. The porous TiO2 films were prepared by the facile sol-gel method and chemically functionalized for dense loading of AuNPs. The prepared AuNPs-FPTDF showed superior performance in the detection and imaging of small molecules in dual-polarity modes, with high detection sensitivity in the low pmol range, good repeatability, and low background noise compared to common organic MALDI matrixes. Its usage efficiently enhanced SALDI MS detection of various small molecules, such as amino acids and neurotransmitters, fatty acids, saccharides, alkaloids, and flavonoids, as compared with α-cyano-4-hydroxycinnamic acid, 9-aminoacridine, and the three precursor substrates of AuNPs-FPTDF. In addition, the blood glucose level in rats was successfully determined from a linearity concentration range of 0.5-9 mM, as well as other biomarkers in rat serum with SALDI MS. More importantly, the spatial distribution of metabolites from the intact flowers of the medicinal plant Catharanthus roseus was explored by using the AuNPs-FPTDF as an imprint SALDI MS substrate in dual-polarity modes. These results demonstrate wide applications and superior performances of the AuNPs-FPTDF as a multifunctional SALDI surface with enhanced detection sensitivity and imaging capabilities.
Collapse
Affiliation(s)
- Xian-Na Wang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Weiwei Tang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Andrew Gordon
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hui-Ying Wang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Linru Xu
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
17
|
Sotiles AR, Wypych F. First synthesis of a nanohybrid composed of a layered double hydroxide of Zn2Al intercalated with SO42−/Na+/Ag+ and decorated with Ago nanoparticles. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Pei C, Liu C, Wang Y, Cheng D, Li R, Shu W, Zhang C, Hu W, Jin A, Yang Y, Wan J. FeOOH@Metal-Organic Framework Core-Satellite Nanocomposites for the Serum Metabolic Fingerprinting of Gynecological Cancers. Angew Chem Int Ed Engl 2020; 59:10831-10835. [PMID: 32237260 DOI: 10.1002/anie.202001135] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/05/2020] [Indexed: 12/11/2022]
Abstract
High-throughput metabolic analysis is of significance in diagnostics, while tedious sample pretreatment has largely hindered its clinic application. Herein, we designed FeOOH@ZIF-8 composites with enhanced ionization efficiency and size-exclusion effect for laser desorption/ionization mass spectrometry (LDI-MS)-based metabolic diagnosis of gynecological cancers. The FeOOH@ZIF-8-assisted LDI-MS achieved rapid, sensitive, and selective metabolic fingerprints of the native serum without any enrichment or purification. Further analysis of extracted serum metabolic fingerprints successfully discriminated patients with gynecological cancers (GCs) from healthy controls and also differentiated three major subtypes of GCs. Given the low cost, high-throughput, and easy operation, our approach brings a new dimension to disease analysis and classification.
Collapse
Affiliation(s)
- Congcong Pei
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - You Wang
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, Shanghai, 200001, P. R. China.,Department of Obstetrics and Gynecology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, P. R. China
| | - Dan Cheng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Rongxin Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Weikang Shu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Chaoqi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Wenli Hu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Aihua Jin
- Institute of Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
19
|
Pei C, Liu C, Wang Y, Cheng D, Li R, Shu W, Zhang C, Hu W, Jin A, Yang Y, Wan J. FeOOH@Metal–Organic Framework Core–Satellite Nanocomposites for the Serum Metabolic Fingerprinting of Gynecological Cancers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001135] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Congcong Pei
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. China
| | - Chao Liu
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. China
| | - You Wang
- Shanghai Key Laboratory of Gynecologic OncologyRenji Hospital Shanghai 200001 P. R. China
- Department of Obstetrics and GynecologySchool of MedicineShanghai Jiao Tong University Shanghai 200001 P. R. China
| | - Dan Cheng
- Australian Institute for Bioengineering and NanotechnologyThe University of Queensland Brisbane QLD 4072 Australia
| | - Rongxin Li
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. China
| | - Weikang Shu
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. China
| | - Chaoqi Zhang
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. China
| | - Wenli Hu
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. China
| | - Aihua Jin
- Institute of Molecular BioscienceThe University of Queensland St Lucia Queensland 4072 Australia
| | - Yannan Yang
- Australian Institute for Bioengineering and NanotechnologyThe University of Queensland Brisbane QLD 4072 Australia
| | - Jingjing Wan
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. China
| |
Collapse
|
20
|
Xu Q, Xu SM, Tian R, Lu C. Significantly Enhanced Thermoelectric Properties of Organic-Inorganic Hybrids with a Periodically Ordered Structure. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13371-13377. [PMID: 32090548 DOI: 10.1021/acsami.0c00949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The deficient order in amorphous components severely affects the thermoelectric (TE) properties in polymers. Encouragingly, two-dimensional layered double hydroxides (LDHs) have been regarded as an efficient host material to tune the conformation of guest molecules and construct ordered hybrids. Herein, we report a facile construction of periodically ordered organic-inorganic TE hybrids by alternative stacking of inorganic LDH nanosheets and organic poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) molecules. The ordered structure of PEDOT:PSS-LDH gave rise to the extended molecular configuration of PEDOT:PSS, resulting in the improved carrier mobility in the hybrids. Moreover, the energy filtering was induced by such a periodically ordered structure, which blocked the low-energy carriers preferentially and improved the Seebeck coefficient in the hybrids. Therefore, the power factor of the PEDOT:PSS-LDH hybrid was 120-fold higher than that of pristine PEDOT:PSS. These results not only establish an effective method for the construction of periodically ordered TE materials but also address the significance of an ordered structure of molecules in TE materials.
Collapse
Affiliation(s)
- Qi Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Si-Min Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rui Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
21
|
He H, Guo Z, Wen Y, Xu S, Liu Z. Recent advances in nanostructure/nanomaterial-assisted laser desorption/ionization mass spectrometry of low molecular mass compounds. Anal Chim Acta 2019; 1090:1-22. [DOI: 10.1016/j.aca.2019.08.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022]
|
22
|
High-Performance Sample Substrate of Gold Nanoparticle Multilayers for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. NANOMATERIALS 2019; 9:nano9081078. [PMID: 31357575 PMCID: PMC6723548 DOI: 10.3390/nano9081078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 01/13/2023]
Abstract
The development of a sample substrate with superior performance for desorption and ionization of analyte is the key issue to ameliorate the quality of mass spectra for measurements of small molecules in surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). Herein, the homogeneous sample substrate of gold nanoparticle multilayers (AuNPs-ML) with hexagonal lattice was successfully prepared by self-assembly technique. With strong surface plasmon resonance absorption and superior photothermal effect, the sample substrate of AuNPs-ML exhibited high signal sensitivity and low background noise for the detection of model analyte of glucose without additional matrixes in SALDI-MS. Furthermore, compared to merchant matrixes of α-cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB), the sample substrate of AuNPs-ML was demonstrated to ameliorate the quality of mass spectra, including signal strength, background interference and signal/noise (S/N) ratio. The sucrose and tryptophan were also measured to show the extensive applications of AuNPs-ML sample substrate for the detections of small molecules in SALDI-MS. Most importantly, the remarkable reproducibility of glucose mass spectra with relative signal of 7.3% was obtained by the use of AuNPs-ML sample substrate for SALDI-MS. The homogeneous sample substrate of AuNPs-ML greatly improved the quality of mass spectra because of its strong absorption of laser energy, low specific heat, high heat conductivity and extraordinary homogeneity. We believe that AuNPs-ML could be a practical sample substrate for small molecule detection in SALDI-MS.
Collapse
|