1
|
Hosseini A, Yarahmadi AM, Azizi S, Habibnejad Korayem A, Savary R. Water molecules in boron nitride interlayer space: ice and hydrolysis in super confinement. Phys Chem Chem Phys 2024; 26:21841-21849. [PMID: 39102292 DOI: 10.1039/d4cp00032c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Development of nano-sized channels and filters in the recent years has made the role of water immensely important as water molecules affect their performance and durability. Here, we take advantage of molecular dynamics and density functional theory methods to demonstrate the shift in behavior of water molecules confined between hexagonal boron nitride (HBN) sheets spaced at 3.0 to 6.5 Å. Our results demonstrate that lower interlayer spaces cause higher amounts of charge transferred between the species, while at extreme degrees of confinement, these interactions cause the disintegration of trapped water molecules. Consequently, the inner face of the HBN sheets is functionalized with hydroxyl groups, releasing hydrogens in the form of protons that travel the interlayer space by Grotthuss mechanism. This is the first-hand evidence of a mechanical form of hydrolysis that corresponds with a nucleophilic attack (on boron atoms) to relieve water from extreme confined conditions. This process unveils a previously unknown behavior of water within extremely confined spaces and reveals new considerations concerning nanofilters and nanochannels.
Collapse
Affiliation(s)
- Amin Hosseini
- Nanomaterials Research Centre, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran.
| | - Amir Masoud Yarahmadi
- Nanomaterials Research Centre, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran.
| | - Shahab Azizi
- Nanomaterials Research Centre, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran.
- Université de Sherbrooke, Department of Civil and Building Engineering, Sherbrooke, Québec, Canada
| | - Asghar Habibnejad Korayem
- Nanomaterials Research Centre, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran.
| | - Rouzbeh Savary
- C-Crete Technologies LLC, Houston 77477, Texas, USA.
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
2
|
Aramfard M, Kaynan O, Hosseini E, Zakertabrizi M, Pérez LM, Asadi A. Aqueous Dispersion of Carbon Nanomaterials with Cellulose Nanocrystals: An Investigation of Molecular Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202216. [PMID: 35902243 DOI: 10.1002/smll.202202216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Dispersing carbon nanomaterials in solvents is effective in transferring their significant mechanical and functional properties to polymers and nanocomposites. However, poor dispersion of carbon nanomaterials impedes exploiting their full potential in nanocomposites. Cellulose nanocrystals (CNCs) are promising for dispersing and stabilizing pristine carbon nanotubes (pCNTs) and graphene nanoplatelets (pGnP) in protic media without functionalization. Here, the underlying mechanisms at the molecular level are investigated between CNC and pCNT/pGnP that stabilize their dispersion in polar solvents. Based on the spectroscopy and microscopy characterization of CNCpCNT/pGnP and density functional theory (DFT) calculations, an additional intermolecular mechanism is proposed between CNC and pCNT/pGnP that forms carbonoxygen covalent bonds between hydroxyl end groups of CNCs and the defected sites of pCNTs/pGnPs preventing re-agglomeration in polar solvents. This work's findings indicate that the CNC-assisted process enables new capabilities in harnessing nanostructures at the molecular level and tailoring the performance of nanocomposites at higher length scales.
Collapse
Affiliation(s)
- Mohammad Aramfard
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Ozge Kaynan
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843-3367, USA
| | - Ehsan Hosseini
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843-3367, USA
| | - Mohammad Zakertabrizi
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843-3367, USA
| | - Lisa M Pérez
- High Performance Research Computing, Texas A&M University, MS 3361, College Station, TX, 77843-3361, USA
| | - Amir Asadi
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843-3367, USA
- Department of Engineering Technology and Industrial Distribution, Texas A&M University, College Station, TX, 77843-3367, USA
| |
Collapse
|
3
|
Arshadi F, Mohammad M, Hosseini E, Ahmadi H, Asadnia M, Orooji Y, Korayem AH, Noorbakhsh A, Razmjou A. The effect of D-spacing on the ion selectivity performance of MXene membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119752] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
|
5
|
Hosseini E, Zakertabrizi M, Habibnejad Korayem A, Carbone P, Esfandiar A, Shahsavari R. Mechanical hydrolysis imparts self-destruction of water molecules under steric confinement. Phys Chem Chem Phys 2021; 23:5999-6008. [PMID: 33666607 DOI: 10.1039/d0cp06186g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Decoding behavioral aspects associated with the water molecules in confined spaces such as an interlayer space of two-dimensional nanosheets is key for the fundamental understanding of water-matter interactions and identifying unexpected phenomena of water molecules in chemistry and physics. Although numerous studies have been conducted on the behavior of water molecules in confined spaces, their reach stops at the properties of the planar ice-like formation, where van der Waals interactions are the predominant interactions and many questions on the confined space such as the possibility of electron exchange and excitation state remain unsettled. We used density functional theory and reactive molecular dynamics to reveal orbital overlap and induction bonding between water molecules and graphene sheets under much less pressure than graphene fractures. Our study demonstrates high amounts of charge being transferred between water and the graphene sheets, as the interlayer space becomes smaller. As a result, the inner face of the graphene nanosheets is functionalized with hydroxyl and epoxy functional groups while released hydrogen in the form of protons either stays still or traverses a short distance inside the confined space via the Grotthuss mechanism. We found signatures of a new hydrolysis mechanism in the water molecules, i.e. mechanical hydrolysis, presumably responsible for relieving water from extremely confined conditions. This phenomenon where water reacts under extreme confinement by disintegration rather than forming ice-like structures is observed for the first time, illustrating the prospect of treating ultrafine porous nanostructures as a driver for water splitting and material functionalization, potentially impacting the modern design of nanofilters, nanochannels, nano-capacitators, sensors, and so on.
Collapse
Affiliation(s)
- Ehsan Hosseini
- Nanomaterials Research Centre, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran.
| | - Mohammad Zakertabrizi
- Nanomaterials Research Centre, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran.
| | - Asghar Habibnejad Korayem
- Nanomaterials Research Centre, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran. and Department of Civil Engineering, Monash University, Clayton, Victoria, Australia
| | - Paola Carbone
- School of Chemical Engineering and Analytical Science, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Ali Esfandiar
- Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran.
| | - Rouzbeh Shahsavari
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, USA.
| |
Collapse
|
6
|
Insight from perfectly selective and ultrafast proton transport through anhydrous asymmetrical graphene oxide membranes under Grotthuss mechanism. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118735] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Hosseini E, Zakertabrizi M, Habibnejad Korayem A, Zaker Z, Shahsavari R. Orbital Overlapping through Induction Bonding Overcomes the Intrinsic Delamination of 3D-Printed Cementitious Binders. ACS NANO 2020; 14:9466-9477. [PMID: 32491835 DOI: 10.1021/acsnano.0c02038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
3D printing of cementitious materials holds a great promise for construction due to its rapid, consistent, modular, and geometry-controlled ability. However, its major drawback is low cohesion in the interlayer region. Herein, we report a combined experimental and computational approach to understand and control fabrication of 3D-printed cementitious materials with significantly enhanced interlayer strength using multimaterial 3D printing, in which the composition, function, and structure of the materials are programmed. Our results show that the intrinsic low interlayer cohesion is caused by excess moisture and time lag that block the majority of valuable interactions in the interlayer zone between the adjacent cement matrices. As a remedy, a thin epoxy layer is introduced as an intermediator between the adjacent extruded layers, both to improve the interlayer cohesion and to extend the possible time delay between printed adjacent layers. Our ab initio calculations demonstrate that an orbital overlap between the calcium ions, as the main electrophilic part of the cement structure, and the hydroxyl groups, as the nucleophilic part of the epoxy, create strong interfacial absorption sites. These electronic absorptions lead to several iono-covalent bonds between the cement matrix and epoxy, leading to significant improvements in tensile, shear, and compressive strengths as well as ductility of the 3D-printed composites. This is verified by our experimental data, which showed an average of 84% improvement in interlayer bonding. The upward augmentation of interlayer bonding helps 3D printing cementitious material to overcome their intrinsic limitation of weak interlayer cohesion, thereby mitigating/eliminating the key bottleneck of additive manufacturing in constructing materials.
Collapse
Affiliation(s)
- Ehsan Hosseini
- Nanomaterials Research Centre, School of Civil Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Mohammad Zakertabrizi
- Nanomaterials Research Centre, School of Civil Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Asghar Habibnejad Korayem
- Nanomaterials Research Centre, School of Civil Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran
- Department of Civil Engineering, Monash University, Melbourne, VIC 3800, Australia
| | - Zafar Zaker
- Nanomaterials Research Centre, School of Civil Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Rouzbeh Shahsavari
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
- C-Crete Technologies LLC, Stafford, Texas 77477, United States
| |
Collapse
|