1
|
Farajollahi A, Baharvand M. Advancements in photoacoustic imaging for cancer diagnosis and treatment. Int J Pharm 2024; 665:124736. [PMID: 39326479 DOI: 10.1016/j.ijpharm.2024.124736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Photoacoustic imaging provides in vivo morphological and functional information about tumors within surrounding tissue. By integrating ultrasound guidance, this technique enables precise localization and characterization of tumors. Moreover, the introduction of targeted contrast agents has further expanded the capabilities of photoacoustic imaging in the realm of in vivo molecular imaging. These contrast agents facilitate enhanced molecular and cellular characterization of cancer, enabling detailed insights into the disease. This review aims to provide a concise summary of the extensive research conducted in the field of Photoacoustic imaging for cancer management. It encompasses the development of the technology, its applications in clinical settings, and the advancements made in molecular imaging. By consolidating and synthesizing the existing knowledge, this review contributes to a better understanding of the potential of photoacoustic imaging in cancer care. In conclusion, photoacoustic imaging has emerged as a non-ionizing and noninvasive modality with the ability to visualize tissue's optical absorption properties while maintaining ultrasound's spatial resolution. Its integration with targeted contrast agents has enhanced molecular and cellular characterization of cancer. This review serves as a succinct overview of the extensive research conducted in the field, shedding light on the potential of photoacoustic imaging in the management of cancer.
Collapse
Affiliation(s)
| | - Mohammad Baharvand
- Department of Mechanical Engineering, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Zertuche-Martínez C, Velázquez-Enríquez JM, González-García K, Santos-Álvarez JC, Romero-Tlalolini MDLÁ, Pina-Canseco S, Pérez-Campos Mayoral L, Muriel P, Villa-Treviño S, Baltiérrez-Hoyos R, Arellanes-Robledo J, Vásquez-Garzón VR. Discovery of candidate biomarkers from plasma-derived extracellular vesicles of patients with cirrhosis and hepatocellular carcinoma: an exploratory proteomic study. Mol Omics 2024; 20:483-495. [PMID: 39011654 DOI: 10.1039/d4mo00043a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Extracellular vesicles (EVs) represent an attractive source of biomarkers due to their biomolecular cargo. The aim of this study was to identify candidate protein biomarkers from plasma-derived EVs of patients with liver cirrhosis (LC) and hepatocellular carcinoma (HCC). Plasma-derived EVs from healthy participants (HP), LC, and HCC patients (eight samples each) were subjected to label-free quantitative proteomic analysis using LC-MS/MS. A total of 248 proteins were identified, and differentially expressed proteins (DEPs) were obtained after pairwise comparison. We found that DEPs mainly involve complement cascade activation, coagulation pathways, cholesterol metabolism, and extracellular matrix components. By choosing a panel of up- and down-regulated proteins involved in cirrhotic and carcinogenesis processes, TGFBI, LGALS3BP, C7, SERPIND1, and APOC3 were found to be relevant for LC patients, while LRG1, TUBA1C, TUBB2B, ACTG1, C9, HP, FGA, FGG, FN1, PLG, APOB and ITIH2 were associated with HCC patients, which could discriminate both diseases. In addition, we identified the top shared proteins in both diseases, which included LCAT, SERPINF2, A2M, CRP, and VWF. Thus, our exploratory proteomic study revealed that these proteins might play an important role in the disease progression and represent a panel of candidate biomarkers for the prognosis and diagnosis of LC and HCC.
Collapse
Affiliation(s)
- Cecilia Zertuche-Martínez
- Laboratorio de Fibrosis y cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Oaxaca, Mexico
| | - Juan Manuel Velázquez-Enríquez
- Laboratorio de Fibrosis y cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Oaxaca, Mexico
| | - Karina González-García
- Laboratorio de Fibrosis y cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Oaxaca, Mexico
| | - Jovito Cesar Santos-Álvarez
- Laboratorio de Fibrosis y cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Oaxaca, Mexico
| | | | - Socorro Pina-Canseco
- Centro de Investigación Facultad de Medicina UNAM UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Oaxaca, Mexico
| | - Laura Pérez-Campos Mayoral
- Centro de Investigación Facultad de Medicina UNAM UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Oaxaca, Mexico
| | - Pablo Muriel
- Laboratorio de Hepatología Experimental, Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07000, Mexico
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, Mexico
| | - Rafael Baltiérrez-Hoyos
- CONAHCYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Oaxaca, Mexico.
| | | | - Verónica Rocío Vásquez-Garzón
- CONAHCYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Oaxaca, Mexico.
| |
Collapse
|
3
|
Wu ZH, Peng M, Ji C, Kardasis P, Tzourtzouklis I, Baumgarten M, Wu H, Basché T, Floudas G, Yin M, Müllen K. A Terrylene-Anthraquinone Dyad as a Chromophore for Photothermal Therapy in the NIR-II Window. J Am Chem Soc 2023; 145:26487-26493. [PMID: 38011640 PMCID: PMC10704552 DOI: 10.1021/jacs.3c11314] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
A terrylenedicarboximide-anthraquinone dyad, FTQ, with absorption in the second near-infrared region (NIR-II) is obtained as a high-performance chromophore for photothermal therapy (PTT). The synthetic route proceeds by C-N coupling of amino-substituted terrylenedicarboximide (TMI) and 1,4-dichloroanthraquinone followed by alkaline-promoted dehydrocyclization. FTQ with extended π-conjugation exhibits an optical absorption band peaking at 1140 nm and extending into the 1500 nm range. Moreover, as determined by dielectric spectroscopy in dilute solutions, FTQ achieves an ultrastrong dipole moment of 14.4 ± 0.4 Debye due to intense intramolecular charge transfer. After encapsulation in a biodegradable polyethylene glycol (DSPE-mPEG2000), FTQ nanoparticles (NPs) deliver a high photothermal conversion efficiency of 49% under 1064 nm laser irradiation combined with excellent biocompatibility, photostability, and photoacoustic imaging capability. In vitro and in vivo studies reveal the great potential of FTQ NPs in photoacoustic-imaging-guided photothermal therapy for orthotopic liver cancer treatment in the NIR-II window.
Collapse
Affiliation(s)
- Ze-Hua Wu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Chemistry, Johannes Gutenberg-University, Mainz 55099, Germany
| | - Min Peng
- State
Key Laboratory of Chemical Resource Engineering, Beijing Laboratory
of Biomedical Materials, Beijing University
of Chemical Technology, Beijing 100029, China
| | - Chendong Ji
- State
Key Laboratory of Chemical Resource Engineering, Beijing Laboratory
of Biomedical Materials, Beijing University
of Chemical Technology, Beijing 100029, China
| | | | | | - Martin Baumgarten
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Hao Wu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Thomas Basché
- Department
of Chemistry, Johannes Gutenberg-University, Mainz 55099, Germany
| | - George Floudas
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Physics, University of Ioannina, Ioannina 45110, Greece
- University
Research Center of Ioannina (URCI) - Institute of Materials Science
and Computing, Ioannina 45110, Greece
| | - Meizhen Yin
- State
Key Laboratory of Chemical Resource Engineering, Beijing Laboratory
of Biomedical Materials, Beijing University
of Chemical Technology, Beijing 100029, China
| | - Klaus Müllen
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Chemistry, Johannes Gutenberg-University, Mainz 55099, Germany
| |
Collapse
|
4
|
Liu T, Liu L, Li L, Cai J. Exploiting targeted nanomedicine for surveillance, diagnosis, and treatment of hepatocellular carcinoma. Mater Today Bio 2023; 22:100766. [PMID: 37636988 PMCID: PMC10457457 DOI: 10.1016/j.mtbio.2023.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/26/2023] [Accepted: 08/05/2023] [Indexed: 08/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the cancers that has the highest morbidity and mortality rates. In clinical practice, there are still many limitations in surveilling, diagnosing, and treating HCC, such as the poor detection of early HCC, the frequent post-surgery recurrence, the low local tumor control rate, the therapy resistance and side effects. Therefore, improved, or innovative modalities are urgently required for early diagnosis as well as refined and effective management. In recent years, nanotechnology research in the field of HCC has received great attention, with various aspects of diagnosis and treatment including biomarkers, ultrasound, diagnostic imaging, intraoperative imaging, ablation, transarterial chemoembolization, radiotherapy, and systemic therapy. Different from previous reviews that discussed from the perspective of nanoparticles' structure, design and function, this review systematically summarizes the methods and limitations of diagnosing and treating HCC in clinical guidelines and practices, as well as nanomedicine applications. Nanomedicine can overcome the limitations to improve diagnosis accuracy and therapeutic effect via enhancement of targeting, biocompatibility, bioavailability, controlled releasing, and combination of different clinical treatment modalities. Through an in-depth understanding of the logic of nanotechnology to conquer clinical limitations, the main research directions of nanotechnology in HCC are sorted out in this review. It is anticipated that nanomedicine will play a significant role in the future clinical practices of HCC.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510000, China
| | - Li Liu
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Li Li
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510000, China
| | - Jing Cai
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510000, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, PR China
| |
Collapse
|
5
|
Husarova T, MacCuaig WM, Dennahy IS, Sanderson EJ, Edil BH, Jain A, Bonds MM, McNally MW, Menclova K, Pudil J, Zaruba P, Pohnan R, Henson CE, Grizzle WE, McNally LR. Intraoperative Imaging in Hepatopancreatobiliary Surgery. Cancers (Basel) 2023; 15:3694. [PMID: 37509355 PMCID: PMC10377919 DOI: 10.3390/cancers15143694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatopancreatobiliary surgery belongs to one of the most complex fields of general surgery. An intricate and vital anatomy is accompanied by difficult distinctions of tumors from fibrosis and inflammation; the identification of precise tumor margins; or small, even disappearing, lesions on currently available imaging. The routine implementation of ultrasound use shifted the possibilities in the operating room, yet more precision is necessary to achieve negative resection margins. Modalities utilizing fluorescent-compatible dyes have proven their role in hepatopancreatobiliary surgery, although this is not yet a routine practice, as there are many limitations. Modalities, such as photoacoustic imaging or 3D holograms, are emerging but are mostly limited to preclinical settings. There is a need to identify and develop an ideal contrast agent capable of differentiating between malignant and benign tissue and to report on the prognostic benefits of implemented intraoperative imaging in order to navigate clinical translation. This review focuses on existing and developing imaging modalities for intraoperative use, tailored to the needs of hepatopancreatobiliary cancers. We will also cover the application of these imaging techniques to theranostics to achieve combined diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Tereza Husarova
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - William M. MacCuaig
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Isabel S. Dennahy
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Emma J. Sanderson
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Barish H. Edil
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Ajay Jain
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Morgan M. Bonds
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Molly W. McNally
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Katerina Menclova
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - Jiri Pudil
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - Pavel Zaruba
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - Radek Pohnan
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - Christina E. Henson
- Department of Radiation Oncology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - William E. Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lacey R. McNally
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
6
|
Huang M, Xiang Y, Chen Y, Lu H, Zhang H, Liu F, Qin X, Qin X, Li X, Yang F. Bottom-Up Signal Boosting with Fractal Nanostructuring and Primer Exchange Reaction for Ultrasensitive Detection of Cancerous Exosomes. ACS Sens 2023; 8:1308-1317. [PMID: 36855267 DOI: 10.1021/acssensors.2c02819] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Exosomes are emerging as promising biomarkers for cancer diagnosis, yet sensitive and accurate quantification of tumor-derived exosomes remains a challenge. Here, we report an ultrasensitive and specific exosome sensor (NPExo) that initially leverages hierarchical nanostructuring array and primer exchange reaction (PER) for quantitation of cancerous exosomes. This NPExo uses a high-curvature nanostructuring array (bottom) fabricated by single-step electrodeposition to enhance capturing of the target exosomes. The immuno-captured exosome thus provides abundant membrane sites to insert numerous cholesterol-DNA probes with a density much higher than that by immune pairing, which further allows PER-based DNA extension to assemble enzyme concatemers (up) for signal amplification. Such a bottom-up signal-boosting design imparts NPExo with ultrahigh sensitivity up to 75 particles/mL (i.e., <1 exosome per 10 μL) and a broad dynamic range spanning 6 orders of magnitude. Furthermore, our sensor allows monitoring subtle exosomal phenotypic transition and shows high accuracy in discrimination of liver cancer patients from healthy donors via blood samples, suggesting the great potential of NPExo as a promising tool in clinical diagnostics.
Collapse
Affiliation(s)
- Minmin Huang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yuanhang Xiang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yu Chen
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Hao Lu
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Hui Zhang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Fengfei Liu
- Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaoling Qin
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Xiaojie Qin
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Xinchun Li
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Fan Yang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
7
|
Cao Y, Zhou L, Fang Z, Zou Z, Zhao J, Zuo X, Li G. Application of functional peptides in the electrochemical and optical biosensing of cancer biomarkers. Chem Commun (Camb) 2023; 59:3383-3398. [PMID: 36808189 DOI: 10.1039/d2cc06824a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Early screening and diagnosis are the most effective ways to prevent the occurrence and progression of cancers, thus many biosensing strategies have been developed to achieve economic, rapid, and effective detection of various cancer biomarkers. Recently, functional peptides have been gaining increasing attention in cancer-related biosensing due to their advantageous features of a simple structure, ease of synthesis and modification, high stability, and good biorecognition, self-assembly and antifouling capabilities. Functional peptides can not only act as recognition ligands or enzyme substrates for the selective identification of different cancer biomarkers but also function as interfacial materials or self-assembly units to improve the biosensing performances. In this review, we summarize the recent advances in functional peptide-based biosensing of cancer biomarkers according to the used techniques and the roles of peptides. Particular attention is focused on the use of electrochemical and optical techniques, both of which are the most commonly used techniques in the field of biosensing. The challenges and promising prospects of functional peptide-based biosensors in clinical diagnosis are also discussed.
Collapse
Affiliation(s)
- Yue Cao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Liang Zhou
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Zhikai Fang
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Zihan Zou
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Jing Zhao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Genxi Li
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
8
|
Shrestha S, Banstola A, Jeong JH, Seo JH, Yook S. Targeting Cancer Stem Cells: Therapeutic and diagnostic strategies by the virtue of nanoparticles. J Control Release 2022; 348:518-536. [PMID: 35709876 DOI: 10.1016/j.jconrel.2022.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs) are the subpopulation of cells present within a tumor with the properties of self-renewing, differentiating, and proliferating. Owing to the presence of ATP-binding cassette drug pumps and increased expression of anti-apoptotic proteins, the conventional chemotherapeutic agents have failed to eliminate CSCs resulting in relapse and resistance of cancer. Therefore, to obtain long-lasting clinical responses and avoid the recurrence of cancer, it is crucial to develop an efficient strategy targeting CSCs by either employing a differentiation therapy or specifically delivering drugs to CSCs. Several intracellular and extracellular cancer specific biomarkers are overexpressed by CSCs and are utilized as targets for the development of new approaches in the diagnosis and treatment of CSCs. Moreover, several nanostructured particles, alone or in combination with current treatment approaches, have been used to improve the detection, imaging, and targeting of CSCs, thus addressing the limitations of cancer therapies. Targeting CSC surface markers, stemness-related signaling pathways, and tumor microenvironmental signals has improved the detection and eradication of CSCs and, therefore, tumor diagnosis and treatment. This review summarizes a variety of promising nanoparticles targeting the surface biomarkers of CSCs for the detection and eradication of tumor-initiating stem cells, used in combination with other treatment regimens.
Collapse
Affiliation(s)
- Samjhana Shrestha
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea
| | - Asmita Banstola
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea; Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea.
| |
Collapse
|
9
|
Zhao D, Cao J, Zhang L, Zhang S, Wu S. Targeted Molecular Imaging Probes Based on Magnetic Resonance Imaging for Hepatocellular Carcinoma Diagnosis and Treatment. BIOSENSORS 2022; 12:bios12050342. [PMID: 35624643 PMCID: PMC9138815 DOI: 10.3390/bios12050342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most commonly malignant tumor and the third leading cause of cancer-related death in the world, and the early diagnosis and treatment of patients with HCC is core in improving its prognosis. The early diagnosis of HCC depends largely on magnetic resonance imaging (MRI). MRI has good soft-tissue resolution, which is the international standard method for the diagnosis of HCC. However, MRI is still insufficient in the diagnosis of some early small HCCs and malignant nodules, resulting in false negative results. With the deepening of research on HCC, researchers have found many specific molecular biomarkers on the surface of HCC cells, which may assist in diagnosis and treatment. On the other hand, molecular imaging has progressed rapidly in recent years, especially in the field of cancer theranostics. Hence, the preparation of molecular imaging probes that can specifically target the biomarkers of HCC, combined with MRI testing in vivo, may achieve the theranostic purpose of HCC in the early stage. Therefore, in this review, taking MR imaging as the basic point, we summarized the recent progress regarding the molecular imaging targeting various types of biomarkers on the surface of HCC cells to improve the theranostic rate of HCC. Lastly, we discussed the existing obstacles and future prospects of developing molecular imaging probes as HCC theranostic nanoplatforms.
Collapse
Affiliation(s)
- Dongxu Zhao
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China;
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jian Cao
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215006, China;
| | - Lei Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
- Correspondence: (L.Z.); (S.Z.); (S.W.)
| | - Shaohua Zhang
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China;
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Correspondence: (L.Z.); (S.Z.); (S.W.)
| | - Song Wu
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China;
- Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Correspondence: (L.Z.); (S.Z.); (S.W.)
| |
Collapse
|
10
|
Targeted-detection and sequential-treatment of small hepatocellular carcinoma in the complex liver environment by GPC-3-targeted nanoparticles. J Nanobiotechnology 2022; 20:156. [PMID: 35331259 PMCID: PMC8944070 DOI: 10.1186/s12951-022-01378-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/14/2022] [Indexed: 02/08/2023] Open
Abstract
Despite advancements in diagnostic methods and therapeutic strategies, the mortality rate of hepatocellular carcinoma (HCC) remains as high as its incidence rate. Most liver cancers are detected in the advanced stages, when treatment options are limited. Small HCC is difficult to diagnose and is often overlooked by current imaging methods because of the complexity of the liver environment, especially in cirrhotic livers. In the present study, we developed a tumor "cruise missile", mesoporous Fe3O4-containing glucose oxidase-conjugated GPC3 peptide nanoparticles (FGP NPs). It was designed to enhance the accuracy of small HCC visualization to 85.7% using combined ultrasound/photoacoustic imaging in complex liver environment, which facilitated sequential catalytic targeted therapy for small HCC. In a carcinogen-induced mouse HCC model, FGP NPs could be used to accurately diagnose HCC in a liver cirrhosis background as well as distinguish HCC nodules from other abnormal liver nodules, such as cirrhosis nodules and necrotic nodules, by dynamic contrast-enhanced photoacoustic imaging. In a mouse xenograft HCC model, highly reactive oxygen species were formed by sequential catalytic reactions, which promoted HCC cell apoptosis, significantly increasing the survival of the model mice. The present study provides a basis for the precise detection and elimination of small HCCs in the complex liver environment.
Collapse
|
11
|
Sui L, Xu G, Hao Y, Wang X, Tang K. Engineering of marizomib loaded polymeric nanoparticles: In vivo safety profile and In vitro proliferation in hepatocellular carcinoma. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
He L, Zhang Y, Chen J, Liu G, Zhu J, Li X, Li D, Yang Y, Lee CS, Shi J, Yin C, Lai P, Wang L, Fang C. A multifunctional targeted nanoprobe with high NIR-II PAI/MRI performance for precise theranostics of orthotopic early-stage hepatocellular carcinoma. J Mater Chem B 2021; 9:8779-8792. [PMID: 34635903 DOI: 10.1039/d1tb01729b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Early diagnosis and effective treatment of hepatocellular carcinoma (HCC) is quite critical for improving patients' prognosis. The combination of second near-infrared window photoacoustic imaging (NIR-II PAI) and T2-magnetic resonance imaging (T2-MRI) is promising for achieving omnibearing information on HCC diagnosis due to the complementary advantages of outstanding optical contrast, high temporospatial resolution and soft-tissue resolution. Thus, the rational design of a multifunctional targeted nanoplatform with outstanding performance in dual-modal NIR-II PAI/T2-MRI is particularly valuable for precise diagnosis and imaging-guided non-invasive photothermal therapy (PTT) of early-stage HCC. Herein, a versatile targeted organic-inorganic hybrid nanoprobe was synthesized as a HCC-specific contrast agent for sensitive and efficient theranostics. The developed multifunctional targeted nanoprobe yielded superior HCC specificity, reliable stability and biocompatibility, high imaging contrast in both NIR-II PAI and T2-MRI, and an excellent photothermal conversion efficiency (74.6%). Furthermore, the theranostic efficiency of the targeted nanoprobe was systematically investigated using the orthotopic early HCC-bearing mice model. The NIR-II PAI exhibited sensitive detection of ultra-small HCCs (diameter less than 1.8 mm) and long-term real-time monitoring of the tumor and nanoprobe targeting process in deep tissues. The T2-MRI demonstrated clear imaging contrast and a spatial relationship between micro-HCC and adjacent structures for a comprehensive description of the tumor. Moreover, when using the targeted nanoprobe, the non-invasively targeted PTT of orthotopic early HCC was carried out under reliable dual-modal imaging guidance with remarkable anti-tumor efficiency and biosafety. This study provides an insight for constructing a multifunctional targeted nanoplatform for precise and comprehensive theranostics of early-stage HCC, which would greatly benefit the patients in the era of precision medicine.
Collapse
Affiliation(s)
- Linyun He
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China. .,Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China. .,Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou 510280, China.,Institute of Digital Intelligence of Zhujiang Hospital of Southern Medical University, Guangzhou, 510280, China
| | - Yachao Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China. .,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Jiangbo Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China. .,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Gongyuan Liu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Jingyi Zhu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China. .,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Xiaozhen Li
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, China.,Center of Super-Diamond and Advanced Films and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Dengfeng Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China. .,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Yuqi Yang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chun-Sing Lee
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, China.,Center of Super-Diamond and Advanced Films and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Jiahai Shi
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chao Yin
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Puxiang Lai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China. .,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China. .,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Chihua Fang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China. .,Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou 510280, China.,Institute of Digital Intelligence of Zhujiang Hospital of Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
13
|
Chen T, Li T, Wang J. Nanoscale Au@SiO 2-drug/VEGF as an in vivo probe for osteosarcoma diagnosis and therapy. Oncol Lett 2021; 22:766. [PMID: 34589145 PMCID: PMC8442140 DOI: 10.3892/ol.2021.13027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/05/2021] [Indexed: 11/05/2022] Open
Abstract
Osteosarcoma is a common primary bone malignancy, with a 5-year survival rate of only 20–30% in patients undergoing surgical treatment. Thus, it is important to identify novel methods for diagnosing and treating osteosarcoma, which was the aim of the present study. Vascular endothelial growth factor (VEGF) was used as the tumor-targeting protein to synthesize a multifunctional core-shell nanostructure, Au@SiO2-drug/VEGF, in which the drug can be indocyanine green (ICG; as an optical tracer) or doxorubicin (DOX; as a chemotherapeutic agent). With VEGF as the osteosarcoma-targeting protein, Au exhibited optimal photothermal transformation performance, while SiO2 served as the carrier for the drug. Au@SiO2-ICG/VEGF nanoparticles (NPs) were evaluated for imaging and for the monitoring of drug accumulation in a tumor region in mice. Once the optimal drug accumulation was achieved, combined treatment of osteosarcoma (chemotherapy and photothermal therapy) was assessed. In the perioperative period associated with minimal invasive embolization of osteosarcoma, photothermal therapy and chemotherapy were applied for osteosarcoma diagnosis using Au@SiO2-DOX/VEGF NPs. Taken together, the results of the present study provide a promising strategy for tumor detection prior to surgical treatment to improve the survival outcome of patients with osteosarcoma.
Collapse
Affiliation(s)
- Tiangui Chen
- Department of Orthopedics Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Tianbo Li
- Department of Orthopedics Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Jiangning Wang
- Department of Orthopedics Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| |
Collapse
|
14
|
Qi S, Zhang Y, Liu G, Chen J, Li X, Zhu Q, Yang Y, Wang F, Shi J, Lee CS, Zhu G, Lai P, Wang L, Fang C. Plasmonic-doped melanin-mimic for CXCR4-targeted NIR-II photoacoustic computed tomography-guided photothermal ablation of orthotopic hepatocellular carcinoma. Acta Biomater 2021; 129:245-257. [PMID: 34082093 DOI: 10.1016/j.actbio.2021.05.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022]
Abstract
Effective and noninvasive diagnosis and prompt treatment of early-stage hepatocellular carcinoma (HCC) are urgently needed to reduce its mortality rate. Herein, the integration of high-resolution diagnostic second near-infrared (NIR-II) photoacoustic computed tomography (PACT) and imaging-guided targeted photothermal ablation of orthotopic small HCC (SHCC) is presented for the first time, which was enabled by a plasmonic platinum (Pt)-doped polydopamine melanin-mimic nanoagent. As designed, an antibody-modified nanoagent (designated Pt@PDA-c) with a plasmonic blackbody-like NIR absorption and superior photothermal conversion efficiency (71.3%) selectively targeted and killed CXCR4-overexpressing HCC (HepG2) cells, which was validated in in vitro experiments. The targeted accumulation properties of Pt@PDA-c in vivo were previously recognized by demonstrating effective NIR-II PA imaging and photothermal ablation in a subcutaneous HCC mouse model. Subsequently, with real-time quantitative guidance by PACT for the accurate diagnosis of intraabdominal SHCC (approximately 4 mm depth), the effective and noninvasive photothermal ablation of SHCCs was successfully demonstrated in an orthotopic tumor-bearing mouse model without damaging adjacent liver tissues. These results show a great potential of NIR-II PACT-guided noninvasive photothermal therapy as an innovative phototheranostic approach and expand the biomedical applications of melanin-mimic materials. STATEMENT OF SIGNIFICANCE: In this paper, we report the first diagnostic NIR-II photoacoustic computed tomography (PACT)-guided noninvasive photothermal ablation of small hepatocellular carcinoma (SHCC) located in deep tissues in orthotopic tumor-bearing mice; this process is empowered by a polydopamine-based melanin-mimic tumor-targeting nanoagent doped with plasmonic platinum that provides superior NIR-II (1064 nm) absorption and photothermal conversion efficiency of 71.3%. Following surface modification with anti-CXCR4 antibodies, the nanoagent (namely Pt@PDA-c) can selectively target CXCR4-overexpressed HepG2 carcinoma cells and tumor lesions, and serve as the theranostic agent for both NIR-II PACT-based diagnosis of orthotopic SHCC (diameter less than 5 mm) and efficient NIR-II PTT in vivo. This study may also extend the potential of melanin-derived blackbody materials for optical-biomedical and water distillation applications.
Collapse
|
15
|
Luo C, Lü D, Zheng L, Zhang F, Zhang X, Lü S, Zhang C, Jia X, Shu X, Li P, Li Z, Long M. Hepatic differentiation of human embryonic stem cells by coupling substrate stiffness and microtopography. Biomater Sci 2021; 9:3776-3790. [PMID: 33876166 DOI: 10.1039/d1bm00174d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mechanical or physical cues are associated with the growth and differentiation of embryonic stem cells (ESCs). While the substrate stiffness or topography independently affects the differentiation of ESCs, their cooperative regulation on lineage-specific differentiation remains largely unknown. Here, four topographical configurations on stiff or soft polyacrylamide hydrogel were combined to direct hepatic differentiation of human H1 cells via a four-stage protocol, and the coupled impacts of stiffness and topography were quantified at distinct stages. Data indicated that the substrate stiffness is dominant in stemness maintenance on stiff gel and hepatic differentiation on soft gel while substrate topography assists the differentiation of hepatocyte-like cells in positive correlation with the circularity of H1 clones initially formed on the substrate. The differentiated cells exhibited liver-specific functions such as maintaining the capacities of CYP450 metabolism, glycogen synthesis, ICG engulfment, and repairing liver injury in CCl4-treated mice. These results implied that the coupling of substrate stiffness and topography, combined with the biochemical signals, is favorable to improve the efficiency and functionality of hepatic differentiation of human ESCs.
Collapse
Affiliation(s)
- Chunhua Luo
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Dongyuan Lü
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China. and School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Zheng
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China. and School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China. and School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China. and School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shouqin Lü
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China. and School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xiaohua Jia
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Xinyu Shu
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China. and School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiwen Li
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhan Li
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Mian Long
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China. and School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Chen Y, Wang Y, Yang Y, Li Y, Wang Y, Wang G, James TD, Xuan X, Zhang H, Liu Y. A molecular-logic gate for COX-2 and NAT based on conformational and structural changes: visualizing the progression of liver disease. Chem Sci 2020; 11:6209-6216. [PMID: 32953015 PMCID: PMC7480271 DOI: 10.1039/d0sc00574f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/24/2020] [Indexed: 12/15/2022] Open
Abstract
Lighting up the relevant lesion boundaries during operations is vital for guiding the effective resection of hepatopathic tissue.
Lighting up the relevant lesion boundaries during operations is vital for guiding the effective resection of hepatopathic tissue. We envisioned that molecular-logic gates, which are known for their excellent digital correlation between input and output signals, could be used to facilitate differential visualization of lesion boundaries. Herein, a series of flexible molecules, naphthalene imide-indole derivatives (IAN) were prepared and evaluated as molecular-logic gates. The input and output signals of the IAN derivatives were successfully used to highlight different hepatopathic regions in order to facilitate boundary differentiation. The IAN derivatives produce different signals due to collaborative changes in the conformation and structure. The hepatopathy-related enzymes (COX-2 and NAT) were used to induce conformational and structural changes in IAN derivatives. Based on these enzyme induced synergistic effects, IAN can sensitively emit different coloured signals such as green, cyan and blue (output signals) as a function of the different input signals, i.e. the different activity of COX-2 and NAT in solution and living cells. Significantly, the IAN derivatives were successfully used to distinguish the boundaries of hepatopathic lesions in tissues after spraying with IAN derivatives (mild cirrhosis, severe cirrhosis, in addition to early and late hepatocellular carcinoma) under a hand held lamp at 365 nm by naked eye.
Collapse
Affiliation(s)
- Yuehua Chen
- Henan Key Laboratory of Green Chemical Media and Reactions , Ministry of Education , Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , School of Chemistry and Chemical Engineering , School of Physics , Henan Normal University , Xinxiang 453007 , P. R. China .
| | - Yuzhu Wang
- Department of Hepatobiliary and Pancreatic Surgery , Henan Provincial People's Hospital , Zhengzhou University People's Hospital , Henan University People's Hospital , Zhengzhou , Henan 450003 , P. R. China
| | - Yonggang Yang
- Henan Key Laboratory of Green Chemical Media and Reactions , Ministry of Education , Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , School of Chemistry and Chemical Engineering , School of Physics , Henan Normal University , Xinxiang 453007 , P. R. China .
| | - Yuhuan Li
- Henan Key Laboratory of Green Chemical Media and Reactions , Ministry of Education , Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , School of Chemistry and Chemical Engineering , School of Physics , Henan Normal University , Xinxiang 453007 , P. R. China .
| | - Yafu Wang
- Henan Key Laboratory of Green Chemical Media and Reactions , Ministry of Education , Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , School of Chemistry and Chemical Engineering , School of Physics , Henan Normal University , Xinxiang 453007 , P. R. China .
| | - Ge Wang
- Xinxiang Medical University , Xinxiang 453000 , P. R. China
| | - Tony D James
- Henan Key Laboratory of Green Chemical Media and Reactions , Ministry of Education , Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , School of Chemistry and Chemical Engineering , School of Physics , Henan Normal University , Xinxiang 453007 , P. R. China . .,Department of Chemistry , University of Bath , Bath , BA2 7AY , UK .
| | - Xiaopeng Xuan
- Henan Key Laboratory of Green Chemical Media and Reactions , Ministry of Education , Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , School of Chemistry and Chemical Engineering , School of Physics , Henan Normal University , Xinxiang 453007 , P. R. China .
| | - Hua Zhang
- Henan Key Laboratory of Green Chemical Media and Reactions , Ministry of Education , Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , School of Chemistry and Chemical Engineering , School of Physics , Henan Normal University , Xinxiang 453007 , P. R. China .
| | - Yufang Liu
- Henan Key Laboratory of Green Chemical Media and Reactions , Ministry of Education , Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , School of Chemistry and Chemical Engineering , School of Physics , Henan Normal University , Xinxiang 453007 , P. R. China .
| |
Collapse
|
17
|
Wang M, Yang Q, Li M, Zou H, Wang Z, Ran H, Zheng Y, Jian J, Zhou Y, Luo Y, Ran Y, Jiang S, Zhou X. Multifunctional Nanoparticles for Multimodal Imaging-Guided Low-Intensity Focused Ultrasound/Immunosynergistic Retinoblastoma Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5642-5657. [PMID: 31940169 DOI: 10.1021/acsami.9b22072] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Retinoblastoma (RB) is prone to delayed diagnosis or treatment and has an increased likelihood of metastasizing. Thus, it is crucial to perform an effective imaging examination and provide optimal treatment of RB to prevent metastasis. Nanoparticles that support diagnostic imaging and targeted therapy are expected to noninvasively integrate tumor diagnosis and treatment. Herein, we report a multifunctional nanoparticle for multimodal imaging-guided low-intensity focused ultrasound (LIFU)/immunosynergistic RB therapy. Magnetic hollow mesoporous gold nanocages (AuNCs) conjugated with Fe3O4 nanoparticles (AuNCs-Fe3O4) were prepared to encapsulate muramyl dipeptide (MDP) and perfluoropentane (PFP). The multimodal imaging capabilities, antitumor effects, and dendritic cell (DC) activation capacity of these nanoparticles combined with LIFU were explored in vitro and in vivo. The biosafety of AuNCs-Fe3O4/MDP/PFP was also evaluated systematically. The multifunctional magnetic nanoparticles enhanced photoacoustic (PA), ultrasound (US), and magnetic resonance (MR) imaging in vivo and in vitro, which was helpful for diagnosis and efficacy evaluation. Upon accumulation in tumors via a magnetic field, the nanoparticles underwent phase transition under LIFU irradiation and MDP was released. A combined effect of AuNCs-Fe3O4/MDP/PFP and LIFU was recorded and verified. AuNCs-Fe3O4/MDP/PFP enhanced the therapeutic effect of LIFU and led to direct apoptosis/necrosis of tumors, while MDP promoted DC maturation and activation and activated the ability of DCs to recognize and clear tumor cells. By enhancing PA/US/MR imaging and inhibiting tumor growth, the multifunctional AuNC-Fe3O4/MDP/PFP nanoparticles show great potential for multimodal imaging-guided LIFU/immunosynergistic therapy of RB. The proposed nanoplatform facilitates cancer theranostics with high biosafety.
Collapse
Affiliation(s)
- Menglei Wang
- Department of Ophthalmology , The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging , The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
| | - Qiming Yang
- Department of Orthopedic , The First Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging , The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
| | - Meng Li
- Department of Ophthalmology , The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
| | - Hongmi Zou
- Department of Ophthalmology , The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging , The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging , The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
| | - Yuanyi Zheng
- Shanghai Institute of Ultrasound in Medicine , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233 , P. R. China
| | - Jia Jian
- Department of Ophthalmology , The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
| | - Yu Zhou
- Department of Ophthalmology , The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
| | - Yindeng Luo
- Department of Radiology , The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
| | - Yijun Ran
- Department of Ophthalmology , The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
| | - Shaoqiu Jiang
- Department of Ophthalmology , The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
| | - Xiyuan Zhou
- Department of Ophthalmology , The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
| |
Collapse
|
18
|
Shuai T, Zhou Y, Shao G, Yang R, Wang L, Wang J, Sun J, Ren L, Wang J, Liao Y, Wei M, Xu Q, Li Y, Zhao L. Bimodal Molecule as NIR-CT Contrast Agent for Hepatoma Specific Imaging. Anal Chem 2019; 92:1138-1146. [PMID: 31820637 DOI: 10.1021/acs.analchem.9b04212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
With currently available molecular imaging techniques, hepatocellular carcinoma (HCC), a liver cancer with high mortality rates and poor treatment responses, is mostly diagnosed at its late stage. This is largely due to the lack of highly sensitive contrast agents with high liver specificity. Herein, we report a novel bimodal contrast agent molecule CNCI-1 for the effective detection of HCC at its early stage both in vitro and in vivo. The agent has high liver specificity with effective X-ray computed tomography (CT)/near-infrared (NIR) imaging functions. It has been successfully applied to in vivo NIR imaging with high sensitivity and high selectivity to the HCC region of the HepG2 tumor-xenografted mice model and LM3 orthotopic hepatoma mice model. Moreover, the agent was found to be noninvasive and hepatocarcinoma cells preferential. Furthermore, it also enhanced the tumor imaging by revealing the blood vessels nearby for the CT image acquisition in the VX2 orthotopic hepatoma rabbit model. Our design strategy provides a new avenue to develop the medical relevant bimodal contrast agents for diagnosis of HCC at its early stage.
Collapse
Affiliation(s)
- Tianbai Shuai
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211100 , China
| | - Yizhou Zhou
- School of Basic Medicine and Clinical Pharmacology , China Pharmaceutical University , Nanjing 211100 , China
| | - Guoqiang Shao
- Department of Nuclear Medicine , Nanjing First Hospital, Affiliated to Nanjing Medical University , Nanjing 210006 , China
| | - Rui Yang
- Department of Nuclear Medicine , Nanjing First Hospital, Affiliated to Nanjing Medical University , Nanjing 210006 , China
| | - Letian Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211100 , China
| | - Jinglin Wang
- Department of Hepatobiliary Surgery , Nanjing Drum Tower Hospital, Affiliated to Medical College of Nanjing University , Nanjing 210008 , China
| | - Jie Sun
- School of Basic Medicine and Clinical Pharmacology , China Pharmaceutical University , Nanjing 211100 , China
| | - Longfei Ren
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211100 , China
| | - Jintao Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211100 , China
| | - Yan Liao
- School of Basic Medicine and Clinical Pharmacology , China Pharmaceutical University , Nanjing 211100 , China
| | - Mian Wei
- School of Basic Medicine and Clinical Pharmacology , China Pharmaceutical University , Nanjing 211100 , China
| | - Qingxiang Xu
- Department of Hepatobiliary Surgery , Nanjing Drum Tower Hospital, Affiliated to Medical College of Nanjing University , Nanjing 210008 , China
| | - Yuyan Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211100 , China
| | - Li Zhao
- School of Basic Medicine and Clinical Pharmacology , China Pharmaceutical University , Nanjing 211100 , China
| |
Collapse
|