1
|
Zhu Q, Yin X, Tan Y, Wei D, Li Y, Pei X. Highly dispersed palladium nano-catalyst anchored on N-doped nanoporous carbon microspheres derived from chitosan for efficient and stable hydrogenation of quinoline. Int J Biol Macromol 2024; 254:127949. [PMID: 37951427 DOI: 10.1016/j.ijbiomac.2023.127949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Under the background of green chemistry, the synthesis of N-heterocycles using efficient, stable and long-life catalysts has still faced great challenges. Herein, we used biomass resource chitosan to fabricate a nanoporous chitosan carbon microsphere (CCM), and successfully designed a stable and efficient Pd nano-catalyst (CCM/Pd). Various physicochemical characterizations provided convincible evidences that the palladium nanoparticles (NPs) were tightly and evenly dispersed on the CCM with a mean diameter of 2.28 nm based on the nanoporous structure and abundant functional N/O groups in CCM. Importantly, the graphitized constructure, the formed defects and larger surface area in CCM were able to promote the immobilization of Pd NPs and the electron transfer between Pd and CCM, thereby significantly improving the catalytic activity. The CCM/Pd catalyst was applied for hydrogenation of quinoline compounds, which showed excellent catalytic activity and durability, as well as good substrate applicability. The application of renewable biomass-based catalysts contributes to the progression of a green/sustainable society.
Collapse
Affiliation(s)
- Qiudi Zhu
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
| | - Xiaogang Yin
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China.
| | - Youjuan Tan
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
| | - Duoduo Wei
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
| | - Yan Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xianglin Pei
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China; Guizhou Key Laboratory of Inorganic Nonmetallic Functional Materials, Lightweight Materials Engineering Research Center of the Education Department of Guizhou, Guizhou Normal University, Guiyang 550025, China.
| |
Collapse
|
2
|
Jia X, Lou M, Wang Y, Wang R. Construction of Ni 2P-MoC/Coal-Based Carbon Fiber Self-Supporting Catalysts for Enhanced Hydrogen Evolution. Molecules 2023; 29:116. [PMID: 38202699 PMCID: PMC10779885 DOI: 10.3390/molecules29010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Efficient and inexpensive electrocatalysts play an important role in the hydrogen evolution reaction (HER) of electrolytic water splitting. Herein, Ni2P-MoC/coal-based carbon fiber (Ni2P-MoC/C-CF) self-supporting catalysts were obtained by low-temperature phosphorization and high-temperature carbonization. The Mo source and oxidized coal were uniformly dispersed in the carbon support by electrospinning technology. A precursor of Ni was introduced by the impregnation method. The synergistic effect of MoC and Ni2P may reduce the strong hydrogen adsorption capacity of pure MoC and provide a fast hydrogen release process. In addition, the C-CFs prepared by electrospinning can not only prevent the agglomeration of MoC and Ni2P particles at a high temperature but also provide a self-supporting support for the catalyst. As a result, the catalytic performance of the HER was improved greatly, and a low overpotential of 112 mV at 10 mA cm-2 was exhibited stably by the Ni2P-MoC/C-CFs. This work not only converts coal into coal-based carbon materials but also provides a feasible pathway for the rational design of large-scale molded hydrogen electrocatalysts.
Collapse
Affiliation(s)
| | | | | | - Ruiying Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China; (X.J.); (M.L.); (Y.W.)
| |
Collapse
|
3
|
Yang C, Wang T, Li C, He H, Liu D, Huang H. PdMo Bimetallene Coupled with MXene Nanosheets as Efficient Bifunctional Electrocatalysts for Formic Acid and Methanol Oxidation Reactions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49195-49203. [PMID: 37843990 DOI: 10.1021/acsami.3c10789] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
In this study, we demonstrate a facile soft chemistry strategy for the in situ growth of two-dimensional (2D) ultrathin PdMo bimetallene tightly coupled with Ti3C2Tx MXene nanosheets (PdMo/Ti3C2Tx) using a robust stereoassembly process. The 2D PdMo bimetallene offers numerous unsaturated Pd atoms and simultaneously induces combined bimetallic alloy and strain effects, while the Ti3C2Tx matrix effectively optimizes the electronic structure of PdMo bimetallene via a face-to-face interface interaction and guarantees exceptional electrical conductivity. As a consequence, the newly designed PdMo/Ti3C2Tx nanoarchitecture expresses remarkable electrocatalytic properties for the formic acid and methanol electro-oxidation, in terms of large electrochemically active surface areas, ultrahigh catalytic activity, strong antipoisoning ability, and dependable long-term stability, all of which are better than those of conventional Pd nanoparticle catalysts supported by Ti3C2Tx and carbon matrices.
Collapse
Affiliation(s)
- Cuizhen Yang
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Tingyao Wang
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Chengcheng Li
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Haiyan He
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Dongming Liu
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Huajie Huang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| |
Collapse
|
4
|
Su T, Cai C. Nitrogen and Phosphorus Dual-Coordinated Single-Atom Mn: MnN 2P Active Sites for Catalytic Transfer Hydrogenation of Nitroarenes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55568-55576. [PMID: 36509748 DOI: 10.1021/acsami.2c16265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The coordination environment of atomically metal sites can modulate the electronic states and geometric structure of single-atom catalysts, which determine their catalytic performance. In this work, the porous carbon-supported N, P dual-coordinated Mn single-atom catalyst was successfully prepared via the phosphatization of zeolitic imidazolate frameworks and followed by pyrolysis at 900 °C. The optimal Mn1-N/P-C catalyst with atomic MnN2P structure has displayed better catalytic activity than the related catalyst with Mn-Nx structure in catalytic transfer hydrogenation of nitroarenes using formic acid as the hydrogen donor. We find that the doping of P source plays a crucial role in improving the catalytic performance, which affects the morphology and electronic properties of catalyst. This is the first Mn heterogeneous catalyst example for the reduction of nitroarenes, and it also revealed that the MnN2P configuration is a more promising alternative in heterogeneous catalysis.
Collapse
Affiliation(s)
- Tianyue Su
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, P. R. China
| | - Chun Cai
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, P. R. China
| |
Collapse
|
5
|
Pan Z, Xu S, Xin H, Yuan Y, Xu R, Wang P, Yan X, Fan X, Song C, Wang T. High performance polypyrrole coated carbon-based electrocatalytic membrane for organic contaminants removal from aqueous solution. J Colloid Interface Sci 2022; 626:283-295. [DOI: 10.1016/j.jcis.2022.06.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/19/2022] [Accepted: 06/25/2022] [Indexed: 11/15/2022]
|
6
|
Chemically prepared Pd-Cd alloy nanocatalysts as the highly active material for formic acid electrochemical oxidation. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Coal‐based hierarchically porous carbon nanofibers as high‐performance anode for sodium‐ion batteries. ChemElectroChem 2022. [DOI: 10.1002/celc.202200496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Luo G, Hu S, Niu D, Sun S, Zhang X. Well-designed internal electric field from nano-ferroelectrics promotes formic acid oxidation on Pd. NANOSCALE 2022; 14:6007-6020. [PMID: 35274645 DOI: 10.1039/d1nr05777d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pd-Based catalysts are considered the most efficient catalysts in direct formic acid fuel cells. However, the poisoning and dissolution of Pd in acidic systems limit its commercialization. Here, we propose an all-in-one solution for the anti-dissolution and anti-poisoning properties of palladium. A novel structured catalyst, Pd nanoparticles embedded in a carbon layer internally decorated with tourmaline nanoparticles (TNPs), is proposed for formic acid oxidation (FAO). The internal electric field strength of the catalysts is readily regulated by controlling the amount of TNPs. Remarkably, the prepared catalyst exhibits as high as 3.9 times mass activity (905 A g-1) compared with the commercial Pd/C catalyst. The significant improvement in the electrocatalytic performance of the catalyst is mainly due to the polarized electric field of TNPs causing charge transfer from Pd to tourmaline, which weakens the O-H bond of HCOOH and the bond between Pd and COad. Another advantage brought by the internal polarized electric field is that it facilitates water dissociation to produce OHad, thereby improving the anti-poisoning ability of the catalyst in acidic media. Moreover, the firmly anchored Pd nanoparticles can avoid dissolution and agglomeration during long-term use. 80.2% mass activity remained after the accelerated durability test.
Collapse
Affiliation(s)
- Guoming Luo
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shuozhen Hu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Dongfang Niu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shigang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xinsheng Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
9
|
Effect of N, P co-doped activated carbon supported Cu-based catalyst for acetylene hydration. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Huang S, Li J, Chen Y, Yan L, Zhang P, Zhang X, Zhao C. Boosting the anti-poisoning ability of palladium towards electrocatalytic formic acid oxidation via polyphosphide chemistry. J Colloid Interface Sci 2022; 615:366-374. [PMID: 35149350 DOI: 10.1016/j.jcis.2022.01.193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/20/2022] [Accepted: 01/30/2022] [Indexed: 10/19/2022]
Abstract
In this work, we reported a novel polyphosphide strategy for the synthesis of phosphorus doped Pd (P-Pd) using red phosphorus as the starting material at quasi-ambient conditions. Polyphophide anions, as the key reaction intermediates, served as the reducing agent and phosphorus source to modulate the surface electronic structure of Pd. The P-Pd obtained exhibited topmost CO tolerance and electrocatalytic activity to formic acid oxidation among the state-of-arts reports. The mass activity and turnover frequency of P-Pd reached 4413 mA mg-1Pd and 16.04 s-1 at 0.8 V, which were 23.7 and 6.4 times that of commercial Pd/C respectively. After 1000 repeated cycles, 82% initial activity was reserved. Combined with the electrochemical analysis and the density functional theory calculation, the boosted electrochemical performances can be attributed to the size and electronic effects induced by the P doping, which increase the surface actives sites, inhibit the adsorption of CO and change the reaction pathway to favorable CO2 route. A full cell was also assembled to demonstrate the practical potential of the P-Pd, which showed a maximum power density of 21.56 mW cm-2. This polyphophide-based reaction route provides a new strategy for the preparation of efficient and durable phosphorus doped alloys for electrocatalysis.
Collapse
Affiliation(s)
- Shuke Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Jun Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Yilan Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Liwei Yan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Peixin Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Xueyan Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Chenyang Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China.
| |
Collapse
|
11
|
ZIF-8@ZIF-67-Derived Co Embedded into Nitrogen-Doped Carbon Nanotube Hollow Porous Carbon Supported Pt as an Efficient Electrocatalyst for Methanol Oxidation. NANOMATERIALS 2021; 11:nano11102491. [PMID: 34684931 PMCID: PMC8541230 DOI: 10.3390/nano11102491] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/02/2022]
Abstract
It is of prime importance to develop anode electrocatalysts for direct methanol fuel cells (DMFCs) with good performance, which is critical for their commercial applications. Metal-organic framework (MOF)-derived carbon materials are extensively developed as supports of catalysts. Herein, Co embedded nitrogen-doped carbon nanotube hollow porous carbon (Co-NCNT-HPC) derived from MOFs have been fabricated, which were synthesized by pyrolyzing at an optimized temperature of 800 °C using ZIF-8@ZIF-67 as a precursor. The presence of ZIF-8@ZIF-67 ensures the doping of nitrogen and the large specific surface area of the support materials at high temperatures. A Pt/Co-NCNT-HPC800 sample, which was synthesized using Co-NCNT-HPC800 as a support, showed an enhanced mass activity of 416.2 mA mg−1Pt for methanol oxidation reaction (MOR), and the onset potential of COad oxidation of 0.51 V, which shifted negatively about 0.13 V compared with Pt/C (20%). Moreover, the Pt/Co-NCNT-HPC800 sample exhibits high stability. This work provides a facile strategy for MOF-derived carbon materials to construct advanced electrocatalysts for MOR.
Collapse
|
12
|
Wang R, Yang L, Wang X, Sun Z, Guo Y, Lou M, Shi H, Wen P, Hu X. Dicyanamide Anion-Based Ionic Liquid-Functionalized Graphene-Supported Pt Catalysts for Boosting Methanol Electrooxidation. Inorg Chem 2021; 60:13736-13747. [PMID: 34436878 DOI: 10.1021/acs.inorgchem.1c02111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As an environmentally friendly energy technology, direct methanol fuel cells (DMFCs) meet the needs of sustainable development. Herein, novel dicyanamide anion-based (N(CN)2-) ionic liquid (IL)-functionalized reduced graphene oxide (rGO)-supported Pt catalysts are synthesized via a facile one-pot room temperature reduction method, which show a boost in methanol oxidation performance compared with Pt/rGO. The mass activities of the as-prepared Pt/emimN(CN)2/rGO (863.6 mA mg-1Pt) and Pt/epyN(CN)2/rGO (524.9 mA mg-1Pt) are about five and three times higher than that of Pt/rGO (178.6 mA mg-1Pt), and about six and four times higher than that of Pt/C (140.2 mA mg-1Pt), respectively. The participation of ILs significantly improves the CO poisoning resistance, stability, and activity for methanol oxidation of catalysts. The relationship between the structures and conductivities of diverse ILs and the performance of Pt catalysts are studied systematically. These findings may offer a promising prospect of ILs in DMFCs.
Collapse
Affiliation(s)
- Ruiying Wang
- State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource, Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, P. R. China
| | - Lili Yang
- State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource, Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, P. R. China
| | - Xingchao Wang
- State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource, Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, P. R. China
| | - Zhipeng Sun
- Materials and Energy School, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | - Yong Guo
- State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource, Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, P. R. China
| | - Mengran Lou
- State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource, Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, P. R. China
| | - Hongli Shi
- State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource, Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, P. R. China
| | - Pengtao Wen
- State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource, Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, P. R. China
| | - Xiaoqin Hu
- State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource, Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, P. R. China
| |
Collapse
|
13
|
Shan J, Zeng T, Wu W, Tan Y, Cheng N, Mu S. Enhancement of the performance of Pd nanoclusters confined within ultrathin silica layers for formic acid oxidation. NANOSCALE 2020; 12:12891-12897. [PMID: 32520062 DOI: 10.1039/d0nr00307g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The optimized design of highly active and stable anode electrocatalysts is essential for high performance direct formic acid fuel cells (DFAFCs). Herein, a facile and cost-effective strategy was proposed to fabricate a robust ultrasmall Pd nanocluster confined within ultrathin protective silica layers anchored on nitrogen doped reduced GO (NrGO) through generating amine functionalized graphene oxide with 3-aminopropyl triethoxysilane (APTES), followed by tuning the thickness of protective silica layers by precisely controlling the amount of tetraethylorthosilicate (TEOS). Amine functionalized graphene oxide generated by using APTES favors the formation of ultrasmall Pd nanoclusters due to the coordination of amine to PdCl24- while the confinement effect of ultrathin protective silica layers stabilizes ultrasmall Pd nanoclusters and impedes the agglomeration and sintering of ultrasmall Pd nanoclusters during electrocatalysis. As a result, the ultrasmall Pd nanoclusters (∼1.4 nm) confined in silica layers on NrGO (Pd/NrGO@SiO2) demonstrate a very high forward peak current density for formic acid oxidation (FAO) of 2.37 A mg-1, outperforming the Pd/C catalyst (0.30 A mg-1) and the Pd/rGO catalyst obtained by a conventional method (0.42 A mg-1). More importantly, our confined Pd catalysts show the highest stability of only 5% inconspicuous degradation of the initial mass activity after 1000 cycles, compared with Pd/C (almost 100% loss), Pd/rGO (61.5% loss) and Pd/NrGO (73.2% loss). These strategies in this work provide a new prospect for the design of excellent noble catalysts to overcome the challenges in the practical application of DFAFCs.
Collapse
Affiliation(s)
- Jiefei Shan
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Tang Zeng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Wei Wu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Yangyang Tan
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Niancai Cheng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
14
|
Fovanna T, Campisi S, Villa A, Kambolis A, Peng G, Rentsch D, Kröcher O, Nachtegaal M, Ferri D. Ruthenium on phosphorous-modified alumina as an effective and stable catalyst for catalytic transfer hydrogenation of furfural. RSC Adv 2020; 10:11507-11516. [PMID: 35495338 PMCID: PMC9050498 DOI: 10.1039/d0ra00415d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/10/2020] [Indexed: 01/27/2023] Open
Abstract
Supported ruthenium was used in the liquid phase catalytic transfer hydrogenation of furfural. To improve the stability of Ru against leaching, phosphorous was introduced on a Ru/Al2O3 based catalyst upon impregnation with ammonium hypophosphite followed by either reduction or calcination to study the effect of phosphorous on the physico-chemical properties of the active phase. Characterization using X-ray diffraction, solid state 31P nuclear magnetic resonance spectroscopy, X-ray absorption spectroscopy, temperature programmed reduction with H2, infrared spectroscopy of pyridine adsorption from the liquid phase and transmission electron microscopy indicated that phosphorous induces a high dispersion of Ru, promotes Ru reducibility and is responsible for the formation of acid species of Brønsted character. As a result, the phosphorous-based catalyst obtained after reduction was more active for catalytic transfer hydrogenation of furfural and more stable against Ru leaching under these conditions than a benchmark Ru catalyst supported on activated carbon. Phosphorous induces structural changes in Ru/Al2O3 that make it more active and more stable for liquid phase hydrogenation of furfural.![]()
Collapse
Affiliation(s)
- Thibault Fovanna
- Paul Scherrer Institut CH-5232 Villigen PSI Switzerland +41 56 310 2781.,École polytechnique fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering CH-1015 Lausanne Switzerland
| | - Sebastiano Campisi
- Dipartimento di Chimica, Università degli Studi di Milano I-20133 Milano Italy +39 02 503 14361
| | - Alberto Villa
- Dipartimento di Chimica, Università degli Studi di Milano I-20133 Milano Italy +39 02 503 14361
| | | | - Gael Peng
- Paul Scherrer Institut CH-5232 Villigen PSI Switzerland +41 56 310 2781
| | - Daniel Rentsch
- Swiss Federal Laboratories for Materials Science and Technology (Empa) Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Oliver Kröcher
- Paul Scherrer Institut CH-5232 Villigen PSI Switzerland +41 56 310 2781.,École polytechnique fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering CH-1015 Lausanne Switzerland
| | | | - Davide Ferri
- Paul Scherrer Institut CH-5232 Villigen PSI Switzerland +41 56 310 2781
| |
Collapse
|
15
|
Shan J, Lei Z, Wu W, Tan Y, Cheng N, Sun X. Highly Active and Durable Ultrasmall Pd Nanocatalyst Encapsulated in Ultrathin Silica Layers by Selective Deposition for Formic Acid Oxidation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43130-43137. [PMID: 31652044 DOI: 10.1021/acsami.9b13451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The low performance of palladium (Pd) is a considerable challenge for direct formic acid fuel cells in practical applications. Herein, we develop a simple strategy to synthesize a highly active and durable Pd nanocatalyst encapsulated in ultrathin silica layers with vertically aligned nanochannels covered graphene oxides (Pd/rGO@pSiO2) without blocking active sites by selective deposition. The Pd/rGO@pSiO2 catalyst exhibits very high performance for a formic acid oxidation (FAO) reaction compared with the Pd/rGO without protective silica layers and commercial Pd/C catalysts. Pd/rGO@pSiO2 shows an FAO activity 3.9 and 3.8 times better than those of Pd/rGO and Pd/C catalysts, respectively. The Pd/rGO@pSiO2 catalysts are also almost 6-fold more stable than Pd/C and more than 3-fold more stable than Pd/rGO. The outstanding performance of our encapsulated Pd catalysts can be ascribed to the novel design of nanostructures by selective deposition fabricating ultrasmall Pd nanoparticles encapsulated in ultrathin silica layers with vertically aligned nanochannels, which not only avoid blocking the active sites but also facilitate the mass transfer in encapsulated catalysts. Our work indicates an important method to the rational design of high-performance catalysts for fuel cells in practical applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Xueliang Sun
- Department of Mechanical and Materials Engineering , The University of Western Ontario , London , Ontario N6A 5B9 , Canada
| |
Collapse
|
16
|
Wang Y, Jiang X, Fu G, Li Y, Tang Y, Lee JM, Tang Y. Cu 5Pt Dodecahedra with Low-Pt Content: Facile Synthesis and Outstanding Formic Acid Electrooxidation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34869-34877. [PMID: 31502819 DOI: 10.1021/acsami.9b09153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tailoring composition and structure are significantly important to improve the utilization and optimize the performance of the precious Pt catalyst toward various reactions, which greatly relies on the feasible synthesis approach. Herein, we demonstrate that Cu-rich Cu5Pt alloys with unique excavated dodecahedral frame-like structure (Cu5Pt nanoframes) can be synthesized via simply adjusting the amounts of salt precursors and surfactants under hydrothermal conditions. It is established that the presence of hexamethylenetetramine and cetyltrimethylammonium bromide, as well as the selection of a proper Pt/Cu ratio are key for the acquisition of the target product. The immediate appeal of this material stems from frame-like architecture and ultralow Pt content involved, which can be used to greatly improve the utilization efficiency of Pt atoms. When benchmarked against commercial catalysts, the developed Cu5Pt nanostructures display superior electrocatalytic performance toward formic acid oxidation, owing to unique electronic effect and ensemble effect. This work elucidates a promising methodology for the synthesis of Pt-based nanostructures while highlights the significance of composition and structure in electrocatalysis.
Collapse
Affiliation(s)
- Yao Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Xian Jiang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Gengtao Fu
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637459 , Singapore
| | - Yuhan Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Yidan Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637459 , Singapore
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| |
Collapse
|