1
|
Ussia M, Urso M, Oral CM, Peng X, Pumera M. Magnetic Microrobot Swarms with Polymeric Hands Catching Bacteria and Microplastics in Water. ACS NANO 2024; 18:13171-13183. [PMID: 38717036 PMCID: PMC11112980 DOI: 10.1021/acsnano.4c02115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 05/22/2024]
Abstract
The forefront of micro- and nanorobot research involves the development of smart swimming micromachines emulating the complexity of natural systems, such as the swarming and collective behaviors typically observed in animals and microorganisms, for efficient task execution. This study introduces magnetically controlled microrobots that possess polymeric sequestrant "hands" decorating a magnetic core. Under the influence of external magnetic fields, the functionalized magnetic beads dynamically self-assemble from individual microparticles into well-defined rotating planes of diverse dimensions, allowing modulation of their propulsion speed, and exhibiting a collective motion. These mobile microrobotic swarms can actively capture free-swimming bacteria and dispersed microplastics "on-the-fly", thereby cleaning aquatic environments. Unlike conventional methods, these microrobots can be collected from the complex media and can release the captured contaminants in a second vessel in a controllable manner, that is, using ultrasound, offering a sustainable solution for repeated use in decontamination processes. Additionally, the residual water is subjected to UV irradiation to eliminate any remaining bacteria, providing a comprehensive cleaning solution. In summary, this study shows a swarming microrobot design for water decontamination processes.
Collapse
Affiliation(s)
- Martina Ussia
- Future
Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Mario Urso
- Future
Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Cagatay M. Oral
- Future
Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Xia Peng
- Future
Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Martin Pumera
- Future
Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
- Advanced
Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical
University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic
- Department
of Medical Research, China Medical University Hospital, China Medical University, Hsueh-Shih Road 91, Taichung 40402, Taiwan
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro
50, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
2
|
Zhou H, Zhang S, Liu Z, Chi B, Li J, Wang Y. Untethered Microgrippers for Precision Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305805. [PMID: 37941516 DOI: 10.1002/smll.202305805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/07/2023] [Indexed: 11/10/2023]
Abstract
Microgrippers, a branch of micro/nanorobots, refer to motile miniaturized machines that are of a size in the range of several to hundreds of micrometers. Compared with tethered grippers or other microscopic diagnostic and surgical equipment, untethered microgrippers play an indispensable role in biomedical applications because of their characteristics such as miniaturized size, dexterous shape tranformation, and controllable motion, which enables the microgrippers to enter hard-to-reach regions to execute specific medical tasks for disease diagnosis and treatment. To date, numerous medical microgrippers are developed, and their potential in cell manipulation, targeted drug delivery, biopsy, and minimally invasive surgery are explored. To achieve controlled locomotion and efficient target-oriented actions, the materials, size, microarchitecture, and morphology of microgrippers shall be deliberately designed. In this review, the authors summarizes the latest progress in untethered micrometer-scale grippers. The working mechanisms of shape-morphing and actuation methods for effective movement are first introduced. Then, the design principle and state-of-the-art fabrication techniques of microgrippers are discussed. Finally, their applications in the precise medicine are highlighted, followed by offering future perspectives for the development of untethered medical microgrippers.
Collapse
Affiliation(s)
- Huaijuan Zhou
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, 100081, China
| | - Shengchang Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Zijian Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Bowen Chi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yilong Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| |
Collapse
|
3
|
Wang Q, Wang Q, Ning Z, Chan KF, Jiang J, Wang Y, Su L, Jiang S, Wang B, Ip BYM, Ko H, Leung TWH, Chiu PWY, Yu SCH, Zhang L. Tracking and navigation of a microswarm under laser speckle contrast imaging for targeted delivery. Sci Robot 2024; 9:eadh1978. [PMID: 38381838 DOI: 10.1126/scirobotics.adh1978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024]
Abstract
Micro/nanorobotic swarms consisting of numerous tiny building blocks show great potential in biomedical applications because of their collective active delivery ability, enhanced imaging contrast, and environment-adaptive capability. However, in vivo real-time imaging and tracking of micro/nanorobotic swarms remain a challenge, considering the limited imaging size and spatial-temporal resolution of current imaging modalities. Here, we propose a strategy that enables real-time tracking and navigation of a microswarm in stagnant and flowing blood environments by using laser speckle contrast imaging (LSCI), featuring full-field imaging, high temporal-spatial resolution, and noninvasiveness. The change in dynamic convection induced by the microswarm can be quantitatively investigated by analyzing the perfusion unit (PU) distribution, offering an alternative approach to investigate the swarm behavior and its interaction with various blood environments. Both the microswarm and surrounding environment were monitored and imaged by LSCI in real time, and the images were further analyzed for simultaneous swarm tracking and navigation in the complex vascular system. Moreover, our strategy realized real-time tracking and delivery of a microswarm in vivo, showing promising potential for LSCI-guided active delivery of microswarm in the vascular system.
Collapse
Affiliation(s)
- Qinglong Wang
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong (CUHK), Shatin, N.T., Hong Kong, China
| | - Qianqian Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, China
| | - Zhipeng Ning
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong (CUHK), Shatin, N.T., Hong Kong, China
| | - Kai Fung Chan
- Chow Yuk Ho Technology Centre for Innovative Medicine, CUHK, Shatin, N.T., Hong Kong, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Shatin, N.T., Hong Kong SAR, China
| | - Jialin Jiang
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong (CUHK), Shatin, N.T., Hong Kong, China
| | - Yuqiong Wang
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong (CUHK), Shatin, N.T., Hong Kong, China
| | - Lin Su
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong (CUHK), Shatin, N.T., Hong Kong, China
| | - Shuai Jiang
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong (CUHK), Shatin, N.T., Hong Kong, China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Bonaventure Yiu Ming Ip
- Division of Neurology, Department of Medicine and Therapeutics, CUHK, Shatin, N.T., Hong Kong, China
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics, CUHK, Shatin, N.T., Hong Kong, China
| | - Thomas Wai Hong Leung
- Division of Neurology, Department of Medicine and Therapeutics, CUHK, Shatin, N.T., Hong Kong, China
| | - Philip Wai Yan Chiu
- Chow Yuk Ho Technology Centre for Innovative Medicine, CUHK, Shatin, N.T., Hong Kong, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Shatin, N.T., Hong Kong SAR, China
- Department of Surgery, CUHK, Shatin, N.T., Hong Kong, China
| | - Simon Chun Ho Yu
- Department of Imaging and Interventional Radiology, CUHK, Shatin, N.T., Hong Kong, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong (CUHK), Shatin, N.T., Hong Kong, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, CUHK, Shatin, N.T., Hong Kong, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Shatin, N.T., Hong Kong SAR, China
- Department of Surgery, CUHK, Shatin, N.T., Hong Kong, China
- CUHK T Stone Robotics Institute, CUHK, Shatin, N.T., Hong Kong, China
| |
Collapse
|
4
|
Zheng J, Huang R, Lin Z, Chen S, Yuan K. Nano/Micromotors for Cancer Diagnosis and Therapy: Innovative Designs to Improve Biocompatibility. Pharmaceutics 2023; 16:44. [PMID: 38258055 PMCID: PMC10821023 DOI: 10.3390/pharmaceutics16010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Nano/micromotors are artificial robots at the nano/microscale that are capable of transforming energy into mechanical movement. In cancer diagnosis or therapy, such "tiny robots" show great promise for targeted drug delivery, cell removal/killing, and even related biomarker sensing. Yet biocompatibility is still the most critical challenge that restricts such techniques from transitioning from the laboratory to clinical applications. In this review, we emphasize the biocompatibility aspect of nano/micromotors to show the great efforts made by researchers to promote their clinical application, mainly including non-toxic fuel propulsion (inorganic catalysts, enzyme, etc.), bio-hybrid designs, ultrasound propulsion, light-triggered propulsion, magnetic propulsion, dual propulsion, and, in particular, the cooperative swarm-based strategy for increasing therapeutic effects. Future challenges in translating nano/micromotors into real applications and the potential directions for increasing biocompatibility are also described.
Collapse
Affiliation(s)
- Jiahuan Zheng
- Department of Chemistry, Shantou University Medical College, Shantou 515041, China;
| | - Rui Huang
- Bio-Analytical Laboratory, Shantou University Medical College, Shantou 515041, China; (R.H.); (Z.L.)
| | - Zhexuan Lin
- Bio-Analytical Laboratory, Shantou University Medical College, Shantou 515041, China; (R.H.); (Z.L.)
| | - Shaoqi Chen
- Department of Ultrasound, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Kaisong Yuan
- Bio-Analytical Laboratory, Shantou University Medical College, Shantou 515041, China; (R.H.); (Z.L.)
- Department of Ultrasound, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
5
|
Wang H, Jing Y, Yu J, Ma B, Sui M, Zhu Y, Dai L, Yu S, Li M, Wang L. Micro/nanorobots for remediation of water resources and aquatic life. Front Bioeng Biotechnol 2023; 11:1312074. [PMID: 38026904 PMCID: PMC10666170 DOI: 10.3389/fbioe.2023.1312074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Nowadays, global water scarcity is becoming a pressing issue, and the discharge of various pollutants leads to the biological pollution of water bodies, which further leads to the poisoning of living organisms. Consequently, traditional water treatment methods are proving inadequate in addressing the growing demands of various industries. As an effective and eco-friendly water treatment method, micro/nanorobots is making significant advancements. Based on researches conducted between 2019 and 2023 in the field of water pollution using micro/nanorobots, this paper comprehensively reviews the development of micro/nanorobots in water pollution control from multiple perspectives, including propulsion methods, decontamination mechanisms, experimental techniques, and water monitoring. Furthermore, this paper highlights current challenges and provides insights into the future development of the industry, providing guidance on biological water pollution control.
Collapse
Affiliation(s)
- Haocheng Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Yizhan Jing
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Jiuzheng Yu
- Oil & Gas Technology Research Institute, PetroChina Changqing Oilfield Company, Xi’an, China
| | - Bo Ma
- State Engineering Laboratory of Exploration and Development of Low-Permeability Oil & Gas Field, Xi’an, China
| | - Mingyang Sui
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Yanhe Zhu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Lizhou Dai
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Shimin Yu
- College of Engineering, Ocean University of China, Qingdao, China
| | - Mu Li
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lin Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
6
|
Liu X, Jing Y, Xu C, Wang X, Xie X, Zhu Y, Dai L, Wang H, Wang L, Yu S. Medical Imaging Technology for Micro/Nanorobots. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2872. [PMID: 37947717 PMCID: PMC10648532 DOI: 10.3390/nano13212872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Due to their enormous potential to be navigated through complex biological media or narrow capillaries, microrobots have demonstrated their potential in a variety of biomedical applications, such as assisted fertilization, targeted drug delivery, tissue repair, and regeneration. Numerous initial studies have been conducted to demonstrate the biomedical applications in test tubes and in vitro environments. Microrobots can reach human areas that are difficult to reach by existing medical devices through precise navigation. Medical imaging technology is essential for locating and tracking this small treatment machine for evaluation. This article discusses the progress of imaging in tracking the imaging of micro and nano robots in vivo and analyzes the current status of imaging technology for microrobots. The working principle and imaging parameters (temporal resolution, spatial resolution, and penetration depth) of each imaging technology are discussed in depth.
Collapse
Affiliation(s)
- Xuejia Liu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Yizhan Jing
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Chengxin Xu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Xiaoxiao Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Xiaopeng Xie
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Yanhe Zhu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Lizhou Dai
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Haocheng Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Lin Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Shimin Yu
- College of Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
7
|
Oral CM, Ussia M, Urso M, Salat J, Novobilsky A, Stefanik M, Ruzek D, Pumera M. Radiopaque Nanorobots as Magnetically Navigable Contrast Agents for Localized In Vivo Imaging of the Gastrointestinal Tract. Adv Healthc Mater 2023; 12:e2202682. [PMID: 36502367 DOI: 10.1002/adhm.202202682] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Magnetic nanorobots offer wireless navigation capability in hard-to-reach areas of the human body for targeted therapy and diagnosis. Though in vivo imaging is required for guidance of the magnetic nanorobots toward the target areas, most of the imaging techniques are inadequate to reveal the potential locomotion routes. This work proposes the use of radiopaque magnetic nanorobots along with microcomputed tomography (microCT) for localized in vivo imaging applications. The nanorobots consist of a contrast agent, barium sulfate (BaSO4 ), magnetized by the decoration of magnetite (Fe3 O4 ) particles. The magnetic features lead to actuation under rotating magnetic fields and enable precise navigation in a microfluidic channel used to simulate confined spaces of the body. In this channel, the intrinsic radiopacity of the nanorobots also provides the possibility to reveal the internal structures by X-ray contrast. Furthermore, in vitro analysis indicates nontoxicity of the nanorobots. In vivo experiments demonstrate localization of the nanorobots in a specific part of the gastrointestinal (GI) tract upon the influence of the magnetic field, indicating the efficient control even in the presence of natural peristaltic movements. The nanorobots reported here highlight that smart nanorobotic contrast agents can improve the current imaging-based diagnosis techniques by providing untethered controllability in vivo.
Collapse
Affiliation(s)
- Cagatay M Oral
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-61200, Czech Republic
| | - Martina Ussia
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-61200, Czech Republic
| | - Mario Urso
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-61200, Czech Republic
| | - Jiri Salat
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Hudcova 296/70, Brno, CZ-62100, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, Ceske Budejovice, CZ-37005, Czech Republic
| | - Adam Novobilsky
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 296/70, Brno, CZ-62100, Czech Republic
| | - Michal Stefanik
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Hudcova 296/70, Brno, CZ-62100, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1665/1, Brno, CZ-61300, Czech Republic
| | - Daniel Ruzek
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Hudcova 296/70, Brno, CZ-62100, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, Ceske Budejovice, CZ-37005, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 735/5, Brno, CZ-62500, Czech Republic
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-61200, Czech Republic
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, TW-40402, Taiwan
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, CZ-70800, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, KR-03722, Korea
| |
Collapse
|
8
|
Zhang D, Liu S, Guan J, Mou F. "Motile-targeting" drug delivery platforms based on micro/nanorobots for tumor therapy. Front Bioeng Biotechnol 2022; 10:1002171. [PMID: 36185435 PMCID: PMC9523273 DOI: 10.3389/fbioe.2022.1002171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Traditional drug delivery systems opened the gate for tumor-targeted therapy, but they generally took advantage of enhanced permeability and retention or ligand-receptor mediated interaction, and thus suffered from limited recognition range (<0.5 nm) and low targeting efficiency (0.7%, median). Alternatively, micro/nanorobots (MNRs) may act as emerging "motile-targeting" drug delivery platforms to deliver therapeutic payloads, thereby making a giant step toward effective and safe cancer treatment due to their autonomous movement and navigation in biological media. This review focuses on the most recent developments of MNRs in "motile-targeting" drug delivery. After a brief introduction to traditional tumor-targeted drug delivery strategies and various MNRs, the representative applications of MNRs in "motile-targeting" drug delivery are systematically streamlined in terms of the propelling mechanisms. Following a discussion of the current challenges of each type of MNR in biomedical applications, as well as future prospects, several promising designs for MNRs that could benefit in "motile-targeting" drug delivery are proposed. This work is expected to attract and motivate researchers from different communities to advance the creation and practical application of the "motile-targeting" drug delivery platforms.
Collapse
Affiliation(s)
| | | | | | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
9
|
Voß J, Wittkowski R. Acoustic Propulsion of Nano- and Microcones: Dependence on the Viscosity of the Surrounding Fluid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10736-10748. [PMID: 35998334 DOI: 10.1021/acs.langmuir.2c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This article investigates how the acoustic propulsion of cone-shaped colloidal particles that are exposed to a traveling ultrasound wave depends on the viscosity of the fluid surrounding the particles. Using acoustofluidic computer simulations, we found that the propulsion of such nano- and microcones decreases strongly and even changes sign for increasing shear viscosity. In contrast, we found only a weak dependence of the propulsion on the bulk viscosity. The obtained results are in line with the findings of previous theoretical and experimental studies.
Collapse
Affiliation(s)
- Johannes Voß
- Institute of Theoretical Physics, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Raphael Wittkowski
- Institute of Theoretical Physics, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
10
|
Voß J, Wittkowski R. Orientation-Dependent Propulsion of Triangular Nano- and Microparticles by a Traveling Ultrasound Wave. ACS NANO 2022; 16:3604-3612. [PMID: 35263102 DOI: 10.1021/acsnano.1c02302] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Previous studies on ultrasound-propelled nano- and microparticles have considered only systems in which the particle orientation is perpendicular to the direction of propagation of the ultrasound. However, in future applications of these particles, they will typically be able to attain other orientations. Therefore, using direct acoustofluidic simulations, here we study how the propulsion of triangular nano- and microparticles, which are known to have a particularly efficient acoustic propulsion and are therefore promising candidates for future applications, depends on their orientation relative to the propagation direction of a traveling ultrasound wave. Our results reveal that the propulsion of the particles depends strongly on their orientation relative to the direction of wave propagation and that the particles tend to orient perpendicularly to the wave direction. We also address the orientation-averaged translational and angular velocities of the particles, which correspond to the particles' effective propulsion for an isotropic exposure to ultrasound. Our results allow assessment of how free ultrasound-propelled colloidal particles move in three spatial dimensions and thus constitute an important step toward the realization of envisaged future applications of such particles.
Collapse
Affiliation(s)
- Johannes Voß
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| |
Collapse
|
11
|
Voß J, Wittkowski R. Acoustically propelled nano- and microcones: fast forward and backward motion. NANOSCALE ADVANCES 2021; 4:281-293. [PMID: 36132955 PMCID: PMC9417971 DOI: 10.1039/d1na00655j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/21/2021] [Indexed: 05/07/2023]
Abstract
We focus on cone-shaped nano- and microparticles, which have recently been found to show particularly strong propulsion when they are exposed to a traveling ultrasound wave, and study based on direct acoustofluidic computer simulations how their propulsion depends on the cones' aspect ratio. The simulations reveal that the propulsion velocity and even its sign are very sensitive to the aspect ratio, where short particles move forward whereas elongated particles move backward. Furthermore, we identify a cone shape that allows for a particularly large propulsion speed. Our results contribute to the understanding of the propulsion of ultrasound-propelled colloidal particles, suggest a method for separation and sorting of nano- and microcones concerning their aspect ratio, and provide useful guidance for future experiments and applications.
Collapse
Affiliation(s)
- Johannes Voß
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster D-48149 Münster Germany
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster D-48149 Münster Germany
| |
Collapse
|
12
|
Zhang K, Ren Y, Jiang T, Jiang H. Flexible fabrication of lipophilic-hydrophilic micromotors by off-chip photopolymerization of three-phase immiscible flow induced Janus droplet templates. Anal Chim Acta 2021; 1182:338955. [PMID: 34602209 DOI: 10.1016/j.aca.2021.338955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022]
Abstract
Self-propelled microparticles are promising for lots of applications ranging from analytical detection to water treatment. Herein, we present an effective approach to fabricate lipophilic-hydrophilic micromotors via the photocuring of three-phase immiscible flow induced droplet templates. In the microfluidic system, two immiscible inner fluids, the lipophilic 1, 6-Hexanediol diacrylate (HDDA), and the hydrophilic poly (ethylene glycol) diacrylate (PEGDA), are simultaneously injected into a theta-shaped cylindrical capillary from two separate inlets, and they are emulsified into Janus drops when encountering the outer immiscible silicone oil. Because of the immiscible feature of droplet templates, off-chip photopolymerization strategy has been used, which can significantly decrease the blocking chance of microdevice. And also, the lipophilic-hydrophilic structure of droplets is convenient for the loading of cargos with different characteristics. More importantly, the size and configuration of droplet templates can be flexibly regulated by changing the flow rates of three different phases. Accordingly, multifunctional micromotors can be fabricated by adding different nanoparticles and materials into the HDDA or PEGDA phase first and then photocuring the droplets. Taking the bubble-propelled micromotors for example, we prepare microswimmers by loading Ag, TiO2 and Fe3O4 nanoparticles into the PEGDA phase. The swimming behaviors of micromotors in H2O2 solution are systematically investigated, finding that the proportion of PEGDA phase and the concentration of H2O2 both positively affect the moving speed. Furthermore, the applicability of motor particles on water treatment is successfully demonstrated by using neutral red solution as the model pollutant. And the micromotors can be recycled using magnets after the catalytic degradation process. Therefore, this micromotor generation technique and this kind of micromotor can be attractive for many applications.
Collapse
Affiliation(s)
- Kailiang Zhang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, PR China
| | - Yukun Ren
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, PR China; State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, PR China.
| | - Tianyi Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, PR China
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, PR China.
| |
Collapse
|
13
|
A Review of Microrobot's System: Towards System Integration for Autonomous Actuation In Vivo. MICROMACHINES 2021; 12:mi12101249. [PMID: 34683300 PMCID: PMC8540518 DOI: 10.3390/mi12101249] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/30/2022]
Abstract
Microrobots have received great attention due to their great potential in the biomedical field, and there has been extraordinary progress on them in many respects, making it possible to use them in vivo clinically. However, the most important question is how to get microrobots to a given position accurately. Therefore, autonomous actuation technology based on medical imaging has become the solution receiving the most attention considering its low precision and efficiency of manual control. This paper investigates key components of microrobot’s autonomous actuation systems, including actuation systems, medical imaging systems, and control systems, hoping to help realize system integration of them. The hardware integration has two situations according to sharing the transmitting equipment or not, with the consideration of interference, efficiency, microrobot’s material and structure. Furthermore, system integration of hybrid actuation and multimodal imaging can improve the navigation effect of the microrobot. The software integration needs to consider the characteristics and deficiencies of the existing actuation algorithms, imaging algorithms, and the complex 3D working environment in vivo. Additionally, considering the moving distance in the human body, the autonomous actuation system combined with rapid delivery methods can deliver microrobots to specify position rapidly and precisely.
Collapse
|
14
|
Nguyen KT, Go G, Jin Z, Darmawan BA, Yoo A, Kim S, Nan M, Lee SB, Kang B, Kim C, Li H, Bang D, Park J, Choi E. A Magnetically Guided Self-Rolled Microrobot for Targeted Drug Delivery, Real-Time X-Ray Imaging, and Microrobot Retrieval. Adv Healthc Mater 2021; 10:e2001681. [PMID: 33506630 DOI: 10.1002/adhm.202001681] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/22/2020] [Indexed: 12/19/2022]
Abstract
Targeted drug delivery using a microrobot is a promising technique capable of overcoming the limitations of conventional chemotherapy that relies on body circulation. However, most studies of microrobots used for drug delivery have only demonstrated simple mobility rather than precise targeting methods and prove the possibility of biodegradation of implanted microrobots after drug delivery. In this study, magnetically guided self-rolled microrobot that enables autonomous navigation-based targeted drug delivery, real-time X-ray imaging, and microrobot retrieval is proposed. The microrobot, composed of a self-rolled body that is printed using focused light and a surface with magnetic nanoparticles attached, demonstrates the loading of doxorubicin and an X-ray contrast agent for cancer therapy and X-ray imaging. The microrobot is precisely mobilized to the lesion site through automated targeting using magnetic field control of an electromagnetic actuation system under real-time X-ray imaging. The photothermal effect using near-infrared light reveals rapid drug release of the microrobot located at the lesion site. After drug delivery, the microrobot is recovered without potential toxicity by implantation or degradation using a magnetic-field-switchable coiled catheter. This microrobotic approach using automated control method of the therapeutic agents-loaded microrobot has potential use in precise localized drug delivery systems.
Collapse
Affiliation(s)
- Kim Tien Nguyen
- Korea Institute of Medical Microrobotics 43‐26, Cheomdangwagi‐ro 208‐beon‐gil, Buk‐gu Gwangju 61011 South Korea
- School of Mechanical Engineering Chonnam National University 77 Yongbong‐ro, Buk‐gu Gwangju 61186 South Korea
| | - Gwangjun Go
- Korea Institute of Medical Microrobotics 43‐26, Cheomdangwagi‐ro 208‐beon‐gil, Buk‐gu Gwangju 61011 South Korea
- School of Mechanical Engineering Chonnam National University 77 Yongbong‐ro, Buk‐gu Gwangju 61186 South Korea
| | - Zhen Jin
- School of Biomedical Engineering Xinxiang Medical University Xinxiang Henan 453003 China
| | - Bobby Aditya Darmawan
- Korea Institute of Medical Microrobotics 43‐26, Cheomdangwagi‐ro 208‐beon‐gil, Buk‐gu Gwangju 61011 South Korea
- School of Mechanical Engineering Chonnam National University 77 Yongbong‐ro, Buk‐gu Gwangju 61186 South Korea
| | - Ami Yoo
- Korea Institute of Medical Microrobotics 43‐26, Cheomdangwagi‐ro 208‐beon‐gil, Buk‐gu Gwangju 61011 South Korea
| | - Seokjae Kim
- Korea Institute of Medical Microrobotics 43‐26, Cheomdangwagi‐ro 208‐beon‐gil, Buk‐gu Gwangju 61011 South Korea
| | - Minghui Nan
- Korea Institute of Medical Microrobotics 43‐26, Cheomdangwagi‐ro 208‐beon‐gil, Buk‐gu Gwangju 61011 South Korea
- School of Mechanical Engineering Chonnam National University 77 Yongbong‐ro, Buk‐gu Gwangju 61186 South Korea
| | - Sang Bong Lee
- Korea Institute of Medical Microrobotics 43‐26, Cheomdangwagi‐ro 208‐beon‐gil, Buk‐gu Gwangju 61011 South Korea
| | - Byungjeon Kang
- Korea Institute of Medical Microrobotics 43‐26, Cheomdangwagi‐ro 208‐beon‐gil, Buk‐gu Gwangju 61011 South Korea
- College of AI convergence Chonnam National University 77 Yongbong‐ro, Buk‐gu Gwangju 61186 South Korea
| | - Chang‐Sei Kim
- Korea Institute of Medical Microrobotics 43‐26, Cheomdangwagi‐ro 208‐beon‐gil, Buk‐gu Gwangju 61011 South Korea
- School of Mechanical Engineering Chonnam National University 77 Yongbong‐ro, Buk‐gu Gwangju 61186 South Korea
| | - Hao Li
- Department of Mechanical Engineering Yanbian University Yanji 133002 China
| | - Doyeon Bang
- Korea Institute of Medical Microrobotics 43‐26, Cheomdangwagi‐ro 208‐beon‐gil, Buk‐gu Gwangju 61011 South Korea
- College of AI convergence Chonnam National University 77 Yongbong‐ro, Buk‐gu Gwangju 61186 South Korea
| | - Jong‐Oh Park
- Korea Institute of Medical Microrobotics 43‐26, Cheomdangwagi‐ro 208‐beon‐gil, Buk‐gu Gwangju 61011 South Korea
- School of Mechanical Engineering Chonnam National University 77 Yongbong‐ro, Buk‐gu Gwangju 61186 South Korea
| | - Eunpyo Choi
- Korea Institute of Medical Microrobotics 43‐26, Cheomdangwagi‐ro 208‐beon‐gil, Buk‐gu Gwangju 61011 South Korea
- School of Mechanical Engineering Chonnam National University 77 Yongbong‐ro, Buk‐gu Gwangju 61186 South Korea
| |
Collapse
|
15
|
Lin R, Yu W, Chen X, Gao H. Self-Propelled Micro/Nanomotors for Tumor Targeting Delivery and Therapy. Adv Healthc Mater 2021; 10:e2001212. [PMID: 32975892 DOI: 10.1002/adhm.202001212] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/14/2020] [Indexed: 12/14/2022]
Abstract
Cancer is still one of the most serious diseases with threats to health and life. Although some advances have been made in targeting delivery of antitumor drugs over the past number of years, there are still many problems needing to be solved, such as poor efficacy and high systemic toxicity. Micro/nanomotors capable of self-propulsion in fluid provide promising platforms for improving the efficiency of tumor delivery. Herein, the recent progress in micro/nanomotors for tumor targeting delivery and therapy is reviewed, with special focus on the contributions of micro/nanomotors to the different stages of tumor targeting delivery as well as the combination therapy by micro/nanomotors. The present limitations and future directions are also put forward for further development.
Collapse
Affiliation(s)
- Ruyi Lin
- College of Materials Science and Engineering Sichuan University Chengdu 610064 P. R. China
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610064 P. R. China
| | - Wenqi Yu
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610064 P. R. China
| | - Xianchun Chen
- College of Materials Science and Engineering Sichuan University Chengdu 610064 P. R. China
| | - Huile Gao
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610064 P. R. China
| |
Collapse
|
16
|
Soto F, Wang J, Ahmed R, Demirci U. Medical Micro/Nanorobots in Precision Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002203. [PMID: 33173743 PMCID: PMC7610261 DOI: 10.1002/advs.202002203] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/09/2020] [Indexed: 05/15/2023]
Abstract
Advances in medical robots promise to improve modern medicine and the quality of life. Miniaturization of these robotic platforms has led to numerous applications that leverages precision medicine. In this review, the current trends of medical micro and nanorobotics for therapy, surgery, diagnosis, and medical imaging are discussed. The use of micro and nanorobots in precision medicine still faces technical, regulatory, and market challenges for their widespread use in clinical settings. Nevertheless, recent translations from proof of concept to in vivo studies demonstrate their potential toward precision medicine.
Collapse
Affiliation(s)
- Fernando Soto
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| | - Jie Wang
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| | - Rajib Ahmed
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| | - Utkan Demirci
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| |
Collapse
|
17
|
Yuan K, Bujalance-Fernández J, Jurado-Sánchez B, Escarpa A. Light-driven nanomotors and micromotors: envisioning new analytical possibilities for bio-sensing. Mikrochim Acta 2020; 187:581. [PMID: 32979095 DOI: 10.1007/s00604-020-04541-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/30/2020] [Indexed: 02/05/2023]
Abstract
The aim of this conceptual review is to cover recent developments of light-propelled micromotors for analytical (bio)-sensing. Challenges of self-propelled light-driven micromotors in complex (biological) media and potential solutions from material aspects and propulsion mechanism to achieve final analytical detection for in vivo and in vitro applications will be comprehensively covered. Graphical abstract.
Collapse
Affiliation(s)
- Kaisong Yuan
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares, 28871, Madrid, Spain.,Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, China
| | - Javier Bujalance-Fernández
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares, 28871, Madrid, Spain
| | - Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares, 28871, Madrid, Spain. .,Chemical Research Institute "Andrés M. del Río", University of Alcala, Alcala de Henares, 28871, Madrid, Spain.
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares, 28871, Madrid, Spain. .,Chemical Research Institute "Andrés M. del Río", University of Alcala, Alcala de Henares, 28871, Madrid, Spain.
| |
Collapse
|
18
|
Aziz A, Pane S, Iacovacci V, Koukourakis N, Czarske J, Menciassi A, Medina-Sánchez M, Schmidt OG. Medical Imaging of Microrobots: Toward In Vivo Applications. ACS NANO 2020; 14:10865-10893. [PMID: 32869971 DOI: 10.1021/acsnano.0c05530] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Medical microrobots (MRs) have been demonstrated for a variety of non-invasive biomedical applications, such as tissue engineering, drug delivery, and assisted fertilization, among others. However, most of these demonstrations have been carried out in in vitro settings and under optical microscopy, being significantly different from the clinical practice. Thus, medical imaging techniques are required for localizing and tracking such tiny therapeutic machines when used in medical-relevant applications. This review aims at analyzing the state of the art of microrobots imaging by critically discussing the potentialities and limitations of the techniques employed in this field. Moreover, the physics and the working principle behind each analyzed imaging strategy, the spatiotemporal resolution, and the penetration depth are thoroughly discussed. The paper deals with the suitability of each imaging technique for tracking single or swarms of MRs and discusses the scenarios where contrast or imaging agent's inclusion is required, either to absorb, emit, or reflect a determined physical signal detected by an external system. Finally, the review highlights the existing challenges and perspective solutions which could be promising for future in vivo applications.
Collapse
Affiliation(s)
- Azaam Aziz
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Stefano Pane
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56025, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Veronica Iacovacci
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56025, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Nektarios Koukourakis
- Chair of Measurement and Sensor System Technique, School of Engineering, TU Dresden, Helmholtzstrasse 18, 01069 Dresden, Germany
- Center for Biomedical Computational Laser Systems, TU Dresden, 01062 Dresden, Germany
| | - Jürgen Czarske
- Chair of Measurement and Sensor System Technique, School of Engineering, TU Dresden, Helmholtzstrasse 18, 01069 Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, 01307 Dresden, Germany
- Center for Biomedical Computational Laser Systems, TU Dresden, 01062 Dresden, Germany
| | - Arianna Menciassi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56025, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Mariana Medina-Sánchez
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), TU Chemnitz, Reichenhainer Strasse 10, 09107 Chemnitz, Germany
- School of Science, TU Dresden, 01062 Dresden, Germany
| |
Collapse
|
19
|
Voß J, Wittkowski R. On the shape-dependent propulsion of nano- and microparticles by traveling ultrasound waves. NANOSCALE ADVANCES 2020; 2:3890-3899. [PMID: 36132771 PMCID: PMC9417689 DOI: 10.1039/d0na00099j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/20/2020] [Indexed: 05/12/2023]
Abstract
We address the propulsion mechanism of ultrasound-propelled nano- and microparticles that are exposed to a traveling ultrasound wave. Based on direct computational fluid dynamics simulations, we study the effect of two important aspects of the particle shape on the propulsion: rounded vs. pointed and filled vs. hollow shapes. We also study the flow field generated around such particles. Our results reveal that pointedness leads to an increase of the propulsion speed, whereas it is not significantly affected by hollowness. Furthermore, we show that the flow field near to ultrasound-propelled particles can look similar to the flow field generated by pusher squirmers.
Collapse
Affiliation(s)
- Johannes Voß
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster D-48149 Münster Germany
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster D-48149 Münster Germany
| |
Collapse
|
20
|
Wu Z, Chen Y, Mukasa D, Pak OS, Gao W. Medical micro/nanorobots in complex media. Chem Soc Rev 2020; 49:8088-8112. [PMID: 32596700 DOI: 10.1039/d0cs00309c] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Medical micro/nanorobots have received tremendous attention over the past decades owing to their potential to be navigated into hard-to-reach tissues for a number of biomedical applications ranging from targeted drug/gene delivery, bio-isolation, detoxification, to nanosurgery. Despite the great promise, the majority of the past demonstrations are primarily under benchtop or in vitro conditions. Many developed micro/nanoscale propulsion mechanisms are based on the assumption of a homogeneous, Newtonian environment, while realistic biological environments are substantially more complex. Moving toward practical medical use, the field of micro/nanorobotics must overcome several major challenges including propulsion through complex media (such as blood, mucus, and vitreous) as well as deep tissue imaging and control in vivo. In this review article, we summarize the recent research efforts on investigating how various complexities in biological environments impact the propulsion of micro/nanoswimmers. We also highlight the emerging technological approaches to enhance the locomotion of micro/nanorobots in complex environments. The recent demonstrations of in vivo imaging, control and therapeutic medical applications of such micro/nanorobots are introduced. We envision that continuing materials and technological innovations through interdisciplinary collaborative efforts can bring us steps closer to the fantasy of "swallowing a surgeon".
Collapse
Affiliation(s)
- Zhiguang Wu
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA.
| | | | | | | | | |
Collapse
|
21
|
Dyck O, Lingerfelt D, Kim S, Jesse S, Kalinin SV. Direct matter disassembly via electron beam control: electron-beam-mediated catalytic etching of graphene by nanoparticles. NANOTECHNOLOGY 2020; 31:245303. [PMID: 32160595 DOI: 10.1088/1361-6528/ab7ef8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report electron-beam activated motion of a catalytic nanoparticle along a graphene step edge and associated etching of the edge. The catalytic hydrogenation process was observed to be activated by a combination of elevated temperature and electron beam irradiation. Reduction of beam fluence on the particle was sufficient to stop the process, leading to the ability to switch on and off the etching. Such an approach enables the targeting of individual nanoparticles to induce motion and beam-controlled etching of matter through activated electrocatalytic processes. The applications of electron-beam control as a paradigm for molecular-scale robotics are discussed.
Collapse
Affiliation(s)
- Ondrej Dyck
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, United States of America
| | | | | | | | | |
Collapse
|
22
|
Liu W, Wang W, Dong X, Sun Y. Near-Infrared Light-Powered Janus Nanomotor Significantly Facilitates Inhibition of Amyloid-β Fibrillogenesis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12618-12628. [PMID: 32105446 DOI: 10.1021/acsami.0c02342] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inspired by the natural motors, artificial nanomotors (NMs) have emerged as intelligent, advanced, and multifunctional nanoplatforms that can perform complex tasks in living environments. However, the functionalization of these fantastic materials is in its infancy, hindering the success of this booming field. Herein, an inhibitor-conjugated near-infrared (NIR) laser-propelled Janus nanomotor (JNM-I) was constructed and first applied in the modulation of amyloid-β protein (Aβ) aggregation which is highly associated with Alzheimer's disease (AD). Under NIR light illumination, JNM-I exhibited efficient propulsion through the "self-thermophoresis" effect, and the active motion of JNM-I increased the opportunity of the contacts between the immobilized inhibitors and Aβ species, leading to an intensification of JNM-I on modulating the on-pathway Aβ aggregation, as evidenced by the distinct changes of the amyloid morphology, conformation, and cytotoxicity. For example, with a NIR irradiation, 200 μg/mL of JNM-I increased the cultured SH-SY5Y cell viability from 68% to nearly 100%, but it only protected the cells to 89% viability without an NIR irradiation. Meanwhile, the NIR irradiation effectively improved the blood-brain barrier (BBB) penetration of JNM-I. Such a JNM-I has connected artificial nanomotors with protein aggregation and provided new insight into the potential applications of various nanomotors in the prevention and treatment of AD.
Collapse
Affiliation(s)
- Wei Liu
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Wenjuan Wang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| |
Collapse
|
23
|
Aziz A, Medina-Sánchez M, Claussen J, Schmidt OG. Real-Time Optoacoustic Tracking of Single Moving Micro-objects in Deep Phantom and Ex Vivo Tissues. NANO LETTERS 2019; 19:6612-6620. [PMID: 31411038 DOI: 10.1021/acs.nanolett.9b02869] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Medical imaging plays an important role in diagnosis and treatment of multiple diseases. It is a field which seeks for improved sensitivity and spatiotemporal resolution to allow the dynamic monitoring of diverse biological processes that occur at the micro- and nanoscale. Emerging technologies for targeted diagnosis and therapy such as nanotherapeutics, microimplants, catheters, and small medical tools also need to be precisely located and monitored while performing their function inside the human body. In this work, we show for the first time the real-time tracking of moving single micro-objects below centimeter thick phantom tissue and ex vivo chicken breast, using multispectral optoacoustic tomography (MSOT). This technique combines the advantages of ultrasound imaging regarding depth and resolution with the molecular specificity of optical methods, thereby facilitating the discrimination between the spectral signatures of the micro-objects from those of intrinsic tissue molecules. The resulting MSOT signal is further improved in terms of contrast and specificity by coating the micro-objects' surface with gold nanorods, possessing a unique absorption spectrum, which facilitate their discrimination from surrounding biological tissues when translated to future in vivo settings.
Collapse
Affiliation(s)
- Azaam Aziz
- Institute for Integrative Nanosciences , Leibniz IFW Dresden , Helmholtzstraße 20 , 01069 Dresden , Germany
| | - Mariana Medina-Sánchez
- Institute for Integrative Nanosciences , Leibniz IFW Dresden , Helmholtzstraße 20 , 01069 Dresden , Germany
| | - Jing Claussen
- iThera Medical GmbH , Zielstattstraße 13 , 81379 Munich , Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences , Leibniz IFW Dresden , Helmholtzstraße 20 , 01069 Dresden , Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN) , TU Chemnitz , Reichenhainer Straße 10 , 09107 Chemnitz , Germany
- School of Science , TU Dresden , 01062 Dresden , Germany
| |
Collapse
|
24
|
Wang S, Liu X, Wang Y, Xu D, Liang C, Guo J, Ma X. Biocompatibility of artificial micro/nanomotors for use in biomedicine. NANOSCALE 2019; 11:14099-14112. [PMID: 31214671 DOI: 10.1039/c9nr03393a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The advent of micro/nanomotors (MNMs) has shed light on the innovation of active biomedical systems or devices that might bring revolutionary solutions to traditional biomedical strategies. In spite of development beyond expectation over the last decade with a fair number of proof-of-concept demonstrations, the in vivo practical application of MNMs for clinical use is still in its infancy. The biocompatibility of MNMs is the first consideration before realizing practicality, taking into account the complicated interactions between the self-propelled MNMs and biological systems. Therefore, in this review, we focused on the biocompatibility of MNMs with regard to the fabrication materials and propulsion mechanisms by means of in-depth discussions on the advantages and limitations of MNMs for operating under physiological conditions. The future prospective and suggestions on the development of MNMs toward practical biomedical applications will also be proposed.
Collapse
Affiliation(s)
- Shengnan Wang
- State Key Laboratory of Advanced Welding and Joining (Shenzhen) & Flexible Printed Electronic Technology Center, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Villa K, Novotný F, Zelenka J, Browne MP, Ruml T, Pumera M. Visible-Light-Driven Single-Component BiVO 4 Micromotors with the Autonomous Ability for Capturing Microorganisms. ACS NANO 2019; 13:8135-8145. [PMID: 31283169 DOI: 10.1021/acsnano.9b03184] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Light-driven micro/nanomotors represent the next generation of automotive devices that can be easily actuated and controlled by using an external light source. As the field evolves, there is a need for developing more sophisticated micromachines that can fulfill diverse tasks in complex environments. Herein, we introduce single-component BiVO4 micromotors with well-defined micro/nanostructures that can swim both individually and as collectively assembled entities under visible-light irradiation. These devices can perform cargo loading and transport of passive particles as well as living microorganisms without any surface functionalization. Interestingly, after photoactivation, the BiVO4 micromotors exhibited an ability to seek and adhere to yeast cell walls, with the possibility to control their attachment/release by switching the light on/off, respectively. Taking advantage of the selective motor/fungal cells attachment, the fungicidal activity of BiVO4 micromotors under visible illumination was also demonstrated. The presented star-shaped BiVO4 micromotors, obtained by a hydrothermal synthesis, contribute to the potential large-scale fabrication of light-powered micromotors. Moreover, these multifunctional single-component micromachines with controlled self-propulsion, collective behavior, cargo transportation, and photocatalytic activity capabilities hold promising applications in sensing, biohybrids assembly, cargo delivery, and microbiological water pollution remediation.
Collapse
Affiliation(s)
- Katherine Villa
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague , Czech Republic
| | - Filip Novotný
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague , Czech Republic
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague , Czech Republic
| | - Michelle P Browne
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague , Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague , Czech Republic
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague , Czech Republic
- Department of Chemical and Biomolecular Engineering , Yonsei University , 50 Yonsei-ro, Seodaemun-gu , Seoul 03722 , Korea
- Future Energy and Innovation Laboratory, Central European Institute of Technology , Brno University of Technology , Purkyňova 656/123 , Brno CZ-616 00 , Czech Republic
| |
Collapse
|