1
|
Yang HC, Du YS, Lee JJ, Yeh CH, Tseng MC, Ho YC, Kuo HW, Yoshida H, Fujii A, Ozaki M, Tao YT, Akutagawg T, Chen HH. Morphology and Alignment Transition of Hexabenzocoronene (HBC) Mesogen Films by Bar Coating: Effect of Coating Speed. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16846-16854. [PMID: 39094224 PMCID: PMC11325635 DOI: 10.1021/acs.langmuir.4c01331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Films of the discotic liquid crystalline hexabenzocoronene (HBC) derivative, HBC-1,3,5-Ph-C12, were prepared on the quartz substrate by the bar-coating method. Depending on the coating speed, regularly spaced stripes or continuous films were observed. In the former case, columns of the HBC derivatives align more along the stripes, which are perpendicular to the coating direction, whereas in the latter case, columns of the HBC derivatives in the film align more along the coating direction. These distinctive structures are confirmed via polarized optical microscopy (POM), polarized UV-vis spectroscopy, and grazing incidence small-angle X-ray scattering measurements.
Collapse
Affiliation(s)
- Hao-Chun Yang
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - You-Sheng Du
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Jey-Jau Lee
- National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| | - Chun-Hong Yeh
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Mei-Chun Tseng
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Yi-Chi Ho
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Han-Wen Kuo
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Hiroyuki Yoshida
- School of Engineering Building VII, Kwansei Gakuin University, Sanda 662-8501, Japan
| | - Akihiko Fujii
- Department of Electrical and Electronic Systems Engineering, Osaka Institute of Technology, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Masanori Ozaki
- Division of Electrical, Electronic and Infocommunications Engineering, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yu-Tai Tao
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Tomoyuki Akutagawg
- Graduate School of Engineering, Tohoku University, Sendai 980-8577, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Hsiu-Hui Chen
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| |
Collapse
|
2
|
Ruiz C, Martín R, Benito A, Gutierrez E, Monge MÁ, Facchetti A, Termine R, Golemme A, Gómez-Lor B. Columnar Mesomorphism in a Methylthio-Decorated Triindole for Enhanced Charge Transport. ACS APPLIED ELECTRONIC MATERIALS 2024; 6:4709-4717. [PMID: 38947954 PMCID: PMC11210202 DOI: 10.1021/acsaelm.4c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024]
Abstract
We report a semiconducting triindole-based discotic liquid crystal (TRISMe) functionalized with six p-methylthiophenyl groups at its periphery. While initially a crystalline solid at room temperature, TRISMe transitions to a columnar hexagonal mesophase upon heating and retains this supramolecular organization upon subsequent cooling, despite having only three flexible alkyl chains attached to the core's nitrogens. The incorporation of methylthio groups effectively hinders tight molecular packing, stabilizing the columnar arrangement of this disk-shaped molecule. Single crystal analysis confirmed the high tendency of this compound to organize into a columnar architecture and the role played by the methylthio groups in reinforcing such structure. The mesomorphic behavior of TRISMe provides an opportunity for processing from its molten state. Notably, our research reveals significant differences in charge transport depending on the processing method, whether solution drop-casting or melt-based. TRISMe shows hole mobility values averaging 3 × 10-1 cm2 V-1 s-1 when incorporated in diode-type devices from the isotropic melt and annealed at the mesophase temperature, estimated by SCLC (space-charge-limited current) measurements. However, when integrated into solution-processed organic field-effect transistors (OFETs), crystalline TRISMe exhibits a hole mobility of 3 × 10-4 cm2 V-1 s-1. The observed differences can be attributed to a beneficial supramolecular assembly achieved in the mesophase in spite of its lower order. These results emphasize the material's potential for applications in easy-to-process electronic devices and highlight the potential of methylthio moieties in promoting columnar mesophases.
Collapse
Affiliation(s)
- Constanza Ruiz
- Instituto
de Ciencia de Materiales de Madrid, CSIC, Cantoblanco 28049, Madrid, Spain
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Raúl Martín
- Instituto
de Ciencia de Materiales de Madrid, CSIC, Cantoblanco 28049, Madrid, Spain
- Faculty
of Chemical and Technologies Sciences, University
of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Angela Benito
- Instituto
de Ciencia de Materiales de Madrid, CSIC, Cantoblanco 28049, Madrid, Spain
| | - Enrique Gutierrez
- Instituto
de Ciencia de Materiales de Madrid, CSIC, Cantoblanco 28049, Madrid, Spain
| | - M. Ángeles Monge
- Instituto
de Ciencia de Materiales de Madrid, CSIC, Cantoblanco 28049, Madrid, Spain
| | - Antonio Facchetti
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Roberto Termine
- CNR
Nanotec UOS Rende, Dipartimento di Fisica, Università della Calabria, Rende 87036, Italy
| | - Attilio Golemme
- CNR
Nanotec UOS Rende, Dipartimento di Fisica, Università della Calabria, Rende 87036, Italy
| | - Berta Gómez-Lor
- Instituto
de Ciencia de Materiales de Madrid, CSIC, Cantoblanco 28049, Madrid, Spain
| |
Collapse
|
3
|
Hassan N, Ajmal Z, Liang Heng S, Fahmi Fawy K, Mahmood S, Mushtaq F, Albaqami MD, Mohammad S, Rasool RT, Ashraf GA. Fabrication of a sustainable superhydrophobic surface of Ag-NPs@SA on copper alloy for corrosion resistance, photocatalysis, and simulated distribution of Ag atoms. Analyst 2024; 149:3245-3262. [PMID: 38687206 DOI: 10.1039/d3an02182c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Artificial superhydrophobic surfaces that do not absorb water, like the lotus leaf, show tremendous promise in numerous applications. However, superhydrophobic surfaces are rarely used because of their low stability and endurance. A stable organic superhydrophobic surface (SHS) composed of novel morphology Ag-nanoparticles (NPs) has been fabricated on a copper alloy via etching, immersion, spraying, and annealing treatment, along with a static water contact angle (WCA) of 158 ± 1° and sliding angle (SA) less than 2°. The surface texture, composition, and morphology of the substrate surfaces were explored by using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, and DFT-based Ag atom distribution. The anti-corrosion study of non-coated and Ag-NP-coated copper alloy was undertaken using electrochemical impedance spectroscopy. Ag-NPs +SA@SHS enhanced the corrosion resistance as compared with bare Cu alloy. The water droplet rolled down the coated Cu alloy, removed the chalk powder from the surface, and indicated an excellent self-cleaning function. Photodegradation of Congo red (CR) and methylene blue (MB) dye samples was assessed by measuring the absorbance through UV-Visible spectrophotometry, where the Ag-NPs coated on the copper alloy were used as a catalyst. The performance of the SHS@Ag-NPs in the aqueous solution was 99.31% and 98.12% for industrial pollutants (CR and MB), with degradation rates of 5.81 × 10-2 s-1 and 5.89 × 10-2 s-1, respectively. These findings demonstrated a simple, rapid, and low-energy fabrication technique for SHS@Ag-NPs. This research reveals a valuable approach for the fabrication of SHS@Ag-NPs on various substrates to extend the superhydrophobic surfaces with ultra-fast self-healing properties, for outdoor applications such as anti-corrosion, for an innovative approach for the remediation of polluted water treatment, and for industrial applications.
Collapse
Affiliation(s)
- Noor Hassan
- College of Chemistry and Material Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China.
| | - Zeeshan Ajmal
- College of Chemistry and Material Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China.
| | - Sun Liang Heng
- Rail Transit College, Chengdu Industry and Trade College, Chengdu, 611730, China.
| | - Khaled Fahmi Fawy
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Sajid Mahmood
- Green Chemicals & Energy Process Development Laboratory, China Beacons Institute, University of Nottingham Ningbo, Ningbo 315040, China
| | - Fazila Mushtaq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Munirah D Albaqami
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saikh Mohammad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Raqiqa Tur Rasool
- Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Ghulam Abbas Ashraf
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
4
|
Yang DB, Oh JY, Choi BK, Lee DW, Kim DH, Seo DS. High electrical characteristics through graphene oxide doping process on physicochemically reformed inorganic thin films. J Chem Phys 2023; 159:214502. [PMID: 38051098 DOI: 10.1063/5.0177064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/12/2023] [Indexed: 12/07/2023] Open
Abstract
This study investigated the improvement of the electro-optical properties of a liquid crystal (LC) cell fabricated through brush coating using graphene oxide (GO) doping. The physical deformation of the surface was analyzed using atomic force microscopy. The size of the groove increased as the GO dopant concentration increased, but the direction of the groove along the brush direction was maintained. X-ray photoelectron spectroscopy analysis confirmed that the number of C-C and O-Sn bonds increased as the GO concentration increased. Since the van der Waals force on the surface increases as the number of O-metal bonds increases, we were able to determine why the anchoring energy of the LC alignment layer increased. This was confirmed by residual DC voltage and anchoring energy measurements that were later performed. As the GO concentration increased, the width of the hysteresis curve decreased, indicating that the residual DC voltage decreased. Additionally, the 15% GO-doped sample exhibited a significant increase in its anchoring energy up to 1.34 × 10-3 J/m2, which is similar to that of rubbed polyimide. It also secured a high level of electro-optical properties and demonstrated potential as a next-generation thin-film display despite being produced via a simple brush-coating process.
Collapse
Affiliation(s)
- Da-Bin Yang
- IT Nano Electronic Device Laboratory, Department of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Jin Young Oh
- IT Nano Electronic Device Laboratory, Department of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Bo-Kyeong Choi
- IT Nano Electronic Device Laboratory, Department of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Dong Wook Lee
- Department of Electrical and Electronic Engineering, Jeonju University, 303 Cheonjam-ro, Wansan-gu, Jeonju-si, Jeollabuk-do 55069, South Korea
| | - Dong Hyun Kim
- Department of Electronic Engineering, Cheongju University, 298 Daesung-ro, Cheongju 28503, South Korea
| | - Dae-Shik Seo
- IT Nano Electronic Device Laboratory, Department of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| |
Collapse
|
5
|
Govardhan S, Roy S, Prabhu S, Siddiqui MK. Computation of Neighborhood M-Polynomial of Three Classes of Polycyclic Aromatic Hydrocarbons. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2103576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- S. Govardhan
- Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India
| | - S. Roy
- Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India
| | - S. Prabhu
- Department of Mathematics, Rajalakshmi Engineering College, Chennai, India
| | | |
Collapse
|
6
|
Memon WA, Zhang Y, Zhang J, Yan Y, Wang Y, Wei Z. Alignment of organic conjugated molecules for high-performance device applications. Macromol Rapid Commun 2022; 43:e2100931. [PMID: 35338681 DOI: 10.1002/marc.202100931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/17/2022] [Indexed: 11/11/2022]
Abstract
High-performance organic semiconductor materials as the electroactive components of optoelectronic devices have attracted much attention and made them ideal candidates for solution-processable, large-area, and low-cost flexible electronics. Especially, organic field-effect transistors (OFETs) based on conjugated semiconductor materials have experienced stunning progress in device performance. To make these materials economically viable, comprehensive knowledge of charge transport mechanisms is required. The alignment of organic conjugated molecules in the active layer is vital to charge transport properties of devices. The present review highlights the recent progress of processing-structure-transport correlations that allow the precise and uniform alignment of organic conjugated molecules over large areas for multiple electronic applications, including OFETs, organic thermoelectric devices (OTEs), and organic phototransistors (OPTs). Different strategies for regulating crystallinity and macroscopic orientation of conjugated molecules are introduced to correlate the molecular packing, the device performance and charge transport anisotropy in multiple organic electronic devices. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Waqar Ali Memon
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yajie Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yangjun Yan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yuheng Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
7
|
Singh N, Tao Y. Effect of surface modification of nickel oxide hole‐transport layer via self‐assembled monolayers in perovskite solar cells. NANO SELECT 2021. [DOI: 10.1002/nano.202100004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Neha Singh
- Department of Physics National Central University Taoyuan City Taiwan
- Institute of Chemistry Academia Sinica, Nankang Taipei Taiwan
- Molecular Science and Technology Program Taiwan International Graduate Program (TIGP) Academia Sinica, Nankang Taipei Taiwan
| | - Yu‐Tai Tao
- Institute of Chemistry Academia Sinica, Nankang Taipei Taiwan
| |
Collapse
|
8
|
Kumar S, Tao Y. Coronenes, Benzocoronenes and Beyond: Modern Aspects of Their Syntheses, Properties, and Applications. Chem Asian J 2021; 16:621-647. [DOI: 10.1002/asia.202001465] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/24/2021] [Indexed: 12/29/2022]
Affiliation(s)
- Sushil Kumar
- Institute of Chemistry Academia Sinica Taipei 11529 Taiwan
| | - Yu‐Tai Tao
- Institute of Chemistry Academia Sinica Taipei 11529 Taiwan
| |
Collapse
|
9
|
Termine R, Golemme A. Charge Mobility in Discotic Liquid Crystals. Int J Mol Sci 2021; 22:E877. [PMID: 33467214 PMCID: PMC7830985 DOI: 10.3390/ijms22020877] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Discotic (disk-shaped) molecules or molecular aggregates may form, within a certain temperature range, partially ordered phases, known as discotic liquid crystals, which have been extensively studied in the recent past. On the one hand, this interest was prompted by the fact that they represent models for testing energy and charge transport theories in organic materials. However, their long-range self-assembling properties, potential low cost, ease of processability with a variety of solvents and the relative ease of tailoring their properties via chemical synthesis, drove the attention of researchers also towards the exploitation of their semiconducting properties in organic electronic devices. This review covers recent research on the charge transport properties of discotic mesophases, starting with an introduction to their phase structure, followed by an overview of the models used to describe charge mobility in organic substances in general and in these systems in particular, and by the description of the techniques most commonly used to measure their charge mobility. The reader already familiar or not interested in such details can easily skip these sections and refer to the core section of this work, focusing on the most recent and significant results regarding charge mobility in discotic liquid crystals.
Collapse
Affiliation(s)
- Roberto Termine
- LASCAMM CR-INSTM, CNR-NANOTEC SS di Rende, Dipartimento di Fisica, Università Della Calabria, 87036 Rende, Italy;
| | | |
Collapse
|
10
|
Ding Y, Zhao F, Kim S, Wang X, Lu H, Zhang G, Cho K, Qiu L. Azaisoindigo-Based Polymers with a Linear Hybrid Siloxane-Based Side Chain for High-Performance Semiconductors Processable with Nonchlorinated Solvents. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41832-41841. [PMID: 32865385 DOI: 10.1021/acsami.0c11436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing nonchlorinated solvent-processed polymeric semiconductors to avoid environmental concerns and health hazards caused by chlorinated solvents is especially urgent. Here, a molecular design strategy, composed of backbone fluorination and side chain optimization, is used for preparing high-solubility and high-performance azaisoindigo-based polymers. The effects of different backbones and side chains on the solubility, film crystallinity, molecular stacking, and charge transport properties are mainly investigated. A long linear hybrid siloxane-based chain (C6-Si7) is chosen to improve the solubility, while the incorporation of fluorine (F) is used to enhance the film crystallinity and charge mobility. By optimizing the backbone and side chain, both solubility and charge mobility of the azaisoindigo-based polymer are significantly improved. As a result, PAIIDBFT-Si films processed with toluene, tetrahydrofuran, ether, and alkanes, achieved charge mobilities of 4.14, 3.78, 2.14, and 2.34 cm2 V-1 s-1, respectively. The current study provides an effective strategy for the design and synthesis of high-performance polymeric semiconductors processed with nonchlorinated solvents.
Collapse
Affiliation(s)
- Yafei Ding
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, and Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Fengsheng Zhao
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, and Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Sanghyo Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Xiaohong Wang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, and Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Hongbo Lu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, and Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Guobing Zhang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, and Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, and Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
11
|
Ding Y, Jiang L, Du Y, Kim S, Wang X, Lu H, Zhang G, Cho K, Qiu L. Linear hybrid siloxane-based side chains for highly soluble isoindigo-based conjugated polymers. Chem Commun (Camb) 2020; 56:11867-11870. [PMID: 33021250 DOI: 10.1039/d0cc01497d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Three isoindigo-based conjugated polymers modified with linear hybrid siloxane-based side chains were synthesized (PIID-Cm-Si7, m = 5-7). All polymers showed good solubilities in halogenated hydrocarbons, aromatic hydrocarbons, ethers, alkanes, and esters. The polymer films of PIID-C5-Si7, PIID-C6-Si7, and PIID-C7-Si7 achieved mobilities of 0.32, 0.82, and 1.58 cm2 V-1 s-1, respectively.
Collapse
Affiliation(s)
- Yafei Ding
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, and Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Liu Y, Kuo H, Cheng C, Wu W, Chen K, Yeh J, Chen H. Corrosion inhibitor by a polymerizable columnar mesogen based on hexabenzocoronene derivative. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yu‐Te Liu
- Department of Chemistry National Kaohsiung Normal University Kaohsiung Taiwan
| | - Han‐Wen Kuo
- Department of Molecular Science and Engineering National Taipei University of Technology Taipei Taiwan
| | - Chi‐Wei Cheng
- Department of Molecular Science and Engineering National Taipei University of Technology Taipei Taiwan
| | - Wen‐Ti Wu
- Institute of Chemistry Academia Sinica Taipei Taiwan
| | - Kuan‐Ying Chen
- Department of Chemistry Chung‐Yuan Christian University Taoyuan Taiwan
| | - Jui‐Ming Yeh
- Department of Chemistry Chung‐Yuan Christian University Taoyuan Taiwan
| | - Hsiu‐Hui Chen
- Department of Chemistry National Kaohsiung Normal University Kaohsiung Taiwan
- Department of Molecular Science and Engineering National Taipei University of Technology Taipei Taiwan
| |
Collapse
|
13
|
Lin FJ, Yang CW, Chen HH, Tao YT. Alignment and Photopolymerization of Hexa- peri-hexabenzocoronene Derivatives Carrying Diacetylenic Side Chains for Charge-Transporting Application. J Am Chem Soc 2020; 142:11763-11771. [PMID: 32510215 DOI: 10.1021/jacs.0c02055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Thin films of four discotic liquid-crystalline hexa-peri-hexabenzocoronene (HBC) derivatives carrying three diacetylenic side chains and three saturated alkyl chains at different positions around the central HBC core were prepared on phenyltrichlorosilane-modified SiO2 substrate by the Chinese brush-coating method. The brush-coated films of molecules with D3h symmetry and C1 symmetry all exhibited anisotropic alignment with an edge-on orientation and molecular π-π stacking along the coating direction on the surface, in contrast to the spin-coated films, where a mixture of face-on and edge-on orientations was obtained. Hexagonally packed columnar structure or lamella-like columnar structure was obtained, depending on the location of the diacetylenic unit along the chain. UV irradiation of the films resulted in cross-linking/polymerization of the molecular columns. Among them, the lamella-like structure with a diacetylene unit closer to the HBC core gave more closely packed and ordered HBC arrays with the poly(ene-yne) backbones stretching along the column direction, based on a variety of experimental evidence. A thin-film transistor based on this irradiated film gave a highest mobility of 1.5 cm2 V-1 s-1 along the column direction, which is a 3 orders of magnitude improvement over that of the monomeric film. However, for those with a diacetylenic unit extended farther away from the core, cross-linking between neighboring columns was suggested to occur and no mobility can be measured for devices based on those films.
Collapse
Affiliation(s)
- Fang-Ju Lin
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Chih-Wen Yang
- Institute of Physics, Academia Sinica, Taipei 115, Taiwan
| | - Hsiu-Hui Chen
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Yu-Tai Tao
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
14
|
Dai J, Wu X, Ding S, Lou X, Xia F, Wang S, Hong Y. Aggregation-Induced Emission Photosensitizers: From Molecular Design to Photodynamic Therapy. J Med Chem 2020; 63:1996-2012. [PMID: 32039596 DOI: 10.1021/acs.jmedchem.9b02014] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photodynamic therapy (PDT) has emerged as a promising noninvasive treatment option for cancers and other diseases. The key factor that determines the effectiveness of PDT is the photosensitizers (PSs). Upon light irradiation, the PSs would be activated, produce reactive oxygen species (ROS), and induce cell death. One of the challenges is that traditional PSs adopt a large flat disc-like structure, which tend to interact with the adjacent molecules through strong π-π stacking that reduces their ROS generation ability. Aggregation-induced emission (AIE) molecules with a twisted configuration to suppress strong intermolecular interactions represent a new class of PSs for image-guided PDT. In this Miniperspective, we summarize the recent progress on the design rationale of AIE-PSs and the strategies to achieve desirable theranostic applications in cancers. Subsequently, approaches of combining AIE-PS with other imaging and treatment modalities, challenges, and future directions are addressed.
Collapse
Affiliation(s)
- Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xia Wu
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Siyang Ding
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuning Hong
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
15
|
Lin F, Tao Y. Aligning poly[1,6‐di‐(N‐carbazolyl)‐2,4‐hexadiyne] crystalline fibers as conducting channels for transistor applications. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201900275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Fang‐Ju Lin
- Institute of ChemistryAcademia Sinica Taipei Taiwan Republic of China
| | - Yu‐Tai Tao
- Institute of ChemistryAcademia Sinica Taipei Taiwan Republic of China
| |
Collapse
|