1
|
Stigliano PL, Gallastegui A, Smith TH, O'Dell L, Mecerreyes D, Pozo-Gonzalo C, Forsyth M. Gel polymer electrolytes based on sulfonamide functional polymer nanoparticles for sodium metal batteries. Phys Chem Chem Phys 2025; 27:3006-3022. [PMID: 39820214 DOI: 10.1039/d4cp04703f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
In this work, we investigate the development of polymer electrolytes for sodium batteries based on sulfonamide functional polymer nanoparticles (NaNPs). The synthesis of the polymer NaNPs is carried out by emulsion copolymerization of methyl methacrylate and sodium sulfonamide methacrylate in the presence of a crosslinker, resulting in particle sizes of 50 nm, as shown by electron microscopy. Then, gel polymer electrolytes are prepared by mixing polymer NPs and different organic plasticizers including carbonates, glymes, sulfolanes and ionic liquids. The chemical nature of the plasticizer resulted in different effects on the sodium coordination shell, which in turn impacted the properties of each membrane as investigated by FTIR. The transport properties were investigated by EIS and solid-state NMR. Among the organic gel polymer electrolytes (GPEs), the system comprising NaNPs and sulfolanes achieved the best ionic conductivity (1.1 × 10-4 S cm-1 at 50 °C) and sodium single-ion properties while for the ionogels, the best ionic conductivity was obtained by NaNPs mixed with pyrrolidinium-FSI IL (4.7 × 10-4 S cm-1 at 50 °C). From sodium metal symmetrical cell cycling, the use of ILs as plasticizers proved to be more beneficial for SEI formation and its evolution during cell cycling compared to the systems based on NPs and organic solvents. However, NPs + PC led to lower cell overvoltage than NPs + ILs (<0.4 V vs. >0.5 V). This study shows the potential of using Na-sulfonamide functional polymer nanoparticles to immobilize different plasticizers and thereby obtain soft-solid electrolytes for Na metal batteries.
Collapse
Affiliation(s)
- Pierre L Stigliano
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
- POLYMAT, University of the Basque Country UPV/EHU, 20018, Donostia-San Sebastian, Spain
| | - Antonela Gallastegui
- POLYMAT, University of the Basque Country UPV/EHU, 20018, Donostia-San Sebastian, Spain
| | - Thomas H Smith
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
| | - Luke O'Dell
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
| | - David Mecerreyes
- POLYMAT, University of the Basque Country UPV/EHU, 20018, Donostia-San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, María Díaz de Haro 3, 48013, Bilbao, Spain
| | - Cristina Pozo-Gonzalo
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
- Instituto de Carboquímica (ICB-CSIC), Miguel Luesma Castán, 4, 50018, Zaragoza, Spain
| | - Maria Forsyth
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
- Ikerbasque, Basque Foundation for Science, María Díaz de Haro 3, 48013, Bilbao, Spain
| |
Collapse
|
2
|
He Y, Yang S, Liu C, Ouyang Y, Li Y, Zhu H, Yao Y, Yang H, Rui X, Yu Y. Composite Polymer Solid Electrolytes for All-Solid-State Sodium Batteries. SMALL METHODS 2025:e2402220. [PMID: 39906011 DOI: 10.1002/smtd.202402220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/17/2025] [Indexed: 02/06/2025]
Abstract
Sodium-ion batteries (SIBs) are emerging as a promising alternative to lithium-ion batteries, primarily due to their plentiful raw materials and cost-effectiveness. However, the use of traditional organic liquid electrolytes in sodium battery applications presents significant safety risks, prompting the investigation of solid electrolytes as a more viable solution. Despite their advantages, single solid electrolytes encounter challenges, including low conductivity of sodium ions at room temperature and incompatibility with electrode materials. To overcome these limitations, the researchers develop composite polymer solid electrolytes (CPSEs), which merge the strengths of high ionic conductivity of inorganic solid electrolytes and the flexibility of polymer solid electrolytes. CPSEs are usually composed of inorganic materials dispersed in the polymer matrix. The final performance of CPSEs can be further improved by optimizing the particle size, relative content, and form of inorganic fillers. CPSEs show great advantages in improving ionic conductivity and interface compatibility, making them an important direction for future solid-state sodium battery research. Therefore, this paper summarizes recent advancements in composite solid electrolytes, discusses the impact of their preparation processes on performance, and outlines potential future developments in sodium-ion solid-state batteries.
Collapse
Affiliation(s)
- Yiying He
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shoumeng Yang
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Congcong Liu
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yue Ouyang
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanni Li
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hangmin Zhu
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yu Yao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hai Yang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xianhong Rui
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
3
|
Zhao L, Hou M, Ren K, Yang D, Li F, Yang X, Zhou Y, Zhang D, Liu S, Lei Y, Liang F. Hot-Pressing Enhances Mechanical Strength of PEO Solid Polymer Electrolyte for All-Solid-State Sodium Metal Batteries. SMALL METHODS 2024; 8:e2301579. [PMID: 38433396 DOI: 10.1002/smtd.202301579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/09/2024] [Indexed: 03/05/2024]
Abstract
Poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) are widely utilized in all-solid-state sodium metal batteries (ASSSMBs) due to their excellent flexibility and safety. However, poor ionic conductivity and mechanical strength limit its development. In this work, an emerging solvent-free hot-pressing method is used to prepare mechanically robust PEO-based SPE, while sodium superionic conductors Na3Zr2Si2PO12 (NZSP) and NaClO4 are introduced to improve ionic conductivity. The as-prepared electrolyte exhibits a high ionic conductivity of 4.42 × 10-4 S cm-1 and a suitable electrochemical stability window (4.5 V vs Na/Na+). Furthermore, the SPE enables intimate contact with the electrode. The Na||Na3V2(PO4)3@C ASSSMB delivers a high-capacity retention of 97.1% after 100 cycles at 0.5 C and 60 °C, and exhibits excellent Coulombic efficiency (CE) (close to 100%). The ASSSMB with the 20 µm thick electrolyte also demonstrates excellent cyclic stability. This study provides a promising strategy for designing stable polymer-ceramic composite electrolyte membranes through hot-pressing to realize high-energy-density sodium metal batteries.
Collapse
Affiliation(s)
- Lanqing Zhao
- Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, China
| | - Minjie Hou
- Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, China
| | - Kun Ren
- Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, China
| | - Dongrong Yang
- Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, China
| | - Fupeng Li
- Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, China
| | - Xiecheng Yang
- Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, China
| | - Yingjie Zhou
- Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, China
| | - Da Zhang
- Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, China
- National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, 650093, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Shan Liu
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Yong Lei
- Fachgebiet Angewandte Nanophysik, InstitutfürPhysik & IMNMacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Feng Liang
- Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, China
- National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, 650093, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| |
Collapse
|
4
|
Vasudevan S, Dwivedi S, Morekonda Ganesh Babu KB, Balaya P. Investigation of Solid Polymer Electrolytes for NASICON-Type Solid-State Symmetric Sodium-Ion Battery. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50736-50746. [PMID: 39268633 DOI: 10.1021/acsami.4c10189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
The inevitable shift toward renewable energy and electrification necessitates earth-abundant sodium reserves for next-generation Na-based energy storage technologies. By coupling the benefits of solid electrolytes over traditional nonaqueous electrolytes due to their safety hazards, solid-state sodium-ion batteries hold huge prospects in the future. This work presents a comprehensively developed solid-state sodium-ion symmetric full cell operating at room temperature enabled through a poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-based polymer electrolyte and modified NASICON-structured positive and negative electrodes. Among the investigated polymer electrolytes, PVDF-HFP-NaTFSI was found to outperform other counterparts by achieving a higher ionic conductivity and delivered an appreciable electrochemical stability window. By further delving into the properties of PVDF-HFP-NaTFSI, it was found to possess the least crystallinity, minimal porous structure, lowest melting point, and fusion enthalpy, indicating better ion transport than other investigated polymer electrolytes. The as-assembled solid-state battery revealed a storage capacity of 74 mAh g-1 at 0.1 C with a specific energy density of 130 Wh kgcathode_active_material-1 and demonstrated an impressive capacity retention of 84% of the initial capacity after 200 cycles. The structure and morphology retention of the cycled electrode and electrolyte through postmortem analysis bolster the electrochemo-mechanical stability of the developed solid cell. The findings reported here on polymer electrolytes persuade expedient solutions for developing ambient temperature solid-state sodium-ion batteries with promising electrochemical performance for commercialization in the near future.
Collapse
Affiliation(s)
- Sudharshan Vasudevan
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 117575 Singapore
| | - Sushmita Dwivedi
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 117575 Singapore
| | | | - Palani Balaya
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 117575 Singapore
| |
Collapse
|
5
|
Li Y, Wei B, Yu J, Chen D. Multiple Na + transport pathways and interfacial compatibility enable high-capacity, room-temperature quasi-solid sodium batteries. J Colloid Interface Sci 2024; 666:447-456. [PMID: 38608639 DOI: 10.1016/j.jcis.2024.04.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Sodium-metal batteries (SMBs) are ideal for large-scale energy storage due to their stable operation and high capacity. However, they have safety issues caused by severe dendrite growth and side reactions, particularly when using liquid electrolytes. Therefore, it is critically important to develop electrolytes with high ionic conductivity and improved safety that are non-flammable and resistant to dendrites. Here, we developed polymerized polyethylene glycol diacrylate (PEGDA)-modified poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) electrolytes (PPEs) with highly conductive sodium bis(trifluoromethanesulfonyl)imide and corrosion-inhibitive sodium bis(oxalato)borate salts for SMBs. Well-complexed PEGDA not only increases the amorphicity of the PVDF matrix, but also offers numerous Lewis basic sites through the polar groups of carbonyl and ether groups (i.e., electron donors). The presence of the Lewis basic sites facilitates the dissociation of sodium salt and transportation of Na+ within the PVDF matrix. This results in the generation of additional Na+ transport pathways, which can enhance the performance of the battery. Among PPEs, the optimized PPE-50 exhibits a high ionic conductivity of 3.42 × 10-4 S cm-1 and a mechanical strength of 14.0 MPa. A Na||Na symmetric cell with PPE-50 displays high stability at 0.2 mA cm-2 for 800 h. PPE-50 further displays high capacity, e.g., a Na3V2(PO4)3|PPE-50|Na battery delivers a decent discharge capacity of 101.5 mAh g-1 at 1.0C after 650 cycles. Our work demonstrates the development of high-performance quasi-solid polymer electrolytes with multiple transport pathways suitable for room-temperature SMBs.
Collapse
Affiliation(s)
- Yueqing Li
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Bixia Wei
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Jing Yu
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Dengjie Chen
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
6
|
Dong S, Xie G, Xu S, Tan X, Chaudhary M, Zhang Y, Wu R, Wen F, Ayranci C, Michaelis VK, Quirk A, Rosendahl SM, Liu J, Fleischauer MD, Sang L. Cellulose-Encapsulated Composite Electrolyte Design: Toward Chemically and Mechanically Enhanced Solid-Sodium Batteries. ACS NANO 2024; 18:16285-16296. [PMID: 38865278 DOI: 10.1021/acsnano.4c03910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Sulfide- and halide-based ceramic ionic conductors exhibit comparable ionic conductivity with liquid electrolytes and are candidates for high-energy- and high-power-density all-solid-state batteries. These materials, however, are inherently brittle, making them unfavorable for applications. Here, we report a mechanically enhanced composite Na+ conductor that contains 92.5 wt % of sodium thioantimonate (Na3SbS4, NSS) and 7.5 wt % of sodium carboxymethyl cellulose (CMC); the latter serves as the binder and an electrochemically inert encapsulation layer. The ceramic and binder constituents were integrated at the particle level, providing ceramic NSS-level Na+ conductivity in the NSS-CMC composite. The more than 5-fold decrease of electrolyte thickness obtained in NSS-CMC composite provided a 5-fold increase in Na+ conductance compared to NSS ceramic pellets. As a result of the CMC encapsulation, this NSS-CMC composite shows increased moisture resistivity and electrochemical stability, which significantly promotes the cycling performance of NSS-based solid-state batteries. This work demonstrates a well-controlled, orthogonal process of ceramic-rich, composite electrolyte processing: independent streams for ceramic particle formation along with binder encapsulation in a solvent-assisted environment. This work also provides insights into the interplay among the solvent, the polymeric binder, and the ceramic particles in composite electrolyte synthesis and implies the critical importance of identifying the appropriate solvent/binder system for precise control of this complicated process.
Collapse
Affiliation(s)
| | | | | | | | | | - Yue Zhang
- School of Engineering, Faculty of Applied Science, University of British Columbia, Kelowna, British Columbia, Canada V1 V 1 V7
| | | | | | | | | | - Amanda Quirk
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan, Canada S7N 2 V3
| | - Scott M Rosendahl
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan, Canada S7N 2 V3
| | - Jian Liu
- School of Engineering, Faculty of Applied Science, University of British Columbia, Kelowna, British Columbia, Canada V1 V 1 V7
| | - Michael D Fleischauer
- National Research Council Nanotechnology Research Centre, 11421 Saskatchewan Dr NW, Edmonton, Canada T6G 2M9
| | - Lingzi Sang
- School of Engineering, Faculty of Applied Science, University of British Columbia, Kelowna, British Columbia, Canada V1 V 1 V7
| |
Collapse
|
7
|
Zhang J, Su Y, Qiu Y, Zhang X, Xu F, Wang H. High-Strength, Thin, and Lightweight Solid Polymer Electrolyte for Superior All-Solid-State Sodium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30128-30136. [PMID: 38831609 DOI: 10.1021/acsami.4c05023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The utilization of solid polymer electrolytes (SPEs) in all-solid-state sodium metal batteries has been extensively explored due to their excellent flexibility, processability adaptability to match roll-to-roll manufacturing processes, and good interfacial contact with a high-capacity Na anode; however, SPEs are still impeded by their inadequate mechanical strength, excessive thickness, and poor stability with Na anodes. Herein, a robust, thin, and cost-effective polyethylene (PE) film is employed as a skeleton for infiltrating poly(ethylene oxide)-sodium bis(trifluoromethanesulfonyl)imide (PEO/NaTFSI) to fabricate PE-PEO/NaTFSI SPE. The resulting SPE features a remarkable thickness of 25 μm, lightweight property (2.1 mg cm-2), superior mechanical strength (tensile strength = 100.3 MPa), and good flexibility. The SPE also shows an ionic conductivity of 9.4 × 10-5 S cm-1 at 60 °C and enhanced interfacial stability with a sodium metal anode. Benefiting from these advantages, the assembled Na-Na symmetric cells with PE-PEO/NaTFSI show a high critical current density (1 mA cm-2) and excellent long-term cycling stability (3000 h at 0.3 mA cm-2). The all-solid-state Na||PE-PEO/NaTFSI||Na3V2(PO4)3 coin cells exhibit a superior cycling performance, retaining 93% of the initial capacity for 190 cycles when matched with a 6 mg cm-2 cathode loading. Meanwhile, the pouch cell can work stably after abuse testing, proving its flexibility and safety. This work offers a promising strategy to simultaneously achieve thin, high-strength, and safe solid-state electrolytes for all-solid-state sodium metal batteries.
Collapse
Affiliation(s)
- Jinbo Zhang
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P. R. China
| | - Yanxia Su
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P. R. China
| | - Yuqian Qiu
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P. R. China
| | - Xinren Zhang
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P. R. China
| | - Fei Xu
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P. R. China
| | - Hongqiang Wang
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P. R. China
| |
Collapse
|
8
|
Vareda JP, Fonseca AC, Ribeiro ACF, Pontinha ADR. Silica-Poly(Vinyl Alcohol) Composite Aerogel: A Promising Electrolyte for Solid-State Sodium Batteries. Gels 2024; 10:293. [PMID: 38786210 PMCID: PMC11120664 DOI: 10.3390/gels10050293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
The transition from fossil fuels is in part limited by our inability to store energy at different scales. Batteries are therefore in high demand, and we need them to store more energy, be more reliable, durable and have less social and environmental impact. Silica-poly(vinyl alcohol) (PVA) composite aerogels doped with sodium perchlorate were synthesized as novel electrolytes for potential application in solid-state sodium batteries. The aerogels, synthesized by one-pot synthesis, are light (up to 214 kg m-3), porous (~85%), exhibit reduced shrinkage on drying (up to 12%) and a typical silica aerogel microstructure. The formation of a silica network and the presence of PVA and sodium perchlorate in the composite were confirmed by FTIR and TGA. The XRD analysis also shows that a predominantly amorphous structure is obtained, as crystalline phases of polymer and salt are present in a very reduced amount. The effects of increasing polymer and sodium salt concentrations on the ionic conductivity, assessed via electrochemical impedance spectroscopy, were studied. At a PVA concentration of 15% (w/w silica precursors), the sodium conduction improved significantly up to (1.1 ± 0.3) × 10-5 S cm-1. Thus, this novel material has promising properties for the envisaged application.
Collapse
Affiliation(s)
- João Pedro Vareda
- University of Coimbra, CERES, Department of Chemical Engineering, Rua Silvio Lima, 3030-790 Coimbra, Portugal
| | - Ana Clotilde Fonseca
- University of Coimbra, CEMMPRE, ARISE, Department of Chemical Engineering, Rua Sílvio Lima, 3030-790 Coimbra, Portugal;
| | | | - Ana Dora Rodrigues Pontinha
- University of Coimbra, ISISE, ARISE, Department of Civil Engineering, Rua Luís Reis Santos, 3030-788 Coimbra, Portugal;
- SeaPower, Associação Para o Desenvolvimento da Economia do Mar, Rua Das Acácias, Nº 40A, Parque Industrial da Figueira Da Foz, 3090-380 Figueira Da Foz, Portugal
| |
Collapse
|
9
|
Zhou YN, Yong H, Guo R, Wang K, Li Z, Hua W, Zhou D. Self-reporting and Biodegradable Thermosetting Solid Polymer Electrolyte. Angew Chem Int Ed Engl 2024; 63:e202319003. [PMID: 38131604 DOI: 10.1002/anie.202319003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
To date, significant efforts have been dedicated to improve their ionic conductivity, thermal stability, and mechanical strength of solid polymer electrolytes (SPEs). However, direct monitoring of physical and chemical changes in SPEs is still lacking. Moreover, existing thermosetting SPEs are hardly degradable. Herein, by overcoming the limitation predicted by Flory theory, self-reporting and biodegradable thermosetting hyperbranched poly(β-amino ester)-based SPEs (HPAE-SPEs) are reported. HPAE is successfully synthesized through a well-controlled "A2+B4" Michael addition strategy and then crosslinked it in situ to produce HPAE-SPEs. The multiple tertiary aliphatic amines at the branching sites confer multicolour luminescence to HPAE-SPEs, enabling direct observation of its physical and chemical damage. After use, HPAE-SPEs can be rapidly hydrolysed into non-hazardous β-amino acids and polyols via self-catalysis. Optimized HPAE-SPE exhibits an ionic conductivity of 1.3×10-4 S/cm at 60 °C, a Na+ transference number (t N a + ${{t}_{Na}^{+}}$ ) of 0.67, a highly stable sodium plating-stripping behaviour and a low overpotential of ≈190 mV. This study establishes a new paradigm for developing SPEs by engineering multifunctional polymers. The self-reporting and biodegradable properties would greatly expand the scope of applications for SPEs.
Collapse
Affiliation(s)
- Ya-Nan Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Haiyang Yong
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Rui Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Kaixuan Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Zhili Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Weibo Hua
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Dezhong Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| |
Collapse
|
10
|
Chai S, He Q, Zhou J, Chang Z, Pan A, Zhou H. Solid-State Electrolytes and Electrode/Electrolyte Interfaces in Rechargeable Batteries. CHEMSUSCHEM 2024; 17:e202301268. [PMID: 37845180 DOI: 10.1002/cssc.202301268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023]
Abstract
Solid-state batteries (SSBs) are considered to be one of the most promising candidates for next-generation energy storage systems due to the high safety, high energy density and wide operating temperature range of solid-state electrolytes (SSEs) they use. Unfortunately, the practical application of SSEs has rarely been successful, which is largely attributed to the low chemical stability and ionic conductivity, ineluctable solid-solid interface issues including limited ion transport channels, high energy barriers, and poor interface contact. A comprehensive understanding of ion transport mechanisms of various SSEs, interactions between fillers and polymer matrixes and the role of the interface in SSBs are indispensable for rational design and performance optimization of novel electrolytes. The categories, research advances and ion transport mechanism of inorganic glass/ceramic electrolytes, polymer-based electrolytes and corresponding composite electrolytes are detailly summarized and discussed. Moreover, interface contact and compatibility between electrolyte and cathode/anode are also briefly discussed. Furthermore, the electrochemical characterization methods of SSEs used in different types of SSBs are also introduced. On this basis, the principles and prospects of novel SSEs and interface design are curtly proposed according to the development requirements of SSBs. Moreover, the advanced characterizations for real-time monitoring of interface changes are also brought forward to promote the development of SSBs.
Collapse
Affiliation(s)
- Simin Chai
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, 410083, Hunan, China
| | - Qiong He
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, 410083, Hunan, China
| | - Ji Zhou
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, 410083, Hunan, China
| | - Zhi Chang
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, 410083, Hunan, China
| | - Anqiang Pan
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, 410083, Hunan, China
- School of Physics and Technology, Xinjiang University, Urumqi, 830046, Xinjiang, China
| | - Haoshen Zhou
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Micro-structures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
11
|
Ma L, Li X, Tan J, Fang Z, Liu Z, Wang Y, Ye C, Yi P, Ye M, Shen J. Anion-Immobilized Gel Polymer Electrolyte with a High Ion Transference Number for High-Performance Lithium/Sodium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38041638 DOI: 10.1021/acsami.3c13883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Due to their high energy density, lithium/sodium metal batteries (LMBs/SMBs) are expected to be the next generation of energy storage systems. However, the further application of alkali metal batteries based on liquid electrolytes is limited due to increasing safety concerns. Gel polymer electrolytes (GPEs), which combine the advantages of the high ionic conductivity of liquid electrolytes and excellent mechanical properties of solid polymer electrolytes, are considered to play an irreplaceable role in the realization of high-performance alkali metal batteries. In this work, a flexible boron-containing GPE (B-GPE) with a cross-linked polymer network structure is prepared by a UV-induced process. The as-prepared B-GPE exhibits good ionic conductivity and has an extremely high ion transference number due to the electron-withdrawing effect of the boron moiety and the facile electrolyte uptake ability of the ethylene oxide chain. Furthermore, a "gentle" electrode/electrolyte contact is designed by a one-step in situ polymerization method, which can enhance ion transport within the electrode and at the electrode/electrolyte interface due to the presence of a continuous polymer phase for ion conduction. Therefore, LMBs and SMBs containing B-GPE are able to effectively inhibit the growth of dendrites while exhibiting excellent cycling stability. These comprehensive results indicate that this novel B-GPE possesses potential applications for high-performance alkali metal batteries.
Collapse
Affiliation(s)
- Longli Ma
- Institute of Special Materials and Technology, Fudan University, Shanghai 200433, China
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Xuanyang Li
- Institute of Special Materials and Technology, Fudan University, Shanghai 200433, China
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Jian Tan
- Institute of Special Materials and Technology, Fudan University, Shanghai 200433, China
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Zhan Fang
- Institute of Special Materials and Technology, Fudan University, Shanghai 200433, China
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Zhu Liu
- Institute of Special Materials and Technology, Fudan University, Shanghai 200433, China
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Yuan Wang
- Institute of Special Materials and Technology, Fudan University, Shanghai 200433, China
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Chuming Ye
- Institute of Special Materials and Technology, Fudan University, Shanghai 200433, China
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Pengshu Yi
- Institute of Special Materials and Technology, Fudan University, Shanghai 200433, China
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Mingxin Ye
- Institute of Special Materials and Technology, Fudan University, Shanghai 200433, China
| | - Jianfeng Shen
- Institute of Special Materials and Technology, Fudan University, Shanghai 200433, China
| |
Collapse
|
12
|
Liu G, Wang Z, Yuan H, Yan C, Hao R, Zhang F, Luo W, Wang H, Cao Y, Gu S, Zeng C, Li Y, Wang Z, Qin N, Luo G, Lu Z. Deciphering Electrolyte Dominated Na + Storage Mechanisms in Hard Carbon Anodes for Sodium-Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305414. [PMID: 37875394 PMCID: PMC10754077 DOI: 10.1002/advs.202305414] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/26/2023] [Indexed: 10/26/2023]
Abstract
Although hard carbon (HC) demonstrates superior initial Coulombic efficiency, cycling durability, and rate capability in ether-based electrolytes compared to ester-based electrolytes for sodium-ion batteries (SIBs), the underlying mechanisms responsible for these disparities remain largely unexplored. Herein, ex situ electron paramagnetic resonance (EPR) spectra and in situ Raman spectroscopy are combined to investigate the Na storage mechanism of HC under different electrolytes. Through deconvolving the EPR signals of Na in HC, quasi-metallic-Na is successfully differentiated from adsorbed-Na. By monitoring the evolution of different Na species during the charging/discharging process, it is found that the initial adsorbed-Na in HC with ether-based electrolytes can be effectively transformed into intercalated-Na in the plateau region. However, this transformation is obstructed in ester-based electrolytes, leading to the predominant storage of Na in HC as adsorbed-Na and pore-filled-Na. Furthermore, the intercalated-Na in HC within the ether-based electrolytes contributes to the formation of a uniform, dense, and stable solid-electrolyte interphase (SEI) film and eventually enhances the electrochemical performance of HC. This work successfully deciphers the electrolyte-dominated Na+ storage mechanisms in HC and provides fundamental insights into the industrialization of HC in SIBs.
Collapse
Affiliation(s)
- Guiyu Liu
- Department of Materials Science and EngineeringShenzhen Key Laboratory of Interfacial Science and Engineering of MaterialsSouthern University of Science and TechnologyShenzhen518055China
| | - Zhiqiang Wang
- Department of Materials Science and EngineeringShenzhen Key Laboratory of Interfacial Science and Engineering of MaterialsSouthern University of Science and TechnologyShenzhen518055China
| | - Huimin Yuan
- Department of Materials Science and EngineeringShenzhen Key Laboratory of Interfacial Science and Engineering of MaterialsSouthern University of Science and TechnologyShenzhen518055China
| | - Chunliu Yan
- Department of Materials Science and EngineeringShenzhen Key Laboratory of Interfacial Science and Engineering of MaterialsSouthern University of Science and TechnologyShenzhen518055China
| | - Rui Hao
- Department of Materials Science and EngineeringShenzhen Key Laboratory of Interfacial Science and Engineering of MaterialsSouthern University of Science and TechnologyShenzhen518055China
| | - Fangchang Zhang
- Department of Materials Science and EngineeringShenzhen Key Laboratory of Interfacial Science and Engineering of MaterialsSouthern University of Science and TechnologyShenzhen518055China
| | - Wen Luo
- Department of Materials Science and EngineeringShenzhen Key Laboratory of Interfacial Science and Engineering of MaterialsSouthern University of Science and TechnologyShenzhen518055China
| | - Hongzhi Wang
- Department of Materials Science and EngineeringShenzhen Key Laboratory of Interfacial Science and Engineering of MaterialsSouthern University of Science and TechnologyShenzhen518055China
| | - Yulin Cao
- Department of Materials Science and EngineeringShenzhen Key Laboratory of Interfacial Science and Engineering of MaterialsSouthern University of Science and TechnologyShenzhen518055China
| | - Shuai Gu
- Department of Materials Science and EngineeringShenzhen Key Laboratory of Interfacial Science and Engineering of MaterialsSouthern University of Science and TechnologyShenzhen518055China
| | - Chun Zeng
- Department of Materials Science and EngineeringShenzhen Key Laboratory of Interfacial Science and Engineering of MaterialsSouthern University of Science and TechnologyShenzhen518055China
| | - Yingzhi Li
- Department of Materials Science and EngineeringShenzhen Key Laboratory of Interfacial Science and Engineering of MaterialsSouthern University of Science and TechnologyShenzhen518055China
| | - Zhenyu Wang
- Department of Materials Science and EngineeringShenzhen Key Laboratory of Interfacial Science and Engineering of MaterialsSouthern University of Science and TechnologyShenzhen518055China
| | - Ning Qin
- Department of Materials Science and EngineeringShenzhen Key Laboratory of Interfacial Science and Engineering of MaterialsSouthern University of Science and TechnologyShenzhen518055China
| | - Guangfu Luo
- Department of Materials Science and EngineeringShenzhen Key Laboratory of Interfacial Science and Engineering of MaterialsSouthern University of Science and TechnologyShenzhen518055China
- Guangdong Provincial Key Laboratory of Computational Science and Material DesignSouthern University of Science and TechnologyShenzhen518055China
| | - Zhouguang Lu
- Department of Materials Science and EngineeringShenzhen Key Laboratory of Interfacial Science and Engineering of MaterialsSouthern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
13
|
Liang Y, Zhang B, Shi Y, Jiang R, Zhang H. Research on Wide-Temperature Rechargeable Sodium-Sulfur Batteries: Features, Challenges and Solutions. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4263. [PMID: 37374446 DOI: 10.3390/ma16124263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
Sodium-sulfur (Na-S) batteries hold great promise for cutting-edge fields due to their high specific capacity, high energy density and high efficiency of charge and discharge. However, Na-S batteries operating at different temperatures possess a particular reaction mechanism; scrutinizing the optimized working conditions toward enhanced intrinsic activity is highly desirable while facing daunting challenges. This review will conduct a dialectical comparative analysis of Na-S batteries. Due to its performance, there are challenges in the aspects of expenditure, potential safety hazards, environmental issues, service life and shuttle effect; thus, we seek solutions in the electrolyte system, catalysts, anode and cathode materials at intermediate and low temperatures (T < 300 °C) as well as high temperatures (300 °C < T < 350 °C). Nevertheless, we also analyze the latest research progress of these two situations in connection with the concept of sustainable development. Finally, the development prospects of this field are summarized and discussed to look forward to the future of Na-S batteries.
Collapse
Affiliation(s)
- Yimin Liang
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an 710129, China
| | - Boxuan Zhang
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an 710129, China
| | - Yiran Shi
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an 710129, China
| | - Ruyi Jiang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Honghua Zhang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450046, China
| |
Collapse
|
14
|
Prakash P, Fall B, Aguirre J, Sonnenberg LA, Chinnam PR, Chereddy S, Dikin DA, Venkatnathan A, Wunder SL, Zdilla MJ. A soft co-crystalline solid electrolyte for lithium-ion batteries. NATURE MATERIALS 2023; 22:627-635. [PMID: 37055559 DOI: 10.1038/s41563-023-01508-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 02/13/2023] [Indexed: 05/05/2023]
Abstract
Alternative solid electrolytes are the next key step in advancing lithium batteries with better thermal and chemical stability. A soft solid electrolyte, (Adpn)2LiPF6 (Adpn, adiponitrile), is synthesized and characterized that exhibits high thermal and electrochemical stability and good ionic conductivity, overcoming several limitations of conventional organic and ceramic materials. The surface of the electrolyte possesses a liquid nano-layer of Adpn that links grains for a facile ionic conduction without high pressure/temperature treatments. Further, the material can quickly self-heal if fractured and provides liquid-like conduction paths via the grain boundaries. A substantially high ion conductivity (~10-4 S cm-1) and lithium-ion transference number (0.54) are obtained due to weak interactions between 'hard' (charge dense) Li+ ions and the 'soft' (electronically polarizable) -C≡N group of Adpn. Molecular simulations predict that Li+ ions migrate at the co-crystal grain boundaries with a (preferentially) lower activation energy Ea and within the interstitial regions between the co-crystals with higher Ea values, where the bulk conductivity is a smaller but extant contribution. These co-crystals establish a special concept of crystal design to increase the thermal stability of LiPF6 by separating ions in the Adpn solvent matrix, and also exhibit a unique mechanism of ion conduction via low-resistance grain boundaries, which contrasts with ceramics or gel electrolytes.
Collapse
Affiliation(s)
- Prabhat Prakash
- Department of Chemistry, Temple University, Philadelphia, PA, USA
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, India
| | - Birane Fall
- Department of Chemistry, Temple University, Philadelphia, PA, USA
| | - Jordan Aguirre
- Department of Chemistry, Temple University, Philadelphia, PA, USA
| | | | - Parameswara Rao Chinnam
- Energy Storage & Advanced Transportation Department, Idaho National Laboratory, Idaho Falls, ID, USA
- Rivian, Palo Alto, CA, USA
| | - Sumanth Chereddy
- Department of Chemistry, Temple University, Philadelphia, PA, USA
| | - Dmitriy A Dikin
- Mechanical Engineering Department, College of Engineering, Temple University, Philadelphia, PA, USA
| | - Arun Venkatnathan
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, India.
| | | | - Michael J Zdilla
- Department of Chemistry, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Pan J, Xu S, Cai T, Hu L, Che X, Dong W, Shi Z, Rai AK, Wang N, Huang F, Dou SX. Boosting Cycling Stability of Polymer Sodium Battery by "Rigid-Flexible" Coupled Interfacial Stress Modulation. NANO LETTERS 2023; 23:3630-3636. [PMID: 36847547 DOI: 10.1021/acs.nanolett.2c04854] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The discontinuous interfacial contact of solid-state polymer metal batteries is due to the stress changes in the electrode structure during cycling, resulting in poor ion transport. Herein, a rigid-flexible coupled interface stress modulation strategy is developed to solve the above issues, which is to design a rigid cathode with enhanced solid-solution behavior to guide the uniform distribution of ions and electric field. Meanwhile, the polymer components are optimized to build an organic-inorganic blended flexible interfacial film to relieve the change of interfacial stress and ensure rapid ion transmission. The fabricated battery comprising a Co-modulated P2-type layered cathode (Na0.67Mn2/3Co1/3O2) and a high ion conductive polymer could deliver good cycling stability without distinct capacity fading (72.8 mAh g-1 over 350 cycles at 1 C), outperforming those without Co modulation or interfacial film construction. This work demonstrates a promising rigid-flexible coupled interfacial stress modulation strategy for polymer-metal batteries with excellent cycling stability.
Collapse
Affiliation(s)
- Jun Pan
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, China
| | - Shumao Xu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, China
| | - Tianxun Cai
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, China
| | - Lulu Hu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, China
| | - Xiangli Che
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wujie Dong
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, China
| | - Zhiyuan Shi
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, China
| | - Alok Kumar Rai
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Nana Wang
- Institute for Superconducting and Electronic Materials, University of Wollongong Innovation Campus, North Wollongong 2500, New South Wales, Australia
| | - Fuqiang Huang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shi Xue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200050, China
| |
Collapse
|
16
|
Nguyen TH, Lee D, Song Y, Choi UH, Kim J. High-Ionic-Conductivity Sodium-Based Ionic Gel Polymer Electrolyte for High-Performance and Ultrastable Microsupercapacitors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3054-3068. [PMID: 36621929 DOI: 10.1021/acsami.2c20226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Due to the lower cost and greater natural abundance of the sodium element on the earth than those of the lithium element, sodium-based ionic gel polymer electrolytes (IGPEs) are becoming a more cost-effective and popular material choice for portable and stationary energy solutions. The sodium-based IGPEs, however, appeared relatively inferior to their lithium-based counterparts for use in high-performance microsupercapacitors in terms of ionic conductivity and electrochemical stability. To tackle these issues, poly(ethylene glycol) diacrylate (PEGDA) with fast polymerization to build a polymer matrix and sodium perchlorate (NaClO4) with high chemical stability and high thermal stability are employed to generate free ions for an ionic conducting phase with the support of tetramethylene glycol ether (G4) and 1-ethyl-3-methylimidazolium bis(triflouromethylsulfonyl)imide (EMIM-TFSI). It was found that the ionic conductivity (σdc) of this sodium-based IGPE reaches up to 0.54 mS/cm at room temperature. To manifest a high-conductivity sodium-based IGPE (SIGPE), a microsupercapacitor (MSC) with an area of 5 mm2 is designed and fabricated on an interdigital reduced graphene oxide electrode. This MSC demonstrates prominent performance with a high power density of ∼2500 W/kg and a maximum energy density of ∼0.7 Wh/kg. Furthermore, after 20,000 cycles at an operating potential window from 0.0 to 1.0 V, it retains approximately 98.9% capacitance. An MSC array in 3 series × 3 parallels (3S × 3P) was successfully designed as a power source for a basic circuit with an LED. Therefore, we believe that our sodium-based IGPE microsupercapacitor holds its promising role as a solid-state energy source for high-performance and high-stability energy solutions.
Collapse
Affiliation(s)
- Thi Huyen Nguyen
- Department of Photonics and Nanoelectronics, Hanyang University, Ansan15588, Republic of Korea
| | - Dawoon Lee
- Department of Photonics and Nanoelectronics, Hanyang University, Ansan15588, Republic of Korea
| | - Yongjun Song
- Department of Photonics and Nanoelectronics, Hanyang University, Ansan15588, Republic of Korea
| | - U Hyeok Choi
- Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon22212, Republic of Korea
| | - Jaekyun Kim
- Department of Photonics and Nanoelectronics, Hanyang University, Ansan15588, Republic of Korea
| |
Collapse
|
17
|
Su Y, Rong X, Li H, Huang X, Chen L, Liu B, Hu YS. High-Entropy Microdomain Interlocking Polymer Electrolytes for Advanced All-Solid-State Battery Chemistries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209402. [PMID: 36341499 DOI: 10.1002/adma.202209402] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Indexed: 06/16/2023]
Abstract
All-solid-state polymer electrolytes (ASPEs) with excellent processivity are considered one of the most forward-looking materials for large-scale industrialization. However, the contradiction between improving the mechanical strength and accelerating the ionic migration of ASPEs has always been difficult to reconcile. Herein, a rational concept is raised of high-entropy microdomain interlocking ASPEs (HEMI-ASPEs), inspired by entropic elasticity well-known in polymer and biochemical sciences, by introducing newly designed multifunctional ABC miktoarm star terpolymers into polyethylene oxide for the first time. The tailor-made HEMI-ASPEs possess multifunctional polymer chains, which induce themselves to assemble into micro- and nanoscale dynamic interlocking networks with high topological structure entropy. HEMI-ASPEs achieve excellent toughness, considerable ionic conductivity, an appreciable lithium transference number (0.63), and desirable thermal stability (Td > 400 °C) for all-solid-state lithium metal batteries. The Li|HEMI-ASPE-Li|Li symmetrical cell shows a stable Li plating/stripping performance over 4000 h, and a LiFePO4 |HEMI-ASPE-Li|Li full cell exhibits a high capacity retention (≈96%) after 300 cycles. This work contributes an innovative design concept introducing high-entropy supramolecular dynamic networks for ASPEs.
Collapse
Affiliation(s)
- Yun Su
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Yangtze River Delta Physics Research Center Co. Ltd, Liyang, 213300, P. R. China
| | - Xiaohui Rong
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Yangtze River Delta Physics Research Center Co. Ltd, Liyang, 213300, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hong Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Yangtze River Delta Physics Research Center Co. Ltd, Liyang, 213300, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xuejie Huang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Yangtze River Delta Physics Research Center Co. Ltd, Liyang, 213300, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Liquan Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Yangtze River Delta Physics Research Center Co. Ltd, Liyang, 213300, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Binyuan Liu
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| | - Yong-Sheng Hu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Yangtze River Delta Physics Research Center Co. Ltd, Liyang, 213300, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
18
|
Zhu X, Ali RN, Song M, Tang Y, Fan Z. Recent Advances in Polymers for Potassium Ion Batteries. Polymers (Basel) 2022; 14:5538. [PMID: 36559905 PMCID: PMC9788096 DOI: 10.3390/polym14245538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Potassium-ion batteries (KIBs) are considered to be an effective alternative to lithium-ion batteries (LIBs) due to their abundant resources, low cost, and similar electrochemical properties of K+ to Li+, and they have a good application prospect in the field of large-scale energy storage batteries. Polymer materials play a very important role in the battery field, such as polymer electrode materials, polymer binders, and polymer electrolytes. Here in this review, we focus on the research progress of polymers in KIBs and systematically summarize the research status and achievements of polymer electrode materials, electrolytes, and binders in potassium ion batteries in recent years. Finally, based on the latest representative research of polymers in KIBs, some suggestions and prospects are put forward, which provide possible directions for future research.
Collapse
Affiliation(s)
- Xingqun Zhu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Rai Nauman Ali
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ming Song
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Yingtao Tang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Zhengwei Fan
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| |
Collapse
|
19
|
Porcarelli L, Olmedo-Martínez JL, Sutton P, Bocharova V, Fdz De Anastro A, Galceran M, Sokolov AP, Howlett PC, Forsyth M, Mecerreyes D. Task-Specific Phosphonium Iongels by Fast UV-Photopolymerization for Solid-State Sodium Metal Batteries. Gels 2022; 8:gels8110725. [PMID: 36354633 PMCID: PMC9689987 DOI: 10.3390/gels8110725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Sodium metal batteries are an emerging technology that shows promise in terms of materials availability with respect to lithium batteries. Solid electrolytes are needed to tackle the safety issues related to sodium metal. In this work, a simple method to prepare a mechanically robust and efficient soft solid electrolyte for sodium batteries is demonstrated. A task-specific iongel electrolyte was prepared by combining in a simple process the excellent performance of sodium metal electrodes of an ionic liquid electrolyte and the mechanical properties of polymers. The iongel was synthesized by fast (<1 min) UV photopolymerization of poly(ethylene glycol) diacrylate (PEGDA) in the presence of a saturated 42%mol solution of sodium bis(fluorosulfonyl)imide (NaFSI) in trimethyl iso-butyl phosphonium bis(fluorosulfonyl)imide (P111i4FSI). The resulting soft solid electrolytes showed high ionic conductivity at room temperature (≥10−3 S cm−1) and tunable storage modulus (104−107 Pa). Iongel with the best ionic conductivity and good mechanical properties (Iongel10) showed excellent battery performance: Na/iongel/NaFePO4 full cells delivered a high specific capacity of 140 mAh g−1 at 0.1 C and 120 mAh g−1 at 1 C with good capacity retention after 30 cycles.
Collapse
Affiliation(s)
- Luca Porcarelli
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Av. Tolosa 72, 20018 Donostia-San Sebastian, Spain
- ARC Centre of Excellence for Electromaterials Science and Institute for Frontier Materials, Deakin University, Melbourne 3216, Australia
| | - Jorge L. Olmedo-Martínez
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Av. Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Preston Sutton
- ARC Centre of Excellence for Electromaterials Science and Institute for Frontier Materials, Deakin University, Melbourne 3216, Australia
| | - Vera Bocharova
- Oak Ridge National Laboratory, Chemical Sciences Division, Oak Ridge, TN 37831, USA
| | - Asier Fdz De Anastro
- Center for Cooperative Rersearch on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Alava, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain
| | - Montserrat Galceran
- Center for Cooperative Rersearch on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Alava, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain
| | - Alexei P. Sokolov
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
| | - Patrick C. Howlett
- ARC Centre of Excellence for Electromaterials Science and Institute for Frontier Materials, Deakin University, Melbourne 3216, Australia
| | - Maria Forsyth
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Av. Tolosa 72, 20018 Donostia-San Sebastian, Spain
- ARC Centre of Excellence for Electromaterials Science and Institute for Frontier Materials, Deakin University, Melbourne 3216, Australia
- Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48011 Bilbao, Spain
| | - David Mecerreyes
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Av. Tolosa 72, 20018 Donostia-San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48011 Bilbao, Spain
- Correspondence:
| |
Collapse
|
20
|
Sadiq M, Khan MA, Hasan Raza MM, Aalam SM, Zulfequar M, Ali J. Enhancement of Electrochemical Stability Window and Electrical Properties of CNT-Based PVA-PEG Polymer Blend Composites. ACS OMEGA 2022; 7:40116-40131. [PMID: 36385886 PMCID: PMC9648156 DOI: 10.1021/acsomega.2c04933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
New polymer blend composite electrolytes (PBCEs) were prepared by the solution casting technique using poly(vinyl alcohol) (PVA)-polyethylene glycol (PEG), sodium nitrate (NaNO3) as a doping salt and multiwalled carbon nanotubes (MWCNTs) as fillers. The X-ray diffraction pattern confirms the structural properties of the polymer blend composite films. FTIR investigations were carried out to understand the chemical properties and their band assignments. The ionic conductivity of the 10 wt % MWCNTs incorporated PVA-PEG polymer blend was measured as 4.32 × 10-6 S cm-1 at 20 °C and increased to 2.253 × 10-4 S/cm at 100 °C. The dependence of its conductivity on temperature suggests Arrhenius behavior. The equivalent circuit models that represent the R s(Q1(R1(Q2(R2(CR3))))) were used to interpret EIS data. The dielectric behavior of the samples was investigated by utilizing their AC conductance spectra, dielectric permittivity, dielectric constant (εi and εr), electric modulus (Mi and Mr), and loss tangent tan δ. The dielectric permittivity of the samples increases due to electrode polarization effects in low frequency region. The loss tangent's maxima shift with increasing temperature; hence, the peak height rises in the high frequency region. MWCNTs-based polymer blend composite electrolytes show an enhanced electrochemical stability window (4.0 V), better transference number (0.968), and improved ionic conductivity for use in energy storage device applications.
Collapse
Affiliation(s)
- Mohd Sadiq
- Department
of Physics, Jamia Millia Islamia (A Central
University), New Delhi110025, India
- Department
of Physics, A. R. S. D College, University
of Delhi, New Delhi110021, India
| | - M. Ajmal Khan
- Department
of Physics, Jamia Millia Islamia (A Central
University), New Delhi110025, India
| | | | - Shah Masheerul Aalam
- Department
of Physics, Jamia Millia Islamia (A Central
University), New Delhi110025, India
| | - Mohammad Zulfequar
- Department
of Physics, Jamia Millia Islamia (A Central
University), New Delhi110025, India
| | - Javid Ali
- Department
of Physics, Jamia Millia Islamia (A Central
University), New Delhi110025, India
| |
Collapse
|
21
|
Cai S, Meng W, Tian H, Luo T, Wang L, Li M, Luo J, Liu S. Artificial porous heterogeneous interface for all-solid-state sodium ion battery. J Colloid Interface Sci 2022; 632:179-185. [DOI: 10.1016/j.jcis.2022.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
|
22
|
Pan J, Wang N, Fan HJ. Gel Polymer Electrolytes Design for Na-Ion Batteries. SMALL METHODS 2022; 6:e2201032. [PMID: 36228103 DOI: 10.1002/smtd.202201032] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Na-ion battery has the potential to be one of the best types of next-generation energy storage devices by virtue of their cost and sustainability advantages. With the demand for high safety, the replacement of traditional organic electrolytes with polymer electrolytes can avoid electrolyte leakage and thermal instability. Polymer electrolytes, however, suffer from low ionic conductivity and large interfacial impedance. Gel polymer electrolytes (GPEs) represent an excellent balance that combines the advantages of high ionic conductivity, low interfacial impedance, high thermal stability, and flexibility. This short review summarizes the recent progress on gel polymer Na-ion batteries, focusing on different preparation approaches and the resultant physical and electrochemical properties. Reasons for the differences in ionic conductivity, mechanical properties, interfacial properties, and thermal stability are discussed at the molecular level. This Review may offer a deep understanding of sodium-ion GPEs and may guide the design of intermolecular interactions for high-performance gel polymer Na-ion batteries.
Collapse
Affiliation(s)
- Jun Pan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Nana Wang
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, New South Wales, 2500, Australia
| | - Hong Jin Fan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
23
|
Kwon DS, Gong SH, Yun S, Jeong D, Je J, Kim HJ, Kim SO, Kim HS, Shim J. Regulating Na Electrodeposition by Sodiophilic Grafting onto Porosity-Gradient Gel Polymer Electrolytes for Dendrite-Free Sodium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47650-47658. [PMID: 36254882 DOI: 10.1021/acsami.2c12287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sodium metal batteries have been emerging as promising candidates for post-Li battery systems owing to the natural abundance, low costs, and high energy density of Na metal. However, exploiting an Na metal anode is accompanied by uncontrolled Na electrodeposition, particularly concerning dendrite growth, hampering practical Na metal battery applications. Herein, we propose sodiophilic gel polymer electrolytes with a porosity-gradient Janus structure to alleviate Na dendrite growth. Tethering only 1.1 mol % sodiophilic poly(ethylene glycol) to poly(vinylidene fluoride-co-hexafluoropropylene) suppresses Na dendrites by regulating homogeneous Na+ distribution, which relies on molecular-level coordination between Na+ and the sodiophilic functional groups. By exploiting the porosity-gradient Janus structure, we have demonstrated that regular porosity and well-defined morphology of polymer electrolytes, particularly at the Na/electrolyte interface, significantly impact dendrite growth. This study provides new insights into the rational design of Na dendrite-suppressing polymer electrolytes, primarily focusing on the ion-regulating ability achieved by surface engineering.
Collapse
Affiliation(s)
- Da-Sol Kwon
- Energy Storage Research Center, Korea Institute of Science and Technology (KIST), 14 Gil 5 Hwarang-ro, Seongbuk-gu, Seoul02792, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul02841, Republic of Korea
| | - Sang Hyuk Gong
- Energy Storage Research Center, Korea Institute of Science and Technology (KIST), 14 Gil 5 Hwarang-ro, Seongbuk-gu, Seoul02792, Republic of Korea
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul02841, Republic of Korea
| | - Seunghan Yun
- Energy Storage Research Center, Korea Institute of Science and Technology (KIST), 14 Gil 5 Hwarang-ro, Seongbuk-gu, Seoul02792, Republic of Korea
| | - Daun Jeong
- Energy Storage Research Center, Korea Institute of Science and Technology (KIST), 14 Gil 5 Hwarang-ro, Seongbuk-gu, Seoul02792, Republic of Korea
| | - Junhwan Je
- Energy Storage Research Center, Korea Institute of Science and Technology (KIST), 14 Gil 5 Hwarang-ro, Seongbuk-gu, Seoul02792, Republic of Korea
| | - Hee Joong Kim
- Department of Polymer Science and Engineering & Program in Environmental and Polymer Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon22212, Republic of Korea
| | - Sang-Ok Kim
- Energy Storage Research Center, Korea Institute of Science and Technology (KIST), 14 Gil 5 Hwarang-ro, Seongbuk-gu, Seoul02792, Republic of Korea
| | - Hyung-Seok Kim
- Energy Storage Research Center, Korea Institute of Science and Technology (KIST), 14 Gil 5 Hwarang-ro, Seongbuk-gu, Seoul02792, Republic of Korea
| | - Jimin Shim
- Energy Storage Research Center, Korea Institute of Science and Technology (KIST), 14 Gil 5 Hwarang-ro, Seongbuk-gu, Seoul02792, Republic of Korea
| |
Collapse
|
24
|
Amelioration of ionic conductivity (303 K) with the supplement of MnO2 filler in the chitosan biopolymer electrolyte for magnesium batteries. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04411-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Roka N, Kokkorogianni O, Kontoes-Georgoudakis P, Choinopoulos I, Pitsikalis M. Recent Advances in the Synthesis of Complex Macromolecular Architectures Based on Poly(N-vinyl pyrrolidone) and the RAFT Polymerization Technique. Polymers (Basel) 2022; 14:701. [PMID: 35215614 PMCID: PMC8880212 DOI: 10.3390/polym14040701] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Recent advances in the controlled RAFT polymerization of complex macromolecular architectures based on poly(N-vinyl pyrrolidone), PNVP, are summarized in this review article. Special interest is given to the synthesis of statistical copolymers, block copolymers, and star polymers and copolymers, along with graft copolymers and more complex architectures. In all cases, PNVP is produced via RAFT techniques, whereas other polymerization methods can be employed in combination with RAFT to provide the desired final products. The advantages and limitations of the synthetic methodologies are discussed in detail.
Collapse
Affiliation(s)
| | | | | | | | - Marinos Pitsikalis
- Industrial Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.R.); (O.K.); (P.K.-G.); (I.C.)
| |
Collapse
|
26
|
Babu B, Enke M, Prykhodska S, Lex‐Balducci A, Schubert US, Balducci A. New Diglyme-based Gel Polymer Electrolytes for Na-based Energy Storage Devices. CHEMSUSCHEM 2021; 14:4836-4845. [PMID: 34473902 PMCID: PMC8597054 DOI: 10.1002/cssc.202101445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/26/2021] [Indexed: 06/13/2023]
Abstract
This work presents for the first time a new diglyme-based gel polymer (DOBn-GPE) suitable for Na-based energy storage devices. The DOBn-GPE, which contains a methacrylate-based polymer, exhibited an excellent high ionic conductivity (2.3 mS cm-1 at 20 °C), broad electrochemical stability (>5.0 V), and high mechanical stability. DOBn-GPE could be successfully used for the realization of Na-ion capacitors, sodium-metal batteries, and sodium-ion batteries, displaying performance comparable with those of systems containing liquid electrolytes at room temperature and at 60 °C. The results of these investigation indicated that the development of diglyme-based gel polymer electrolytes represents a promising strategy for the realization of advanced Na-based energy storage devices.
Collapse
Affiliation(s)
- Binson Babu
- Institute for Technical Chemistry and Environmental ChemistryFriedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
| | - Marcel Enke
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaHumboldtstr. 1007743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
| | - Sofiia Prykhodska
- Institute for Technical Chemistry and Environmental ChemistryFriedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
| | - Alexandra Lex‐Balducci
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaHumboldtstr. 1007743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaHumboldtstr. 1007743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
| | - Andrea Balducci
- Institute for Technical Chemistry and Environmental ChemistryFriedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
| |
Collapse
|
27
|
Shen Y, Xu L, Wang Q, Zhao Z, Dong Z, Liu J, Zhong C, Hu W. Root Reason for the Failure of a Practical Zn-Ni Battery: Shape Changing Caused by Uneven Current Distribution and Zn Dissolution. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51141-51150. [PMID: 34694770 DOI: 10.1021/acsami.1c17204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In recent years, with the increasing application of lithium-ion batteries in energy storage devices, fire accidents caused by lithium-ion batteries have become more frequent and have arisen wide concern. Due to the safety of aqueous electrolyte, aqueous Zn-based batteries have attracted vast attention, among which Zn-Ni batteries stand out by virtue of their excellent rate performance and environmental friendliness. However, poor cycling life limits the application of Zn-Ni batteries. To figure out the main cause, a failure analysis of a practical Zn-Ni battery has been carried out. During the cycling of the Zn-Ni battery, the evolution of gas, the shape changing, and the aggregation of additive and binder of Zn anode can be observed. Combined with the finite element analysis, we finally reveal that the key factor of battery failure is the shape changing of the Zn anode caused by uneven current distribution and the dissolution of Zn. The shape changing of the Zn anode reduces the effective surface area of anode and increases the possibility of dead Zn, which makes the battery unable to discharge even in the presence of a large amount of Zn. These findings are helpful to deepen the understanding of the working and failure mechanisms of the Zn anode and provide effective guidance for subsequent research.
Collapse
Affiliation(s)
| | - Luyao Xu
- Shenzhen Zhongwu Technology Co., Ltd., Shenzhen 518052, China
| | | | | | - Ziqiang Dong
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | | | - Cheng Zhong
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 119077, China
| | - Wenbin Hu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 119077, China
| |
Collapse
|
28
|
BaF(p-BDC)0.5 as the Catalyst Precursor for the Catalytic Dehydrochlorination of 1-Chloro-1,1-Difluoroethane to Vinylidene Fluoride. Catalysts 2021. [DOI: 10.3390/catal11111268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A BaF(p-BDC)0.5 catalyst was prepared by solid state reaction at room temperature with Ba(OH)2 as precursor, NH4F as F source, and H2(p-BDC) as organic ligand. The calcined samples were used as catalysts for dehydrochlorination of 1-chloro-1,1-difluoroethane to generate vinylidene fluoride (VDF) at 350 °C. Commercial production of VDF is carried out at 600–700 °C. Clearly, pyrolysis of the BaF(p-BDC)0.5 catalyst provided a promising way to prepare VDF at low temperatures. Prior to calcination, the activity of the BaF(p-BDC)0.5 catalyst was low. Following calcination at high temperatures, BaF(p-BDC)0.5 decomposed to BaF2 and BaCO3, and then the catalyst was chlorinated and fluorinated to BaClF, which showed high activity and stable VDF selectivity for dehydrochlorination of 1-Chloro-1,1-Difluoroethane to VDF.
Collapse
|
29
|
Enhancing Lithium ion conductivity and all-solid-state secondary battery performance in polymer composite electrolyte membranes with β-Crystalline-rich Poly(vinylidene fluoride) Nanofibers. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
30
|
C Lourenço T, Ebadi M, J Panzer M, Brandell D, T Costa L. A molecular dynamics study of a fully zwitterionic copolymer/ionic liquid-based electrolyte: Li + transport mechanisms and ionic interactions. J Comput Chem 2021; 42:1689-1703. [PMID: 34128552 DOI: 10.1002/jcc.26706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/07/2021] [Accepted: 05/30/2021] [Indexed: 11/05/2022]
Abstract
The development of polymer electrolytes (PEs) is crucial for advancing safe, high-energy density batteries, such as lithium-metal and other beyond lithium-ion chemistries. However, reaching the optimum balance between mechanical stiffness and ionic conductivity is not a straightforward task. Zwitterionic (ZI) gel electrolytes comprising lithium salt and ionic liquid (IL) solutions within a fully ZI polymer network can, in this context, provide useful properties. Although such materials have shown compatibility with lithium metal in batteries, several fundamental structure-dynamic relationships regarding ionic transport and the Li+ coordination environment remain unclear. To better resolve such issues, molecular dynamics simulations were carried out for two IL-based electrolyte systems, N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([BMP][TFSI]) with 1 M LiTFSI salt and a ZI gel electrolyte containing the IL and a ZI copolymer: poly(2-methacryloyloxyethyl phosphorylcholine-co-sulfobetaine vinylimidazole), poly(MPC-co-SBVI). The addition of ZI polymer decreases the [TFSI]- -[Li]+ interactions and increases the IL ion diffusivities, and consequently, the overall ZI gel ionic conductivity. The structural analyses showed a large preference for lithium-ion interactions with the polymer phosphonate groups, while the [TFSI]- anions interact directly with the sulfonate group and the [BMP]+ cations only display secondary interactions with the polymer. In contrast to previous experimental data on the same system, the simulated transference numbers showed smaller [Li]+ contributions to the overall ionic conductivities, mainly due to negatively charged lithium aggregates and the strong lithium-ion interactions in the systems.
Collapse
Affiliation(s)
- Tuanan C Lourenço
- MolMod-CS, Instituto de Química, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Mahsa Ebadi
- Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Matthew J Panzer
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, USA
| | - Daniel Brandell
- Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Luciano T Costa
- MolMod-CS, Instituto de Química, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Yin H, Han C, Liu Q, Wu F, Zhang F, Tang Y. Recent Advances and Perspectives on the Polymer Electrolytes for Sodium/Potassium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006627. [PMID: 34047049 DOI: 10.1002/smll.202006627] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Owing to the low cost of sodium/potassium resources and similar electrochemical properties of Na+ /K+ to Li+ , sodium-ion batteries (SIBs) and potassium-ion batteries (KIBs) are regarded as promising alternatives to lithium-ion batteries (LIBs) in large-scale energy storage field. However, traditional organic liquid electrolytes bestow SIBs/KIBs with serious safety concerns. In contrast, quasi-/solid-phase electrolytes including polymer electrolytes (PEs) and inorganic solid electrolytes (ISEs) show great superiority of high safety. However, the poor processibility and relatively low ionic conductivity of Na+ and K+ ions limit the further practical applications of ISEs. PEs combine some merits of both liquid-phase electrolytes and ISEs, and present great potentials in next-generation energy storage systems. Considerable efforts have been devoted to improving their overall properties. Nevertheless, there is still a lack of an in-depth and comprehensive review to get insights into mechanisms and corresponding design strategies of PEs. Herein, the advantages of different electrolytes, particularly PEs are first minutely reviewed, and the mechanism of PEs for Na+ /K+ ion transfer is summarized. Then, representative researches and recent progresses of SIBs/KIBs based on PEs are presented. Finally, some suggestions and perspectives are put forward to provide some possible directions for the follow-up researches.
Collapse
Affiliation(s)
- Hang Yin
- School of Materials and Metallurgy, University of Science and Technology Liaoning, Liaoning, Anshan, 114051, China
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chengjun Han
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Qirong Liu
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Fayu Wu
- School of Materials and Metallurgy, University of Science and Technology Liaoning, Liaoning, Anshan, 114051, China
| | - Fan Zhang
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yongbing Tang
- School of Materials and Metallurgy, University of Science and Technology Liaoning, Liaoning, Anshan, 114051, China
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
- Key Laboratory of Advanced Materials Processing & Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| |
Collapse
|
32
|
Yu X, Grundish NS, Goodenough JB, Manthiram A. Ionic Liquid (IL) Laden Metal-Organic Framework (IL-MOF) Electrolyte for Quasi-Solid-State Sodium Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24662-24669. [PMID: 34008941 DOI: 10.1021/acsami.1c02563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An ionic liquid (IL) laden metal-organic framework (MOF) sodium-ion electrolyte has been developed for ambient-temperature quasi-solid-state sodium batteries. The MOF skeleton is designed according to a UIO-66 (Universitetet i Oslo) structure. A sodium sulfonic (-SO3Na) group grafted to the UIO-based MOF ligand improves the Na+-ion conductivity. Upon lading with a sodium-based ionic liquid (Na-IL), sodium bis(trifluoromethylsulfonyl)imide (NaTFSI) in 1-n-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Bmpyr-TFSI), the Na-IL laden sulfonated UIO-66 (UIOSNa) quasi-solid electrolyte exhibits a Na+-ion conductivity of 3.6 × 10-4 S cm-1 at ambient temperature. Quasi-solid-state sodium batteries with the Na-IL/UIOSNa electrolyte are demonstrated with a layered Na3Ni1.5TeO6 cathode and sodium-metal anode. The quasi-solid-state Na∥Na-IL/UIOSNa∥Na3Ni1.5TeO6 cells show remarkable cycling performance.
Collapse
Affiliation(s)
- Xingwen Yu
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nicholas S Grundish
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - John B Goodenough
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Arumugam Manthiram
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
33
|
Zheng J, Sun Y, Li W, Feng X, Chen W, Zhao Y. Effects of Comonomers on the Performance of Stable Phosphonate-Based Gel Terpolymer Electrolytes for Sodium-Ion Batteries with Ultralong Cycling Stability. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25024-25035. [PMID: 34024107 DOI: 10.1021/acsami.1c06147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gel polymer electrolyte (GPE) is one of the most promising alternatives to solve the bottlenecks of nonaqueous liquid electrolytes such as decomposition, safety hazards, and growth of dendrites. In this work, three novel methyl phosphonate-based crosslinking gel terpolymer electrolytes with different comonomers are designed and prepared by in situ radical polymerization. The gel polymer electrolytes have excellent thermal stability, wide electrochemical windows (≥4.9 V), and high ionic conductivities (±3 mS cm-1), and may be used as less-flammable electrolytes for sodium-ion batteries. 31P NMR spectra, Arrhenius plot, and density functional theory (DFT) calculations confirm that multifunctional phosphonate structural units promote the dissociation of NaClO4 and help to transport the sodium ions freely in the polymer framework. X-ray photoelectron spectroscopy (XPS) results show that the gel polymer electrolytes have the capability of inhibiting liquid electrolyte decomposition and the formation of the stable solid electrolyte interphase (SEI) film. The Na3V2(PO4)3/GPE/Na cells exhibit better ultralong cycling stability and enhanced temperature performance than those of liquid cells. Strikingly, GPE1 has the best comprehensive electrochemical performance, especially the rate performance and long-term cycling stability with a capacity retention ratio of 82.6% after 3500 cycles, which indicates that different comonomers have obvious effects on the performance. Therefore, the full cell of SnS2/GPE1/Na3V2(PO4)3 is evaluated and delivers good cycling stability of 500 cycles, holding a great prospect for the design and production of phosphorus-containing electrolytes for safer sodium-ion batteries.
Collapse
Affiliation(s)
- Jinyun Zheng
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yanke Sun
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Wenjie Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiangming Feng
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Weihua Chen
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yufen Zhao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, P. R. China
| |
Collapse
|
34
|
Liu X, Lei X, Wang YG, Ding Y. Prevention of Na Corrosion and Dendrite Growth for Long-Life Flexible Na-Air Batteries. ACS CENTRAL SCIENCE 2021; 7:335-344. [PMID: 33655071 PMCID: PMC7908042 DOI: 10.1021/acscentsci.0c01560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 05/08/2023]
Abstract
Rechargeable Na-air batteries (NABs) based on abundant Na resources are generating great interest due to their high energy density and low cost. However, Na anode corrosion in ambient air and the growth of abnormal dendrites lead to insufficient cycle performance and safety hazards. Effectively protecting the Na anode from corrosion and inducing the uniform Na plating and stripping are therefore of vital importance for practical application. We herein report a NAB with in situ formed gel electrolyte and Na anode with trace residual Li. The gel electrolyte is obtained within cells through cross-linking Li ethylenediamine at the anode surface with tetraethylene glycol dimethyl ether (G4) from the liquid electrolyte. The gel can effectively prevent H2O and O2 crossover, thus delaying Na anode corrosion and electrolyte decomposition. Na dendrite growth was suppressed by the electrostatic shield effect of Li+ from the modified Li layer. Benefiting from these improvements, the NAB achieves a robust cycle performance over 2000 h in opened ambient air, which is superior to previous results. Gelation of the electrolyte prevents liquid leakage during battery bending, facilitating greater cell flexibility, which could lead to the development of NABs suitable for wearable electronic devices in ambient air.
Collapse
Affiliation(s)
- Xizheng Liu
- Tianjin
Key Laboratory of Advanced Functional Porous Materials, Institute
for New Energy Materials and Low-Carbon Technologies, School of Materials
Science and Engineering, Tianjin University
of Technology, Binshui Xi dao 391, Xiqing District, 300384 Tianjin, China
| | - Xiaofeng Lei
- Tianjin
Key Laboratory of Advanced Functional Porous Materials, Institute
for New Energy Materials and Low-Carbon Technologies, School of Materials
Science and Engineering, Tianjin University
of Technology, Binshui Xi dao 391, Xiqing District, 300384 Tianjin, China
| | - Yong-Gang Wang
- Department
of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and
Innovative Materials, Institute of New Energy, iChEM (Collaborative
Innovation Center of Chemistry for Energy Materials), Fudan University, 200433 Shanghai, China
- (Y.-G.W.)
| | - Yi Ding
- Tianjin
Key Laboratory of Advanced Functional Porous Materials, Institute
for New Energy Materials and Low-Carbon Technologies, School of Materials
Science and Engineering, Tianjin University
of Technology, Binshui Xi dao 391, Xiqing District, 300384 Tianjin, China
- (Y.D.)
| |
Collapse
|
35
|
Yu X, Xue L, Goodenough JB, Manthiram A. All‐Solid‐State Sodium Batteries with a Polyethylene Glycol Diacrylate–Na
3
Zr
2
Si
2
PO
12
Composite Electrolyte. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/aesr.202000061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xingwen Yu
- Materials Science & Engineering Program and Texas Materials Institute The University of Texas at Austin Austin TX 78712 USA
| | - Leigang Xue
- Materials Science & Engineering Program and Texas Materials Institute The University of Texas at Austin Austin TX 78712 USA
| | - John B. Goodenough
- Materials Science & Engineering Program and Texas Materials Institute The University of Texas at Austin Austin TX 78712 USA
| | - Arumugam Manthiram
- Materials Science & Engineering Program and Texas Materials Institute The University of Texas at Austin Austin TX 78712 USA
| |
Collapse
|
36
|
Xu C, Yang Y, Wang H, Xu B, Li Y, Tan R, Duan X, Wu D, Zhuo M, Ma J. Electrolytes for Lithium- and Sodium-Metal Batteries. Chem Asian J 2020; 15:3584-3598. [PMID: 32856415 DOI: 10.1002/asia.202000851] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/26/2020] [Indexed: 11/08/2022]
Abstract
High-energy-density batteries have attracted significant attention due to the huge demand in electric transportation in future. Metal-based batteries, especially lithium metal batteries (LMBs) and sodium metal batteries (SMBs), have been hot research topics nowadays. The uncontrolled growth of metal dendrites has retarded the development of LMBs and SMBs. Various electrolytes have been explored to meet the demand of high-performance metal-based batteries, such as additives-contained electrolytes, polymer electrolytes, and solid-state electrolytes. To guide the development of electrolytes in LMBs and SMBs, we organize this roadmap to give out the status of present research and future challenges in this field. We also hope that the readers can get the knowledge and ideas from this roadmap.
Collapse
Affiliation(s)
- Chenxuan Xu
- School of Physics and Electronics, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Yulu Yang
- School of Physics and Electronics, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Huaping Wang
- School of Physics and Electronics, Hunan University, Changsha 410082, Hunan, P. R. China.,Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, 450002, Henan, P. R. China
| | - Biyi Xu
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yutao Li
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Rou Tan
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, P. R. China) W
| | - Xiaochuan Duan
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, P. R. China) W
| | - Daxiong Wu
- School of Physics and Electronics, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Ming Zhuo
- College of Intelligence Science, National University of Defense Technology, Changsha, 410003, Hunan, P. R. China
| | - Jianmin Ma
- School of Physics and Electronics, Hunan University, Changsha 410082, Hunan, P. R. China
| |
Collapse
|
37
|
Meng F, Long T, Xu B, Zhao Y, Hu Z, Zhang L, Liu J. Electrolyte Technologies for High Performance Sodium-Ion Capacitors. Front Chem 2020; 8:652. [PMID: 32850665 PMCID: PMC7431672 DOI: 10.3389/fchem.2020.00652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/23/2020] [Indexed: 12/02/2022] Open
Abstract
Bridging the energy gap between batteries and capacitors, while in principle delivering a supercapacitor-like high power density and long lifespan, sodium-ion capacitors (SIC) have been considered promising energy storage devices that could be commercialized in the near future due to the natural abundance of sodium sources and the performance superiority of SIC devices. Therefore, in the past decade, substantial research efforts have been devoted to their structure and property improvements. With regard to the electrochemical performance of an ion capacitor, except for the electrode, the composition and structure of the electrolytes are also of great importance. Thus, in this mini review, we present a brief summary of the electrolytes developed recently for high performance SIC, including aqueous, organic, and ionic liquid based electrolytes. The influence factors such as ionic conductivities, electrolyte concentrations, electrochemical stable windows, as well as the cost and safety issues are discussed. Furthermore, the future perspectives and challenges in the science and engineering of new electrolytes are also considered. We hope that this review may be helpful to the energy storage community regarding the electrolytes of advanced SIC systems.
Collapse
Affiliation(s)
- Fancheng Meng
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, China
- Guangde Tianyun New Tech. Co. Ltd., Xuancheng, China
| | - Tao Long
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, China
| | - Bin Xu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, China
| | - Yixin Zhao
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, China
| | - Zexuan Hu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, China
| | - Luxian Zhang
- Guangde Tianyun New Tech. Co. Ltd., Xuancheng, China
| | - Jiehua Liu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
38
|
Ma Q, Tietz F. Solid‐State Electrolyte Materials for Sodium Batteries: Towards Practical Applications. ChemElectroChem 2020. [DOI: 10.1002/celc.202000164] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qianli Ma
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate ResearchMaterials Synthesis and Processing (IEK-1) 52425 Jülich Germany
| | - Frank Tietz
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate ResearchMaterials Synthesis and Processing (IEK-1) 52425 Jülich Germany
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate ResearchHelmholtz-Institute Münster (IEK-12) 52425 Jülich Germany
| |
Collapse
|
39
|
Gao Y, Chen G, Wang X, Yang H, Wang Z, Lin W, Xu H, Bai Y, Wu C. PY 13FSI-Infiltrated SBA-15 as Nonflammable and High Ion-Conductive Ionogel Electrolytes for Quasi-Solid-State Sodium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22981-22991. [PMID: 32323970 DOI: 10.1021/acsami.0c04878] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Exploring electrolytes of high safety is essential to pave the practical route for sodium-ion batteries (SIBs) toward their important applications in large-scale energy storage and power supplies. In this regard, ionogel electrolytes (IEs) have been highlighted owing to their high ionic conductivity, prominent electrochemical and thermal stability, and, more crucially, high interfacial wettability. However, present studies lack an understanding of the interaction of IEs, which determines the ion desolvation and migration. In this article, IEs comprising an SBA-15 host, an ionic liquid, sodium salt, and poly(vinylidene fluoride)-hexafluoro propylene (PVDF-HFP) have been proposed by mechanical ball milling and roller pressing. The component ratio has been optimized based on the balance between ionic conductivity and self-supporting capability of IEs. The optimal IEs showed sufficiently high ionic conductivity (2.48 × 10-3 S cm-1 at 30 °C), wide electrochemical window (up to 4.8 V vs Na+/Na), and high Na+ transference number (0.37). Due to the presence of SBA-15 and an ionic liquid, the IEs exhibited much improved thermal resistance than that of the conventional organic liquid electrolytes (OLEs). Furthermore, Fourier transform infrared (FT-IR) spectroscopy revealed the hydrogen bonding interaction between silanols and the dissolved salts, not only anchoring anions for immobilization but also promoting the dissociation of sodium salts. After being matched with the Na3V2(PO4)3 (NVP) cathode and metallic Na anode, the SIBs presented a specific discharge capacity of up to 110.7 mA h g-1 initially at room temperature with 92% capacity retention after 300 cycles. The improved safety and electrochemical performance provided insights into rationally regulating IEs and their interactions with the prospect of strengthening their practical applications in SIBs.
Collapse
Affiliation(s)
- Yongsheng Gao
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Guanghai Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xinran Wang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Haoyi Yang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhaohua Wang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Weiran Lin
- Fundamental Industry Training Center, Tsinghua University, Beijing 100084, China
| | - Huajie Xu
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou 450002, China
| | - Ying Bai
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chuan Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China
| |
Collapse
|
40
|
Design of porous calcium phosphate based gel polymer electrolyte for Quasi-solid state sodium ion battery. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Zhang S, Han WQ. Recent advances in MXenes and their composites in lithium/sodium batteries from the viewpoints of components and interlayer engineering. Phys Chem Chem Phys 2020; 22:16482-16526. [DOI: 10.1039/d0cp02275f] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An up-to-date review about MXenes based on their distinguishing properties, namely, large interlayer spacing and rich surface chemistry.
Collapse
Affiliation(s)
- Shunlong Zhang
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Wei-Qiang Han
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
42
|
Jiang Y, Sun M, Ni J, Li L. Ultrastable Sodium Storage in MoO 3 Nanotube Arrays Enabled by Surface Phosphorylation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37761-37767. [PMID: 31545031 DOI: 10.1021/acsami.9b12858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Molybdenum trioxide (MoO3) has been considered as an appealing choice of anode for sodium-ion batteries because of its high theoretical capacity (1117 mA h g-1). However, the large volume change upon Na+ storage results in poor cycling stability and capacity fade of MoO3. Here, we demonstrate a surface phosphorylation strategy to mitigate the degradation of three-dimensional MoO3 array electrodes. Such a phosphorylation strategy allows MoO3 arrays to sustain a capacity of 265 mA h g-1, or ∼90% of the initial value, at a rate of 2 A g-1 over 1500 cycles, outperforming most reported MoO3 electrodes. Moreover, kinetic analysis unveils a capacitance-dominated Na+ storage feature of MoO3 arrays, owing to the enhanced electron mobility imparted by oxygen vacancies that are simultaneously introduced by phosphorylation. Hence, surface phosphorylation might offer new possibilities to bypass multiple materials challenges facing current sodium electrodes.
Collapse
Affiliation(s)
- Yu Jiang
- School of Physical Science and Technology, Center for Energy Conversion Materials & Physics (CECMP), Jiangsu Key Laboratory of Thin Films , Soochow University , Suzhou 215006 , P. R. China
| | - Menglei Sun
- School of Physical Science and Technology, Center for Energy Conversion Materials & Physics (CECMP), Jiangsu Key Laboratory of Thin Films , Soochow University , Suzhou 215006 , P. R. China
| | - Jiangfeng Ni
- School of Physical Science and Technology, Center for Energy Conversion Materials & Physics (CECMP), Jiangsu Key Laboratory of Thin Films , Soochow University , Suzhou 215006 , P. R. China
| | - Liang Li
- School of Physical Science and Technology, Center for Energy Conversion Materials & Physics (CECMP), Jiangsu Key Laboratory of Thin Films , Soochow University , Suzhou 215006 , P. R. China
| |
Collapse
|
43
|
Wang PF, Weng M, Xiao Y, Hu Z, Li Q, Li M, Wang YD, Chen X, Yang X, Wen Y, Yin YX, Yu X, Xiao Y, Zheng J, Wan LJ, Pan F, Guo YG. An Ordered Ni 6 -Ring Superstructure Enables a Highly Stable Sodium Oxide Cathode. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903483. [PMID: 31496017 DOI: 10.1002/adma.201903483] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/11/2019] [Indexed: 05/18/2023]
Abstract
Sodium-based layered oxides are among the leading cathode candidates for sodium-ion batteries, toward potential grid energy storage, having large specific capacity, good ionic conductivity, and feasible synthesis. Despite their excellent prospects, the performance of layered intercalation materials is affected by both a phase transition induced by the gliding of the transition metal slabs and air-exposure degradation within the Na layers. Here, this problem is significantly mitigated by selecting two ions with very different MO bond energies to construct a highly ordered Ni6 -ring superstructure within the transition metal layers in a model compound (NaNi2/3 Sb1/3 O2 ). By virtue of substitution of 1/3 nickel with antimony in NaNiO2 , the existence of these ordered Ni6 -rings with super-exchange interaction to form a symmetric atomic configuration and degenerate electronic orbital in layered oxides can not only largely enhance their air stability and thermal stability, but also increase the redox potential and simplify the phase-transition process during battery cycling. The findings reveal that the ordered Ni6 -ring superstructure is beneficial for constructing highly stable layered cathodes and calls for new paradigms for better design of layered materials.
Collapse
Affiliation(s)
- Peng-Fei Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mouyi Weng
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Yao Xiao
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Zongxiang Hu
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Qinghao Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing, 100190, P. R. China
| | - Meng Li
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Yi-Ding Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xin Chen
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Xinan Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing, 100190, P. R. China
| | - Yuren Wen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing, 100190, P. R. China
| | - Ya-Xia Yin
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiqian Yu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing, 100190, P. R. China
| | - Yinguo Xiao
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Jiaxin Zheng
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Li-Jun Wan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Feng Pan
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Yu-Guo Guo
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|