1
|
Chen Y, Su X, Wu Z, Deng X, Zhang Y, Zhao Z, Wei Z, Sun S. Sensitive sensing of GLA and ISL based on highly conductivity nitrogen-doped carbon synergistic dual-template molecularly imprinted ratiometric electrochemical sensor. Biosens Bioelectron 2024; 259:116384. [PMID: 38768536 DOI: 10.1016/j.bios.2024.116384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/04/2024] [Accepted: 05/11/2024] [Indexed: 05/22/2024]
Abstract
A novel ratiometric Molecularly Imprinted Electrochemical sensor for the specific marker of Glycyrrhiza glabra L. was developed in this work. To achieve simultaneous detection of two analytes on one sensor, we constructed a double template molecular imprinted electrochemical sensor with glabridin (GLA) and isoliquiritin (ISL) as templates. Further, Ferrocene/ZIF-8 (Fc/ZIF-8) composites were prepared via a one-pot solvothermal reaction and coated on the surface of a glassy carbon electrode (GCE), and the oxidation of Fc was presented as the internal reference signal. Nitrogen-doped carbon (NOC) with high conductivity was further loaded on the modified GCE. Based on theoretical exploration and computer directional simulation of density functional theory (DFT), the optimal functional monomer and the best ratio of double template molecules to functional monomer were screened. Under optimal conditions, the sensor produced electrochemical curves when exposed to a solution containing GLA and ISL. As the concentration of GLA and ISL increased, the peak current intensity of GLA and ISL (IGLA and IISL) also increased, while the peak current intensity of Fc (as a reference signal) remained relatively constant. The values of IGLA/IFc and IISL/IFc showed excellent linear relationships with GLA and ISL concentrations in the range of 0.1-160 μM and 0.5-150 μM, respectively. The detection limits were 0.052 μM and 0.27 μM (S/N = 3), respectively. Due to the imprinting effect of MIP and the existence of a reference signal, the sensor exhibited excellent selectivity and anti-interference ability and was successfully applied to the quality evaluation of Glycyrrhiza glabra L.
Collapse
Affiliation(s)
- Yanbing Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, PR China; School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832002, PR China
| | - Xiao Su
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, PR China
| | - Zhenyu Wu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, PR China
| | - Xiling Deng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, PR China
| | - Yuling Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, PR China; School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832002, PR China
| | - Zhihao Zhao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, PR China; School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832002, PR China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832002, PR China.
| | - Shiguo Sun
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, PR China; Shanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, PR China; Shenzhen Research Institute, Northwest Agriculture and Forestry University, Shenzhen, 518000, PR China.
| |
Collapse
|
2
|
Brycht M, Poltorak L, Baluchová S, Sipa K, Borgul P, Rudnicki K, Skrzypek S. Electrochemistry as a Powerful Tool for Investigations of Antineoplastic Agents: A Comprehensive Review. Crit Rev Anal Chem 2024; 54:1017-1108. [PMID: 35968923 DOI: 10.1080/10408347.2022.2106117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Cancer is most frequently treated with antineoplastic agents (ANAs) that are hazardous to patients undergoing chemotherapy and the healthcare workers who handle ANAs in the course of their duties. All aspects related to hazardous oncological drugs illustrate that the monitoring of ANAs is essential to minimize the risks associated with these drugs. Among all analytical techniques used to test ANAs, electrochemistry holds an important position. This review, for the first time, comprehensively describes the progress done in electrochemistry of ANAs by means of a variety of bare or modified (bio)sensors over the last four decades (in the period of 1982-2021). Attention is paid not only to the development of electrochemical sensing protocols of ANAs in various biological, environmental, and pharmaceutical matrices but also to achievements of electrochemical techniques in the examination of the interactions of ANAs with deoxyribonucleic acid (DNA), carcinogenic cells, biomimetic membranes, peptides, and enzymes. Other aspects, including the enantiopurity studies, differentiation between single-stranded and double-stranded DNA without using any label or tag, studies on ANAs degradation, and their pharmacokinetics, by means of electrochemical techniques are also commented. Finally, concluding remarks that underline the existence of a significant niche for the basic electrochemical research that should be filled in the future are presented.
Collapse
Affiliation(s)
- Mariola Brycht
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Lukasz Poltorak
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Simona Baluchová
- Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Charles University, Prague 2, Czechia
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, The Netherlands
| | - Karolina Sipa
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Paulina Borgul
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Konrad Rudnicki
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Sławomira Skrzypek
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| |
Collapse
|
3
|
Zha Q, Luo Y, Liu C, Xu T. Integrated phase separation in microliter droplets for ultratrace-enriching biomarker analysis. LAB ON A CHIP 2024; 24:1775-1781. [PMID: 38357751 DOI: 10.1039/d3lc00953j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Ultratrace-enriching biomarker analysis is an effective method for achieving highly accurate and enhanced sensitive detection. In this study, we have developed an enrichment detection platform by combining a minipillar array with an aqueous two-phase system (ATPS) for ultratrace enriching biomarker analysis. After optimizing the enrichment conditions of ATPS, target miRNAs at ultratrace levels specifically accumulate in the DEX-rich phase, which significantly increases the target miRNA concentration-related fluorescence intensity. Compared to non-enriched miRNA in the single-phase PEG solution, the detection limit of ATPS-enriched miRNA had improved more than 200-fold. The ATPS-based enrichment detection strategy offers a novel and convenient approach for the simultaneous detection of biomarkers with ultratrace.
Collapse
Affiliation(s)
- Qihao Zha
- College of Chemistry and Environmental Engineering, The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China.
| | - Yong Luo
- College of Chemistry and Environmental Engineering, The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China.
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Conghui Liu
- College of Chemistry and Environmental Engineering, The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China.
| | - Tailin Xu
- College of Chemistry and Environmental Engineering, The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China.
| |
Collapse
|
4
|
Li Q, Huang Y, Pan Z, Ni J, Yang W, Chen J, Zhang Y, Li J. Hollow C, N-TiO2@C surface molecularly imprinted microspheres with visible light photocatalytic regeneration availability for targeted degradation of sulfadiazine. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Chen Y, Tang Y, Liu Y, Zhao F, Zeng B. Kill two birds with one stone: Selective and fast removal and sensitive determination of oxytetracycline using surface molecularly imprinted polymer based on ionic liquid and ATRP polymerization. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128907. [PMID: 35452985 DOI: 10.1016/j.jhazmat.2022.128907] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Oxytetracycline (OTC) residue in food and environment has potential threats to ecosystem and human health, thus its sensitive monitoring and effective elimination are very important. In this work, a new molecularly imprinted polymer (MIP) composite was prepared through atom transfer radical polymerization by using OTC as template, gold nanoparticles modified carbon nanospheres (Au-CNS) as supporter, ionic liquids (IL) as functional monomer and cross-linking agent. The obtained MIP-IL@Au-CNS composite was characterized by Fourier transform infrared absorption spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy. It displayed high imprinting factor (5.50) and adsorption capacity (56.7 mg g-1), and could achieved the adsorption equilibrium in short time (about 15 min). Results also illustrated that the adsorption process basically conformed to the quasi-second-order kinetic model and Freundlich model, and MIP-IL@Au-CNS could be recycled at least 5 times. Furthermore, a sensitive OTC electrochemical sensor was developed by combining MIP-IL@Au-CNS with IL-modified carbon nanocomposites (IL@N-rGO-MWCNT). The resulting sensor demonstrated a linear response to OTC in the wide range of 0.02-20 μM, and the detection limit was down to 5 nM. It also had the advantages of high selectivity, fast elution/regeneration and simple construction procedure. The sensor had been applied to the detection of real samples, and acceptable recovery (96.4%-106%) and RSD (3.2%-6.2%) were obtained. This work expands the application of IL-based MIP in pollutant monitoring and enriching.
Collapse
Affiliation(s)
- Yanran Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Yun Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Yiwei Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Faqiong Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Baizhao Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China.
| |
Collapse
|
6
|
Recent Advances of Nanomaterials-Based Molecularly Imprinted Electrochemical Sensors. NANOMATERIALS 2022; 12:nano12111913. [PMID: 35683768 PMCID: PMC9182195 DOI: 10.3390/nano12111913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023]
Abstract
Molecularly imprinted polymer (MIP) is illustrated as an analogue of a natural biological antibody-antigen system. MIP is an appropriate substrate for electrochemical sensors owing to its binding sites, which match the functional groups and spatial structure of the target analytes. However, the irregular shapes and slow electron transfer rate of MIP limit the sensitivity and conductivity of electrochemical sensors. Nanomaterials, famous for their prominent electron transfer capacity and specific surface area, are increasingly employed in modifications of MIP sensors. Staying ahead of traditional electrochemical sensors, nanomaterials-based MIP sensors represent excellent sensing and recognition capability. This review intends to illustrate their advances over the past five years. Current limitations and development prospects are also discussed.
Collapse
|
7
|
Wu L, Li X, Miao H, Xu J, Pan G. State of the art in development of molecularly imprinted biosensors. VIEW 2022. [DOI: 10.1002/viw.20200170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Licheng Wu
- Sino‐European School of Technology of Shanghai University Shanghai University Shanghai China
| | - Xiaolei Li
- Sino‐European School of Technology of Shanghai University Shanghai University Shanghai China
| | - Haohan Miao
- Institute for Advanced Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang Jiangsu China
| | - Jingjing Xu
- Sino‐European School of Technology of Shanghai University Shanghai University Shanghai China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang Jiangsu China
| |
Collapse
|
8
|
Mayoral-Peña K, González Peña OI, Orrantia Clark AM, Flores-Vallejo RDC, Oza G, Sharma A, De Donato M. Biorecognition Engineering Technologies for Cancer Diagnosis: A Systematic Literature Review of Non-Conventional and Plausible Sensor Development Methods. Cancers (Basel) 2022; 14:1867. [PMID: 35454775 PMCID: PMC9030888 DOI: 10.3390/cancers14081867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 12/21/2022] Open
Abstract
Cancer is the second cause of mortality worldwide. Early diagnosis of this multifactorial disease is challenging, especially in populations with limited access to healthcare services. A vast repertoire of cancer biomarkers has been studied to facilitate early diagnosis; particularly, the use of antibodies against these biomarkers has been of interest to detect them through biorecognition. However, there are certain limitations to this approach. Emerging biorecognition engineering technologies are alternative methods to generate molecules and molecule-based scaffolds with similar properties to those presented by antibodies. Molecularly imprinted polymers, recombinant antibodies, and antibody mimetic molecules are three novel technologies commonly used in scientific studies. This review aimed to present the fundamentals of these technologies and address questions about how they are implemented for cancer detection in recent scientific studies. A systematic analysis of the scientific peer-reviewed literature regarding the use of these technologies on cancer detection was carried out starting from the year 2000 up to 2021 to answer these questions. In total, 131 scientific articles indexed in the Web of Science from the last three years were included in this analysis. The results showed that antibody mimetic molecules technology was the biorecognition technology with the highest number of reports. The most studied cancer types were: multiple, breast, leukemia, colorectal, and lung. Electrochemical and optical detection methods were the most frequently used. Finally, the most analyzed biomarkers and cancer entities in the studies were carcinoembryonic antigen, MCF-7 cells, and exosomes. These technologies are emerging tools with adequate performance for developing biosensors useful in cancer detection, which can be used to improve cancer diagnosis in developing countries.
Collapse
Affiliation(s)
- Kalaumari Mayoral-Peña
- School of Engineering and Sciences, Campus Queretaro, Tecnologico de Monterrey, Av. Epigmenio González No. 500, San Pablo, Queretaro 76130, Mexico; (K.M.-P.); (A.S.)
| | - Omar Israel González Peña
- School of Engineering and Sciences, Campus Monterrey, Tecnologico de Monterrey, Av. Eugenio Garza Sada Sur No. 2501, Tecnológico, Monterrey 64849, Mexico
- Institute for the Future of Education, Tecnologico de Monterrey, Av. Eugenio Garza Sada Sur No. 2501, Tecnológico, Monterrey 64849, Mexico
| | - Alexia María Orrantia Clark
- School of Engineering and Sciences, Campus Mexico City, Tecnologico de Monterrey, C. Puente 222, Ejidos de Huipulco, Tlalpan, Mexico City 14380, Mexico;
| | - Rosario del Carmen Flores-Vallejo
- Department of Biomedical Engineering and Mechatronics, Campus Toluca, Universidad del Valle de México (UVM), C. De Las Palmas Poniente 439, San Jorge Pueblo Nuevo, Metepec 52164, Mexico;
| | - Goldie Oza
- Laboratorio Nacional de Micro y Nanofluídica (LABMyN), Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ), Parque San Fandila, Pedro Escobedo, Queretaro 76703, Mexico;
| | - Ashutosh Sharma
- School of Engineering and Sciences, Campus Queretaro, Tecnologico de Monterrey, Av. Epigmenio González No. 500, San Pablo, Queretaro 76130, Mexico; (K.M.-P.); (A.S.)
| | - Marcos De Donato
- School of Engineering and Sciences, Campus Queretaro, Tecnologico de Monterrey, Av. Epigmenio González No. 500, San Pablo, Queretaro 76130, Mexico; (K.M.-P.); (A.S.)
| |
Collapse
|
9
|
Recent Developments in Voltammetric Analysis of Pharmaceuticals Using Disposable Pencil Graphite Electrodes. Processes (Basel) 2022. [DOI: 10.3390/pr10030472] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The even growing production of both well-known and new derivatives with pharmaceutical action involves the need for developing facile and reliable methods for the analysis of these compounds. Among the widely used instrumental techniques, the electrochemical ones are probably the simplest and the most rapid, also having good performance characteristics. However, the key tool in electroanalysis is the working electrode. Due to the inherent electrochemical and economic advantages of the pencil graphite electrode (PGE), the interest in its applicability in the analysis of different analytes has continuously increased in recent years. Thus, this paper aims to review the scientific reports published in the last 10 years on the use of the disposable eco- and user-friendly PGEs in the electroanalysis of compounds of pharmaceutical importance in different matrices. The PGE characteristics and designs (bare or modified with various types of materials), along with their applications and performance parameters (e.g., linear range, limit of detection, and reproducibility), will be discussed, and their advantages and limitations will be critically emphasized.
Collapse
|
10
|
Chen P, Peng H, Zhang Z, Zhang Z, Chen Y, Chen J, Zhu X, Peng J. Facile preparation of highly thermosensitive N-doped carbon dots and their detection of temperature and 6-mercaotopurine. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Li X, Yang B, Xiao K, Duan H, Wan J, Zhao H. Targeted degradation of refractory organic compounds in wastewaters based on molecular imprinting catalysts. WATER RESEARCH 2021; 203:117541. [PMID: 34416650 DOI: 10.1016/j.watres.2021.117541] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Efficient removal of low-concentration refractory pollutants is a crucial problem to ensuring water safety. The use of heterogeneous catalysis of molecular imprinting technology combined with traditional catalysts is a promising method to improve removal efficiency. Presently, the research into molecular imprinting targeting catalysts focuses mainly on material preparation and performance optimization. However, more researchers are investigating other applications of imprinting materials. This review provides recent progress in photocatalyst preparation, electrocatalyst, and Fenton-like catalysts synthesized by molecular imprinting. The principle and control points of target catalysts prepared by precipitation polymerization (PP) and surface molecular imprinting (S-MIP) are introduced. Also, the application of imprinted catalysts in targeted degradation of drugs, pesticides, environmental hormones, and other refractory pollutants is summarized. In addition, the reusability and stability of imprinted catalyst in water treatment are discussed, and the possible ecotoxicity risk is analyzed. Finally, we appraised the prospects, challenges, and opportunities of imprinted catalysts in the advanced oxidation process. This paper provides a reference for the targeted degradation of refractory pollutants and the preparation of targeted catalysts.
Collapse
Affiliation(s)
- Xitong Li
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Bo Yang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ke Xiao
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Huabo Duan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Huazhang Zhao
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
12
|
Wang ZX, Gao YF, Yu XH, Balasubramanian P, Kong FY, Wang W, Chen W, Peng HP. Boron carbon oxyphosphide heterostructured nanodots with phosphate tunable emission for switchable dual detection channels of 6-mercaptopurine assay. Talanta 2021; 226:122067. [DOI: 10.1016/j.talanta.2020.122067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
|
13
|
Ganganboina AB, Dega NK, Tran HL, Darmonto W, Doong RA. Application of sulfur-doped graphene quantum dots@gold-carbon nanosphere for electrical pulse-induced impedimetric detection of glioma cells. Biosens Bioelectron 2021; 181:113151. [PMID: 33740543 DOI: 10.1016/j.bios.2021.113151] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/10/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022]
Abstract
Glioma is the predominant brain tumor with high death rate. The successful development of biosensor to achieve an efficient detection of glioma cells at low concentration remains a great challenge for the personalized glioma therapy. Herein, an ultrasensitive pulse induced electrochemically impedimetric biosensor for glioma cells detection has been successfully fabricated. The 4-11 nm sulfur-doped graphene quantum dots (S-GQDs) are homogeneously deposited onto gold nanoparticles decorated carbon nanospheres (Au-CNS) by Au-thiol linkage to form S-GQDs@Au-CNS nanocomposite which acts as dual functional probe for enhancing the electrochemical activity as well as conjugating the angiopep-2 (Ang-2) for glioma cell detection. Moreover, the application of an externally electrical pulse at +0.6 V expend the surface of glioma cells to accelerate the attachment of glioma cells onto the Ang-2-conjugated S-GQDs@Au-CNS nanocomposite, resulting in the enhanced sensitivity toward glioma cell detection. An ultrasensitive impedimetric detection of glioma cells with a wide linear range of 100-100,000 cells mL-1 and a limit of detection of 40 cells mL-1 is observed. Moreover, the superior selectivity with long-term stability of the developed biosensor in human serum matrix corroborates the feasibility of using S-GQDs@Au-CNS based nanomaterials as the promising sensing probe for practical application to facilitate the ultrasensitive and highly selective detection of cancer cells.
Collapse
Affiliation(s)
| | - Naresh Kumar Dega
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Sec. 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Hai Linh Tran
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Sec. 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Win Darmonto
- Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya, 60115, Indonesia
| | - Ruey-An Doong
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, 101, Sec. 2, Kuang Fu Road, Hsinchu, 30013, Taiwan; Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya, 60115, Indonesia.
| |
Collapse
|
14
|
Wang Z, Li S, Zhou C, Sun Y, Pang H, Liu W, Li X. Ratiometric fluorescent nanoprobe based on CdTe/SiO 2/folic acid/silver nanoparticles core-shell-satellite assembly for determination of 6-mercaptopurine. Mikrochim Acta 2020; 187:665. [PMID: 33205310 DOI: 10.1007/s00604-020-04628-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022]
Abstract
A sensitive and robust fluorescent assay of 6-MP is described which relies on the facile assembly of a fluorescence nanoprobe by design of silica nanosphere encapsulated CdTe quantum dots (CdTe QDs) as scaffold, coupling with chemically tethered folic acid (FA)-protected silver nanoparticles (AgNPs) that function as responsive element. In this way a stable ternary core-shell-satellite nanostructure with dual-emission signals can be established. On binding to the target molecules, 6-MP, FA molecules initially occupied by AgNPs are liberated to give dose-dependent fluorescence emission, which can further form a self-calibration ratiometric fluorescence assay using CdTe QDs as an internal reference. The nanoprobe color vividly changes from red to blue, enabling the direct visual detection. The linear concentration range is 0.15~50 μM with the detection limit of 67 nM. By virtue of the favorable selectivity and robust assays, the nanoprobe was applied to 6-MP detection in urine samples, with recoveries from 97.3 to 106% and relative standard deviations (RSD) less than 5%. Graphical abstract.
Collapse
Affiliation(s)
- Zhao Wang
- Pharmaceutical Analysis Division, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Shuting Li
- Pharmaceutical Analysis Division, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Chunyan Zhou
- Inorganic Chemistry Division, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Yingying Sun
- Pharmaceutical Analysis Division, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Hui Pang
- School of Preclinical Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530031, People's Republic of China
| | - Wei Liu
- Biopharmaceutics and Pharmacokinetics Division, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, People's Republic of China.
| | - Xinchun Li
- Pharmaceutical Analysis Division, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, People's Republic of China.
| |
Collapse
|
15
|
Ghalkhani M, Kaya SI, Bakirhan NK, Ozkan Y, Ozkan SA. Application of Nanomaterials in Development of Electrochemical Sensors and Drug Delivery Systems for Anticancer Drugs and Cancer Biomarkers. Crit Rev Anal Chem 2020; 52:481-503. [DOI: 10.1080/10408347.2020.1808442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Masoumeh Ghalkhani
- Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Sariye Irem Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Turkey
| | - Nurgul K. Bakirhan
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Turkey
| | - Yalcin Ozkan
- Gulhane Faculty of Pharmacy, Department of Pharmaceutical Technology, University of Health Sciences, Ankara, Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|