1
|
Myint W, Lolupiman K, Yang C, Woottapanit P, Limphirat W, Kidkhunthod P, Muzakir M, Karnan M, Zhang X, Qin J. Exploring the Electrochemical Superiority of V 2O 5/TiO 2@Ti 3C 2-MXene Hybrid Nanostructures for Enhanced Lithium-Ion Battery Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53764-53774. [PMID: 39327725 PMCID: PMC11472262 DOI: 10.1021/acsami.4c10656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
The use of vanadium(V)-based materials as electrode materials in electrochemical energy storage (EES) devices is promising due to their structural and chemical variety, abundance, and low cost. V-based materials with a layered structure and high multielectron transfer in the redox reaction have been actively explored for energy storage. Our current work presents the structural and electrochemical properties of a vanadium-based composite with TiO2@Ti3C2 MXene, referred to as VM. This composite is obtained through the in situ thermal decomposition of the VO2(OH)/Ti3C2mixture, which is achieved by solution mixing and drying. The material structure is confirmed using various characterization tools, which establish an orthorhombic V2O5 nanostructure compositing with nanocrystalline TiO2@Ti3C2. VM with 5 wt % MXene, referred to as VM5, can achieve 460 mAhg-1 at a current density of 0.1 Ag1- and 290 mAhg-1 at 1 Ag1-, with an average coulombic efficiency of 98.5%. The presence of the V2O5/TiO2 (nanocrystals) heterojunction attached with Ti3C2 sheets contributed to reduced charge transfer resistance. The cyclic stability shows a capacity retention of 62% over 500 cycles at 1 Ag1- (4C rate, where 1C equals 0.25 Ag1-) with a 0.22 capacity drop with each cycle. Dunn's approach to examining the charge storage mechanism demonstrates 72% contribution of the surface-dominant capacitive process and 28% of the diffusion-controlled intercalation process at 0.4 mVs-1, suggesting a potential high-performance pseudocapacitive hybrid electrode material for lithium-ion batteries.
Collapse
Affiliation(s)
- Waimon Myint
- Center
of Excellence in Responsive Wearable Materials, Metallurgy and Materials
Science Research Institute, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Kittima Lolupiman
- Center
of Excellence in Responsive Wearable Materials, Metallurgy and Materials
Science Research Institute, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Chengwu Yang
- Center
of Excellence in Responsive Wearable Materials, Metallurgy and Materials
Science Research Institute, Chulalongkorn
University, Bangkok 10330, Thailand
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Pattaraporn Woottapanit
- Center
of Excellence in Responsive Wearable Materials, Metallurgy and Materials
Science Research Institute, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Wanwisa Limphirat
- Synchrotron
Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand
| | - Pinit Kidkhunthod
- Synchrotron
Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand
| | - Muhammad Muzakir
- Center
of Excellence in Responsive Wearable Materials, Metallurgy and Materials
Science Research Institute, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Manickavasakam Karnan
- Center
of Excellence in Responsive Wearable Materials, Metallurgy and Materials
Science Research Institute, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Xinyu Zhang
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Jiaqian Qin
- Center
of Excellence in Responsive Wearable Materials, Metallurgy and Materials
Science Research Institute, Chulalongkorn
University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Zhan T, Lu J, Chen L, Ma C, Zhao Y, Wang X, Wang J, Ling Q, Xiao Z, Wu P. Ir Nanoparticles Supported on Oxygen-Deficient Vanadium Oxides Prepared by a Polyoxovanadate Precursor for Enhanced Electrocatalytic Hydrogen Evolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13496-13504. [PMID: 38875122 DOI: 10.1021/acs.langmuir.4c00891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Developing highly active electrocatalysts is crucial for the application of electrocatalytic water splitting. In this study, we prepared vanadium oxide-graphene carbon nanocomposites (VxOy/C) with abundant defects using a carbon- and oxygen-rich hexavanadate derivative Na2[V6O7{(OCH2)3CCH3}4] as a precursor without the addition of an extra carbon source. Subsequently, the VxOy/C was used as a catalyst support to load a small amount of Ir, forming the Ir/VxOy/C nanoelectrocatalyst. This catalyst exhibited low hydrogen evolution overpotentials of only 18.90 and 13.46 mV at a working current density of 10 mA cm-2 in 1.0 M KOH and 0.5 M H2SO4 electrolyte systems, outperforming the commercial Pt/C catalysts. Additionally, the catalyst showed excellent chemical stability and long-term durability. This work provides a new strategy for the design and synthesis of highly active electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Taozhu Zhan
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China
| | - Jiaqiang Lu
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China
| | - Lihong Chen
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China
| | - Chunhui Ma
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China
| | - Yanchao Zhao
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China
| | - Xingyue Wang
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China
| | - Jiani Wang
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China
| | - Qian Ling
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China
| | - Zicheng Xiao
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China
| | - Pingfan Wu
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China
| |
Collapse
|
3
|
Hu P, Hu P, Vu TD, Li M, Wang S, Ke Y, Zeng X, Mai L, Long Y. Vanadium Oxide: Phase Diagrams, Structures, Synthesis, and Applications. Chem Rev 2023; 123:4353-4415. [PMID: 36972332 PMCID: PMC10141335 DOI: 10.1021/acs.chemrev.2c00546] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Vanadium oxides with multioxidation states and various crystalline structures offer unique electrical, optical, optoelectronic and magnetic properties, which could be manipulated for various applications. For the past 30 years, significant efforts have been made to study the fundamental science and explore the potential for vanadium oxide materials in ion batteries, water splitting, smart windows, supercapacitors, sensors, and so on. This review focuses on the most recent progress in synthesis methods and applications of some thermodynamically stable and metastable vanadium oxides, including but not limited to V2O3, V3O5, VO2, V3O7, V2O5, V2O2, V6O13, and V4O9. We begin with a tutorial on the phase diagram of the V-O system. The second part is a detailed review covering the crystal structure, the synthesis protocols, and the applications of each vanadium oxide, especially in batteries, catalysts, smart windows, and supercapacitors. We conclude with a brief perspective on how material and device improvements can address current deficiencies. This comprehensive review could accelerate the development of novel vanadium oxide structures in related applications.
Collapse
|
4
|
Ham J, Park S, Jeon N. Conductive Polyaniline-Indium Oxide Composite Films Prepared by Sequential Infiltration Synthesis for Electrochemical Energy Storage. ACS OMEGA 2023; 8:946-953. [PMID: 36643492 PMCID: PMC9835541 DOI: 10.1021/acsomega.2c06309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Composites of conductive polymers (CP) and metal oxides (MO) have attracted continued interest in the past decade for diverse application fields because the synergistic effects of CP and MO enable the realization of unusual electronic, electrochemical, catalytic, and mechanical properties of the composites. Herein, we present a novel method for the sequential infiltration synthesis of composite films of polyaniline (PANI) and indium oxide (InO x ) with high electrical conductivities (4-9 S/cm). The synthesized composite films were composed of two phases of graded concentration: InO x with oxygen vacancies and PANI with partially protonated molecular units. The PANI-InO x composite films displayed enhanced electrochemical activity with a pair of well-defined redox peaks. The open interfacial regions between the InO x and PANI phases may provide efficient pathways for ion diffusion and active sites for improved charge transfer.
Collapse
|
5
|
Genz NS, Kallio A, Oord R, Krumeich F, Pokle A, Prytz Ø, Olsbye U, Meirer F, Huotari S, Weckhuysen BM. Operando Laboratory-Based Multi-Edge X-Ray Absorption Near-Edge Spectroscopy of Solid Catalysts. Angew Chem Int Ed Engl 2022; 61:e202209334. [PMID: 36205032 PMCID: PMC9828672 DOI: 10.1002/anie.202209334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Indexed: 11/19/2022]
Abstract
Laboratory-based X-ray absorption spectroscopy (XAS) and especially X-ray absorption near-edge structure (XANES) offers new opportunities in catalyst characterization and presents not only an alternative, but also a complementary approach to precious beamtime at synchrotron facilities. We successfully designed a laboratory-based setup for performing operando, quasi-simultaneous XANES analysis at multiple K-edges, more specifically, operando XANES of mono-, bi-, and trimetallic CO2 hydrogenation catalysts containing Ni, Fe, and Cu. Detailed operando XANES studies of the multielement solid catalysts revealed metal-dependent differences in the reducibility and re-oxidation behavior and their influence on the catalytic performance in CO2 hydrogenation. The applicability of operando laboratory-based XANES at multiple K-edges paves the way for advanced multielement catalyst characterization complementing detailed studies at synchrotron facilities.
Collapse
Affiliation(s)
- Nina S. Genz
- Inorganic Chemistry and Catalysis groupDepartment of ChemistryUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Antti‐Jussi Kallio
- Department of PhysicsUniversity of HelsinkiP. O. Box 6400014HelsinkiFinland
| | - Ramon Oord
- Inorganic Chemistry and Catalysis groupDepartment of ChemistryUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Frank Krumeich
- Laboratory of Inorganic ChemistryDepartment of ChemistryETH ZürichVladimir-Prelog-Weg 18093ZürichSwitzerland
| | - Anuj Pokle
- Department of PhysicsCenter for Materials Science and NanotechnologyUniversity of OsloP.O. Box 10480316OsloNorway
| | - Øystein Prytz
- Department of PhysicsCenter for Materials Science and NanotechnologyUniversity of OsloP.O. Box 10480316OsloNorway
| | - Unni Olsbye
- Department of ChemistryUniversity of OsloP.O. Box 10330315OsloNorway
| | - Florian Meirer
- Inorganic Chemistry and Catalysis groupDepartment of ChemistryUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Simo Huotari
- Department of PhysicsUniversity of HelsinkiP. O. Box 6400014HelsinkiFinland
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis groupDepartment of ChemistryUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| |
Collapse
|
6
|
Qiao M, Tian Y, Wang J, Li X, He X, Lei X, Zhang Q, Ma M, Meng X. Magnetic-Field-Induced Vapor-Phase Polymerization to Achieve PEDOT-Decorated Porous Fe 3O 4 Particles as Excellent Microwave Absorbers. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mingtao Qiao
- College of Materials Science and Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, Shaanxi, P. R. China
| | - Yurui Tian
- School of Environmental and Municipal Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, Shaanxi, P. R. China
| | - Jiani Wang
- College of Materials Science and Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, Shaanxi, P. R. China
| | - Xiang Li
- College of Materials Science and Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, Shaanxi, P. R. China
| | - Xiaowei He
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, Shaanxi, P. R. China
| | - Xingfeng Lei
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, Shaanxi, P. R. China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, Shaanxi, P. R. China
| | - Mingliang Ma
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, Shandong, P. R. China
| | - Xiaorong Meng
- School of Chemistry and Chemical Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, Shaanxi, P. R. China
| |
Collapse
|
7
|
Bi W, Jiang X, Li C, Liu Y, Gao G, Wu G, Atif M, AlSalhi M, Cao G. Effects of Valence States of Working Cations on the Electrochemical Performance of Sodium Vanadate. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19714-19724. [PMID: 35441507 DOI: 10.1021/acsami.2c02920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Supercapacitors have received much attention as large-scale energy storage devices for high power density and ultralong cycling life. In this work, sodium vanadate Na0.76V6O15/poly(3,4-ethylenedioxythiophene) (PEDOT) nanocables with deficient bridge oxygen at the interface (denoted Vo••-PNVO) have been tailored for supercapacitors through the in situ polymerization of 3,4-ethylenedioxythiophene and studied using three different electrolytes. Experiments and theoretical calculations reveal that all Na+, Zn2+, and Al3+ ions appear as hydrates in aqueous solutions but insert into the crystal structure as Na+ ions and Zn2+-H2O and Al3+-H2O hydrates, respectively. In comparison with the Zn2+-H2O and Al3+-H2O hydrates, Na+ ions with a smaller radius diffuse more quickly in Vo••-PNVO. Thus, Vo••-PNVO delivers better charge storage capability and stability when an electrolyte with Na+ ions is used. The results strongly suggest that an electrostatic interaction is significant in determining transport properties and storage capacities, rather than hydrate radii or valence states.
Collapse
Affiliation(s)
- Wenchao Bi
- Departments of Physics, College of Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120, United States
| | - Xiaodi Jiang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Chao Li
- Departments of Physics, College of Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Yuan Liu
- Departments of Physics, College of Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Guohua Gao
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Guangming Wu
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Muhammad Atif
- Research Chair on Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
- Department of Physics and Astronomy, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Mohamad AlSalhi
- Research Chair on Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
- Department of Physics and Astronomy, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Guozhong Cao
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120, United States
| |
Collapse
|
8
|
Xu K, Guo W, Zhang H, Zhou H, Zhu Z, Zhou Y, Liang W, Yu T, Zhao H, He M, Yang T. An efficient vanadium/cobalt metaphosphate electrocatalyst for hydrogen and oxygen evolution in alkaline water splitting. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01238c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen, which meets the goal of carbon neutrality, is expected to replace conventional fossil fuels in the near future. Electrochemical water splitting is a clean hydrogen production technology, but its...
Collapse
|
9
|
Zhang R, Hu S, Wang B, Wang D, Huang X, Wen G. Controllable synthesis of nanosheet-induced 3D hierarchical Zn2(OH)3VO3 with gradually enhanced electrochemical performance. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
V2O5/Carbon Nanotube/Polypyrrole Based Freestanding Negative Electrodes for High-Performance Supercapacitors. Catalysts 2021. [DOI: 10.3390/catal11080980] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In this study, the vanadium pentoxide (V2O5), functionalized carbon nanotubes (f-CNT), and polypyrrole (PPy) based composites films have been prepared through a facile synthesis method and their electrochemical performance were evaluated as freestanding negative electrodes of supercapacitor. A hydrous V2O5 gel prepared by treating V2O5 powder with H2O2 was mixed with f-CNT to obtain V2O5/f-CNT composite film. V2O5/f-CNT composite was then coated with PPy through vapor phase polymerization method. The PPy deposited on the V2O5/f-CNT prevented the dissolution of V2O5 and thus resulted in an improved the capacitance and cycle life stability for V2O5/f-CNT/PPy composite electrode. V2O5/f-CNT/PPy freestanding negative electrode exhibited a high areal capacitance value (1266 mF cm−2 at a current density of 1 mA cm−2) and good cycling stability (83.0% capacitance retention after 10,000 charge-discharge cycles). The superior performance of the V2O5/f-CNT/PPy composite electrode can be attributed to the synergy between f-CNT with high conductivity and V2O5 and PPy with high-energy densities. Thus, V2O5/f-CNT/PPy composite based electrode can effectively mitigate the drawbacks of the low specific capacitance of CNTs and the poor cycling life of V2O5.
Collapse
|
11
|
Liu C, Yuan J, Masse R, Jia X, Bi W, Neale Z, Shen T, Xu M, Tian M, Zheng J, Tian J, Cao G. Interphases, Interfaces, and Surfaces of Active Materials in Rechargeable Batteries and Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e1905245. [PMID: 31975460 DOI: 10.1002/adma.201905245] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/25/2019] [Indexed: 06/10/2023]
Abstract
The ever-increasing demand for clean sustainable energy has driven tremendous worldwide investment in the design and exploration of new active materials for energy conversion and energy-storage devices. Tailoring the surfaces of and interfaces between different materials is one of the surest and best studied paths to enable high-energy-density batteries and high-efficiency solar cells. Metal-halide perovskite solar cells (PSCs) are one of the most promising photovoltaic materials due to their unprecedented development, with their record power conversion efficiency (PCE) rocketing beyond 25% in less than 10 years. Such progress is achieved largely through the control of crystallinity and surface/interface defects. Rechargeable batteries (RBs) reversibly convert electrical and chemical potential energy through redox reactions at the interfaces between the electrodes and electrolyte. The (electro)chemical and optoelectronic compatibility between active components are essential design considerations to optimize power conversion and energy storage performance. A focused discussion and critical analysis on the formation and functions of the interfaces and interphases of the active materials in these devices is provided, and prospective strategies used to overcome current challenges are described. These strategies revolve around manipulating the chemical compositions, defects, stability, and passivation of the various interfaces of RBs and PSCs.
Collapse
Affiliation(s)
- Chaofeng Liu
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Jifeng Yuan
- Institute for Advanced Materials and Technology, University of Science and Technology, Beijing, 100083, China
| | - Robert Masse
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Xiaoxiao Jia
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Wenchao Bi
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Zachary Neale
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Ting Shen
- Institute for Advanced Materials and Technology, University of Science and Technology, Beijing, 100083, China
| | - Meng Xu
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Meng Tian
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Jiqi Zheng
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Jianjun Tian
- Institute for Advanced Materials and Technology, University of Science and Technology, Beijing, 100083, China
| | - Guozhong Cao
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
12
|
Cobalt-stabilized oxygen vacancy of V2O5 nanosheet arrays with delocalized valence electron for alkaline water splitting. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115915] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Ditter AS, Jahrman EP, Bradshaw LR, Xia X, Pauzauskie PJ, Seidler GT. A mail-in and user facility for X-ray absorption near-edge structure: the CEI-XANES laboratory X-ray spectrometer at the University of Washington. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:2086-2093. [PMID: 31721755 DOI: 10.1107/s1600577519012839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
There are more than 100 beamlines or endstations worldwide that frequently support X-ray absorption fine-structure (XAFS) measurements, thus providing critical enabling capability for research across numerous scientific disciplines. However, the absence of a supporting tier of more readily accessible, lower-performing options has caused systemic inefficiencies, resulting in high oversubscription and the omission of many scientifically and socially valuable XAFS applications that are incompatible with the synchrotron facility access model. To this end, this work describes the design, performance and uses of the Clean Energy Institute X-ray absorption near-edge structure (CEI-XANES) laboratory spectrometer and its use as both a user-present and mail-in facility. Such new additions to the XAFS infrastructure landscape raise important questions about the most productive interactions between synchrotron radiation and laboratory-based capabilities; this can be discussed in the framework of five categories, only one of which is competitive. The categories include independent operation on independent problems, use dictated by convenience, pre-synchrotron preparatory use of laboratory capability, post-synchrotron follow-up use of laboratory capability, and parallel use of both synchrotron radiation and laboratory systems.
Collapse
Affiliation(s)
- Alexander S Ditter
- Department of Physics, University of Washington, PO Box 351650, Seattle, WA 98195-1560, USA
| | - Evan P Jahrman
- Department of Physics, University of Washington, PO Box 351650, Seattle, WA 98195-1560, USA
| | - Liam R Bradshaw
- Molecular Analysis Facility, University of Washington, 4000 15th Ave NE, Seattle, WA 98195, USA
| | - Xiaojing Xia
- Department of Molecular Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Peter J Pauzauskie
- Department of Materials Science and Engineering, University of Washington, 3920 E. Stevens Way NE, Seattle, WA 98195, USA
| | - Gerald T Seidler
- Department of Physics, University of Washington, PO Box 351650, Seattle, WA 98195-1560, USA
| |
Collapse
|
14
|
Bi W, Wang J, Jahrman EP, Seidler GT, Gao G, Wu G, Cao G. Interface Engineering V 2 O 5 Nanofibers for High-Energy and Durable Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901747. [PMID: 31215181 DOI: 10.1002/smll.201901747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/21/2019] [Indexed: 05/27/2023]
Abstract
A local electric field is induced to engineer the interface of vanadium pentoxide nanofibers (V2 O5 -NF) to manipulate the charge transport behavior and obtain high-energy and durable supercapacitors. The interface of V2 O5 -NF is modified with oxygen vacancies (Vö) in a one-step polymerization process of polyaniline (PANI). In the charge storage process, the local electric field deriving from the lopsided charge distribution around Vö will provide Coulombic forces to promote the charge transport in the resultant Vö-V2 O5 /PANI nanocable electrode. Furthermore, an ≈7 nm porous PANI coating serves as the external percolated charge transport pathway. As the charge transfer kinetics are synergistically enhanced by the dual modifications, Vö-V2 O5 /PANI-based supercapacitors exhibit an excellent specific capacitance (523 F g-1 ) as well as a long cycling lifespan (110% of capacitance remained after 20 000 cycles). This work paves an effective way to promote the charge transfer kinetics of electrode materials for next-generation energy storage systems.
Collapse
Affiliation(s)
- Wenchao Bi
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195-2120, USA
| | - Jichao Wang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Evan P Jahrman
- Department of Physics, University of Washington, Seattle, WA, 98195-1560, USA
| | - Gerald T Seidler
- Department of Physics, University of Washington, Seattle, WA, 98195-1560, USA
| | - Guohua Gao
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Guangming Wu
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Guozhong Cao
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195-2120, USA
| |
Collapse
|