1
|
Yuan H, Li N, Fan W, Cai H, Zhao D. Metal-Organic Framework Based Gas Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104374. [PMID: 34939370 PMCID: PMC8867161 DOI: 10.1002/advs.202104374] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/16/2021] [Indexed: 05/08/2023]
Abstract
The ever-increasing concerns over indoor/outdoor air quality, industrial gas leakage, food freshness, and medical diagnosis require miniaturized gas sensors with excellent sensitivity, selectivity, stability, low power consumption, cost-effectiveness, and long lifetime. Metal-organic frameworks (MOFs), featuring structural diversity, large specific surface area, controllable pore size/geometry, and host-guest interactions, hold great promises for fabricating various MOF-based devices for diverse applications including gas sensing. Tremendous progress has been made in the past decade on the fabrication of MOF-based sensors with elevated sensitivity and selectivity toward various analytes due to their preconcentrating and molecule-sieving effects. Although several reviews have recently summarized different aspects of this field, a comprehensive review focusing on MOF-based gas sensors is absent. In this review, the latest advance of MOF-based gas sensors relying on different transduction mechanisms, for example, chemiresistive, capacitive/impedimetric, field-effect transistor or Kelvin probe-based, mass-sensitive, and optical ones are comprehensively summarized. The latest progress for making large-area MOF films essential to the mass-production of relevant gas sensors is also included. The structural and compositional features of MOFs are intentionally correlated with the sensing performance. Challenges and opportunities for the further development and practical applications of MOF-based gas sensors are also given.
Collapse
Affiliation(s)
- Hongye Yuan
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
- State Key Laboratory for Mechanical Behavior of MaterialsShaanxi International Research Center for Soft MatterSchool of Materials Science and EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Nanxi Li
- Institute of MicroelectronicsA*STAR (Agency for Science, Technology and Research)2 Fusionopolis Way, #08‐02 Innovis TowerSingapore138634Singapore
| | - Weidong Fan
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| | - Hong Cai
- Institute of MicroelectronicsA*STAR (Agency for Science, Technology and Research)2 Fusionopolis Way, #08‐02 Innovis TowerSingapore138634Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| |
Collapse
|
2
|
Han SD, Hu JX, Wang GM. Recent advances in crystalline hybrid photochromic materials driven by electron transfer. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214304] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
3
|
Xu F, Li GM, Wang AN, Han SD, Pan J, Wang GM. Modulating the structure and photochromic performance of hybrid metal chlorides with nonphotochromic 1,10-phenanthroline and its derivative. Dalton Trans 2021; 50:18089-18096. [PMID: 34851332 DOI: 10.1039/d1dt02899e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hybrid photochromic materias (HPMs), especially crystalline HPMs (CHPMs), have been widely investigated due to their feasibility in maintaining the advantages of each constituent and genearating captivating photomodulated functionality. Metal-organic complexes (MOCs), as promising candidates for fabricating CHPMs, have attracted the interest of researchers. The molecular predesign of ligands plays a crucial role in yielding MOC-based CHPMs with tunable photochromic functionality. Hitherto, a great majority of CHPMs are driven by photosensitive ligands. However, the complicated synthesis and high cost of photosensitive ligands obviously prevent the macro-synthesis and future application of these CHPMs. Thus, it is indispensable to explore novel branches of CHPMs. Herein, we report a series of photochromic solid materials bearing modulated photochromic properties by hybridizing metal chlorides with a nonphotosensitive coplanar dipyridine unit 1,10-phenanthroline (phen) and its derivative 5-chloro-1,10-phenanthroline (5-Cl-phen). The resulting hybrids, [ZnCl2(phen)] (1), [CdCl2(phen)] (2), [PbCl2(phen)] (3), [ZnCl(H2O)(5-Cl-phen)2]Cl·2H2O (4), [Cd2Cl4(5-Cl-phen)2] (5) and [Pb2Cl4(5-Cl-phen)2] (6), exhibit distinct structures from the isolated molecular complexes (1 and 4) to the hybrid chain (2, 3, 5 and 6) because of the distinct coordination mode of central metal ions and chloride ions. After photo-irradiation with a Xe-lamp, all complexes, as expected, exhibited apparent color change because of the photoinduced electron transfer (ET) between coordinated chloride ions (Cl-) as electron donors (EDs) and the coordinated coplanar phen and 5-Cl-phen species as electron acceptors (EAs). More importantly, the photochromic performance of the title complexes could be modulated by phen and 5-Cl-phen. This study provides a general and facile way for modulating the structure and photochromic performance of hybrid metal chlorides with phen or phen-based derivatives under the synergy of crystalline engineering strategy and ET mechanism.
Collapse
Affiliation(s)
- Fei Xu
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, P. R. China.
| | - Gang-Mei Li
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, P. R. China.
| | - A-Ni Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, P. R. China.
| | - Song-De Han
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, P. R. China.
| | - Jie Pan
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, P. R. China.
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, P. R. China.
| |
Collapse
|
4
|
Chiral metal–organic frameworks based on asymmetric synthetic strategies and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214083] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Bhosale SV, Al Kobaisi M, Jadhav RW, Morajkar PP, Jones LA, George S. Naphthalene diimides: perspectives and promise. Chem Soc Rev 2021; 50:9845-9998. [PMID: 34308940 DOI: 10.1039/d0cs00239a] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, we describe the developments in the field of naphthalene diimides (NDIs) from 2016 to the presentday. NDIs are shown to be an increasingly interesting class of molecules due to their electronic properties, large electron deficient aromatic cores and tendency to self-assemble into functional structures. Almost all NDIs possess high electron affinity, good charge carrier mobility, and excellent thermal and oxidative stability, making them promising candidates for applications in organic electronics, photovoltaic devices, and flexible displays. NDIs have also been extensively studied due to their potential real-world uses across a wide variety of applications including supramolecular chemistry, sensing, host-guest complexes for molecular switching devices, such as catenanes and rotaxanes, ion-channels, catalysis, and medicine and as non-fullerene accepters in solar cells. In recent years, NDI research with respect to supramolecular assemblies and mechanoluminescent properties has also gained considerable traction. Thus, this review will assist a wide range of readers and researchers including chemists, physicists, biologists, medicinal chemists and materials scientists in understanding the scope for development and applicability of NDI dyes in their respective fields through a discussion of the main properties of NDI derivatives and of the status of emerging applications.
Collapse
Affiliation(s)
- Sheshanath V Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Mohammad Al Kobaisi
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Ratan W Jadhav
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Pranay P Morajkar
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Lathe A Jones
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Subi George
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur PO, Bangalore-560064, India
| |
Collapse
|
6
|
Redox-active ligands: Recent advances towards their incorporation into coordination polymers and metal-organic frameworks. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213891] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Shang X, Ahn J, Lee JH, Kim JC, Ohtsu H, Choi W, Song I, Kwak SK, Oh JH. Bay-Substitution Effect of Perylene Diimides on Supramolecular Chirality and Optoelectronic Properties of Their Self-Assembled Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12278-12285. [PMID: 33667057 DOI: 10.1021/acsami.0c23138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
One-dimensional (1D) organic chiral supramolecules have received a great deal of attention for their promising applications in chiral recognition systems, chemical sensors, catalysts, and optoelectronics. Compared to modifications at the imide position of a perylene diimide (PDI), few studies have explored bay substitution of chiral PDIs and their self-assemblies into 1D nanomaterials. Herein, we describe the synthesis of three bay-substituted PDIs and explore the effects of bay substitution on supramolecular chirality by examining circular dichroism spectra and the optoelectronic performance of chiral PDI nanomaterials in phototransistors. Among the three fabricated self-assemblies, nanomaterials based on (R)-CN-CPDI-Ph exhibited the highest electron mobility of 0.17 cm2 V-1 s-1, a low threshold voltage of -1 V, and enhanced optoelectronic performance. For example, the photoresponsivity and external quantum efficiency of (R)-CN-CPDI-Ph assemblies were 4-fold higher than those of (R)-2Br-CPDI-Ph and (R)-2F-CPDI-Ph. All three nanomaterials exhibited fast switching speeds compared with previously reported N-substituted PDIs, suggesting that bay substitution can be an effective means of achieving rapid photoswitching. A comprehensive study using density functional theory calculations and crystal analyses revealed that the enhanced optoelectronic performance of (R)-CN-CPDI-Ph nanomaterials is related to the substitution of CN at the bay position of PDI. This minor change provides simultaneous improvements in electron injectability and structural order. Our findings demonstrate that bay substitution can significantly impact the self-assembly, supramolecular chirality, and optoelectronic properties of PDI nanomaterials.
Collapse
Affiliation(s)
- Xiaobo Shang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jaeyong Ahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jeong Hyeon Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jin Chul Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hiroyoshi Ohtsu
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Wanuk Choi
- Energy Materials Laboratory, Korea Institute of Energy Research (KIER), Daejeon 34129, Republic of Korea
| | - Inho Song
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sang Kyu Kwak
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Joon Hak Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
8
|
Koyama S, Tanabe T, Takaishi S, Yamashita M, Iguchi H. Preliminary chemical reduction for synthesizing a stable porous molecular conductor with neutral metal nodes. Chem Commun (Camb) 2020; 56:13109-13112. [PMID: 33000779 DOI: 10.1039/d0cc03541f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Preliminary chemical reduction of naphthalenediimide (NDI)-based organic ligands was applied to the synthesis of a porous molecular conductor (PMC) with neutral metal nodes (cobalt(ii) acetylacetonate). The obtained semiconductive PMC (PMC-2) was stable due to the neutral metal nodes, providing an advantage over electrochemical reduction.
Collapse
Affiliation(s)
- Shohei Koyama
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| | | | | | | | | |
Collapse
|
9
|
Liu AJ, Han Y, Xu F, Han SD, Pan J, Wang GM. Coordinate bond- and hydrogen bond-assisted electron transfer strategy towards the generation of photochromic metal phosphites. Dalton Trans 2020; 49:14598-14604. [DOI: 10.1039/d0dt03010d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The introduction of conjugated dipyridine-derivative units into metal phosphite system produces two hybrid zincophosphites driven by the coordinate bond- and hydrogen bond-assisted electron transfer.
Collapse
Affiliation(s)
- Ai-Ju Liu
- College of Chemistry and Chemical Engineering
- Qingdao University
- Shandong 266071
- P. R. China
| | - Yue Han
- College of Chemistry and Chemical Engineering
- Qingdao University
- Shandong 266071
- P. R. China
| | - Fei Xu
- College of Chemistry and Chemical Engineering
- Qingdao University
- Shandong 266071
- P. R. China
| | - Song-De Han
- College of Chemistry and Chemical Engineering
- Qingdao University
- Shandong 266071
- P. R. China
| | - Jie Pan
- College of Chemistry and Chemical Engineering
- Qingdao University
- Shandong 266071
- P. R. China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering
- Qingdao University
- Shandong 266071
- P. R. China
| |
Collapse
|