1
|
Öner S, Kuila S, Stavrou K, Danos A, Fox MA, Monkman AP, Bryce MR. Exciplex, Not Heavy-Atom Effect, Controls the Triplet Dynamics of a Series of Sulfur-Containing Thermally Activated Delayed Fluorescence Molecules. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:7135-7150. [PMID: 39156711 PMCID: PMC11325549 DOI: 10.1021/acs.chemmater.4c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024]
Abstract
The efficiency of thermally activated delayed fluorescence (TADF) in organic materials relies on rapid intersystem crossing rates and fast conversion of triplet (T) excitons into a singlet (S) state. Heavy atoms such as sulfur or selenium are now frequently incorporated into TADF molecular structures to enhance these properties by increased spin-orbit coupling [spin orbit coupling (SOC)] between the T and S states. Here a series of donor-acceptor (D-A) molecules based on 12H-benzo[4,5]thieno[2,3-a]carbazole and dicyanopyridine is compared with their nonsulfur control molecules designed to probe such SOC effects. We reveal that unexpected intermolecular interactions of the D-A molecules with carbazole-containing host materials instead serve as the dominant pathway for triplet decay kinetics in these materials. In-depth photophysical and computational studies combined with organic light emitting diode measurements demonstrate that the anticipated heavy-atom effect from sulfur is overshadowed by exciplex formation. Indeed, even the unsubstituted acceptor fragments exhibit pronounced TADF exciplex emission in appropriate carbazole hosts. The intermolecular charge transfer and TADF in these systems are further confirmed by detailed time-dependent density functional theory studies. This work demonstrates that anticipated heavy-atom effects in TADF emitters do not always control or even impact the photophysical and electroluminescence properties.
Collapse
Affiliation(s)
- Saliha Öner
- Department
of Chemistry, Durham University, Stockton Road, Durham DH1 3LE, U.K.
| | - Suman Kuila
- Department
of Chemistry, Durham University, Stockton Road, Durham DH1 3LE, U.K.
- Department
of Physics, Durham University, Stockton Road, Durham DH1 3LE, U.K.
| | - Kleitos Stavrou
- Department
of Physics, Durham University, Stockton Road, Durham DH1 3LE, U.K.
| | - Andrew Danos
- Department
of Physics, Durham University, Stockton Road, Durham DH1 3LE, U.K.
| | - Mark A. Fox
- Department
of Chemistry, Durham University, Stockton Road, Durham DH1 3LE, U.K.
| | - Andrew P. Monkman
- Department
of Physics, Durham University, Stockton Road, Durham DH1 3LE, U.K.
| | - Martin R. Bryce
- Department
of Chemistry, Durham University, Stockton Road, Durham DH1 3LE, U.K.
| |
Collapse
|
2
|
Stanitska M, Pokhodylo N, Lytvyn R, Urbonas E, Volyniuk D, Kutsiy S, Ivaniuk K, Kinzhybalo V, Stakhira P, Keruckiene R, Obushak M, Gražulevičius JV. Effects of Electron-Withdrawing Strengths of the Substituents on the Properties of 4-(Carbazolyl- R-benzoyl)-5-CF 3-1 H-1,2,3-triazole Derivatives as Blue Emitters for Doping-Free Electroluminescence Devices. ACS OMEGA 2024; 9:14613-14626. [PMID: 38559965 PMCID: PMC10976381 DOI: 10.1021/acsomega.4c01077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
The synthesis of four 4-(carbazolyl-R-benzoyl)-5-CF3-1H-1,2,3-triazoles with extra groups ((3-methyl)-phenyl-, 4-fluorophenyl-, quinolinyl-, or (3-trifluoromethyl)-phenyl-) in the acceptor fragment has been reported. The effects of substituents with different electron-withdrawing strengths on the thermal, electrochemical, photophysical, and electroluminescence properties of the synthesized compounds are discussed. The results of X-ray analyses and density functional theory (DFT) calculations support unusual molecular packing and electronic properties. The compounds are capable of glass formation with glass transition temperatures ranging from 54-84 °C. Ionization potentials of the compounds are in the range of 5.98-6.22 eV and electron affinities range from 3.09 to 3.35 eV. Under ultraviolet excitation, the neat films of the compounds exhibit blue emission with photoluminescence quantum yields ranging from 18 to 27%. The films of selected compounds are used for the preparation of host-free light-emitting layers of organic light-emitting diodes with very simple device structures and an external quantum efficiency of 4.6%.
Collapse
Affiliation(s)
- Mariia Stanitska
- Kaunas
University of Technology, Baršausko st. 59, 51423 Kaunas, Lithuania
- Ivan
Franko National University of Lviv, Kyryla i Mefodiya 6, Lviv 79005, Ukraine
| | - Nazariy Pokhodylo
- Ivan
Franko National University of Lviv, Kyryla i Mefodiya 6, Lviv 79005, Ukraine
| | - Roman Lytvyn
- Ivan
Franko National University of Lviv, Kyryla i Mefodiya 6, Lviv 79005, Ukraine
| | - Ervinas Urbonas
- Kaunas
University of Technology, Baršausko st. 59, 51423 Kaunas, Lithuania
| | - Dmytro Volyniuk
- Kaunas
University of Technology, Baršausko st. 59, 51423 Kaunas, Lithuania
| | - Stepan Kutsiy
- National
University “Lviv Polytechnic”, Stepan Bandera 12, Lviv 79000, Ukraine
| | - Khrystyna Ivaniuk
- National
University “Lviv Polytechnic”, Stepan Bandera 12, Lviv 79000, Ukraine
| | - Vasyl Kinzhybalo
- Institute
of Low Temperature and Structure Research, Okólna 2, Wrocław 50-422, Poland
| | - Pavlo Stakhira
- National
University “Lviv Polytechnic”, Stepan Bandera 12, Lviv 79000, Ukraine
| | - Rasa Keruckiene
- Kaunas
University of Technology, Baršausko st. 59, 51423 Kaunas, Lithuania
| | - Mykola Obushak
- Ivan
Franko National University of Lviv, Kyryla i Mefodiya 6, Lviv 79005, Ukraine
| | | |
Collapse
|
3
|
Poriel C, Rault-Berthelot J. Dihydroindenofluorenes as building units in organic semiconductors for organic electronics. Chem Soc Rev 2023; 52:6754-6805. [PMID: 37702538 DOI: 10.1039/d1cs00993a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
This review aims to discuss organic semiconductors constructed on dihydroindenofluorene positional isomers, which are key molecular scaffolds in organic electronics. Bridged oligophenylenes are key organic semiconductors that have allowed the development of organic electronic technologies. Dihydroindenofluorenes (DHIFs) belong to the family of bridged oligophenylenes constructed on a terphenyl backbone. They have proven to be very promising building blocks for the construction of highly efficient organic semiconductors for all OE devices, namely organic light emitting diodes (OLEDs), phosphorescent OLEDs, organic field-effect transistors (OFETs), solar cells, etc.
Collapse
Affiliation(s)
- Cyril Poriel
- UMR CNRS 6226-Université Rennes 1-ISCR-Campus de Beaulieu, 35042 Rennes, France.
| | | |
Collapse
|
4
|
Zhang T, Xiao Y, Wang H, Kong S, Huang R, Ka-Man Au V, Yu T, Huang W. Highly Twisted Thermally Activated Delayed Fluorescence (TADF) Molecules and Their Applications in Organic Light-Emitting Diodes (OLEDs). Angew Chem Int Ed Engl 2023; 62:e202301896. [PMID: 37288654 DOI: 10.1002/anie.202301896] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/09/2023]
Abstract
Thermally activated delayed fluorescence (TADF) materials have attracted great potential in the field of organic light-emitting diodes (OLEDs). Among thousands of TADF materials, highly twisted TADF emitters have become a hotspot in recent years. Compared with traditional TADF materials, highly twisted TADF emitters tend to show multi-channel charge-transfer characters and form rigid molecular structures. This is advantageous for TADF materials, as non-radiative decay processes can be suppressed to facilitate efficient exciton utilization. Accordingly, OLEDs with excellent device performances have also been reported. In this Review, we have summarized recent progress in highly twisted TADF materials and related devices, and give an overview of the molecular design strategies, photophysical studies, and the performances of OLED devices. In addition, the challenges and perspectives of highly twisted TADF molecules and the related OLEDs are also discussed.
Collapse
Affiliation(s)
- Tiantian Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, 710072, Xi'an, China
| | - Yuxin Xiao
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, 710072, Xi'an, China
| | - Hailan Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, 710072, Xi'an, China
| | - Shuting Kong
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, 710072, Xi'an, China
| | - Rongjuan Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, 710072, Xi'an, China
| | - Vonika Ka-Man Au
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, New Territories, Hong Kong, China
| | - Tao Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, 710072, Xi'an, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, 315103, Ningbo, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, 710072, Xi'an, China
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, 211816, Nanjing, China
- State Key Laboratory of Organic Electronics and Information Displays &, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, 210023, Nanjing, China
| |
Collapse
|
5
|
Deng SL, Chen YK, Lei J, Jayakumar J, Ko CL, Hung WY, Wu TL, Cheng CH. Modifications of Pyridine-3,5-dicarbonitrile Acceptor for Highly Efficient Green-to-Red Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37418573 DOI: 10.1021/acsami.3c05243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
The strategy of acceptor modification is a powerful technique for tuning the emission color of thermally activated delayed fluorescence (TADF) emitters. In this study, we have successfully designed and synthesized three TADF emitters with donor-acceptor (D-A) structures using a 4-(diphenylamino)-2,6-dimethylphenyl (TPAm) donor and various pyridine-3,5-dicarbonitrile (PC) acceptor units. As a result, three compounds named TPAmbPPC, TPAm2NPC, and TPAmCPPC exhibited greenish-yellow to orange-red emissions with high photoluminescent quantum yields (76-100%) in thin films. Remarkably, a greenish-yellow device based on TPAmbPPC and TPAm2NPC showed a high maximum external quantum efficiency (EQEmax) of 39.1 and 39.0%, respectively. Furthermore, benefiting from the suitable steric hindrance between the acceptor and donor, the nondoped organic light-emitting diodes (OLEDs) based on TPAmbPPC demonstrated an exceptional EQEmax of 21.6%, indicating its promising potential as an efficient emitter for the application of OLED applications. Furthermore, orange-red OLED devices based on TPAmCPPC exhibited a high EQEmax of 26.2%, a CE of 50.1 cd A-1, and a PE of 52.4 lm W-1.
Collapse
Affiliation(s)
- Sheng-Lin Deng
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yi-Kuan Chen
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Jian Lei
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | | | - Chang-Lun Ko
- Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Wen-Yi Hung
- Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Tien-Lin Wu
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
- College of Semiconductor Research, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chien-Hong Cheng
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
6
|
Xiong W, Zhang C, Fang Y, Peng M, Sun W. Progresses and Perspectives of Near-Infrared Emission Materials with "Heavy Metal-Free" Organic Compounds for Electroluminescence. Polymers (Basel) 2022; 15:98. [PMID: 36616447 PMCID: PMC9823557 DOI: 10.3390/polym15010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Organic/polymer light-emitting diodes (OLEDs/PLEDs) have attracted a rising number of investigations due to their promising applications for high-resolution fullcolor displays and energy-saving solid-state lightings. Near-infrared (NIR) emitting dyes have gained increasing attention for their potential applications in electroluminescence and optical imaging in optical tele-communication platforms, sensing and medical diagnosis in recent decades. And a growing number of people focus on the "heavy metal-free" NIR electroluminescent materials to gain more design freedom with cost advantage. This review presents recent progresses in conjugated polymers and organic molecules for OLEDs/PLEDs according to their different luminous mechanism and constructing systems. The relationships between the organic fluorophores structures and electroluminescence properties are the main focus of this review. Finally, the approaches to enhance the performance of NIR OLEDs/PLEDs are described briefly. We hope that this review could provide a new perspective for NIR materials and inspire breakthroughs in fundamental research and applications.
Collapse
Affiliation(s)
- Wenjing Xiong
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Chemistry, Xi’an Jiaotong University, Xi’an 710049, China
| | - Cheng Zhang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Yuanyuan Fang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Mingsheng Peng
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
7
|
Mahmoudi M, Gudeika D, Kutsiy S, Simokaitiene J, Butkute R, Skhirtladze L, Woon KL, Volyniuk D, Grazulevicius JV. Ornamenting of Blue Thermally Activated Delayed Fluorescence Emitters by Anchor Groups for the Minimization of Solid-State Solvation and Conformation Disorder Corollaries in Non-Doped and Doped Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40158-40172. [PMID: 36000983 PMCID: PMC9460442 DOI: 10.1021/acsami.2c12475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Motivated to minimize the effects of solid-state solvation and conformation disorder on emission properties of donor-acceptor-type emitters, we developed five new asymmetric multiple donor-acceptor type derivatives of tert-butyl carbazole and trifluoromethyl benzene exploiting different electron-accepting anchoring groups. Using this design strategy, for a compound containing four di-tert-butyl carbazole units as donors as well as 5-methyl pyrimidine and trifluoromethyl acceptor moieties, small singlet-triplet splitting of ca. 0.03 eV, reverse intersystem crossing rate of 1 × 106 s-1, and high photoluminescence quantum yield of neat film of ca. 75% were achieved. This compound was also characterized by the high value of hole and electron mobilities of 8.9 × 10-4 and 5.8 × 10-4 cm2 V-1 s-1 at an electric field of 4.7 × 105 V/cm, showing relatively good hole/electron balance, respectively. Due to the lowest conformational disorder and solid-state solvation effects, this compound demonstrated very similar emission properties (emission colors) in non-doped and differently doped organic light-emitting diodes (OLEDs). The lowest conformational disorder was observed for the compound with the additional accepting moiety inducing steric hindrance, limiting donor-acceptor dihedral rotational freedom. It can be exploited in the multi-donor-acceptor approach, increasing the efficiency. Using an emitter exhibiting the minimized solid-state solvation and conformation disorder effects, the sky blue OLED with the emitting layer of this compound dispersed in host 1,3-bis(N-carbazolyl)benzene displayed an emission peak at 477 nm, high brightness over 39 000 cd/m2, and external quantum efficiency up to 15.9% along with a maximum current efficiency of 42.6 cd/A and a maximum power efficiency of 24.1 lm/W.
Collapse
Affiliation(s)
- Malek Mahmoudi
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, Radvilenu pl.19, Kaunas LT-50254, Lithuania
| | - Dalius Gudeika
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, Radvilenu pl.19, Kaunas LT-50254, Lithuania
| | - Stepan Kutsiy
- Department
of Electronic Devices, Lviv Polytechnic
National University, S. Bandera 12, Lviv 79013, Ukraine
| | - Jurate Simokaitiene
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, Radvilenu pl.19, Kaunas LT-50254, Lithuania
| | - Rita Butkute
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, Radvilenu pl.19, Kaunas LT-50254, Lithuania
| | - Levani Skhirtladze
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, Radvilenu pl.19, Kaunas LT-50254, Lithuania
| | - Kai Lin Woon
- Low
Dimensional Material Research Centre, Department of Physics, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Dmytro Volyniuk
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, Radvilenu pl.19, Kaunas LT-50254, Lithuania
| | - Juozas Vidas Grazulevicius
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, Radvilenu pl.19, Kaunas LT-50254, Lithuania
| |
Collapse
|
8
|
Bernard RS, Andruleviciene V, Belousov GK, Vaitusionak AA, Tsiko U, Volyniuk D, Kostjuk SV, Kublickas RH, Grazulevicius JV. Methoxy-substituted carbazole-based polymers obtained by RAFT polymerization for solution-processable organic light-emitting devices. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Fu Y, Liu H, Yang D, Ma D, Zhao Z, Tang BZ. Boosting external quantum efficiency to 38.6% of sky-blue delayed fluorescence molecules by optimizing horizontal dipole orientation. SCIENCE ADVANCES 2021; 7:eabj2504. [PMID: 34669483 PMCID: PMC8528420 DOI: 10.1126/sciadv.abj2504] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/30/2021] [Indexed: 06/02/2023]
Abstract
To achieve high electroluminescence efficiency, great efforts are devoted to enhancing photoluminescence quantum yield (ΦPL) and exciton utilization of luminescent molecule, while another important factor, light out-coupling efficiency (ηout), receives less attention in molecule design. Here, we focus on horizontal dipole orientation engineering of the molecule to increase ηout and external quantum efficiency (ηext). A series of tailor-made luminescent molecules consisting of an electron-accepting carbonyl core plus double electron-donating groups of spiro[acridine-9,9′-fluorene] and carbazole derivatives [e.g., 1,3,5-tri(carbazol-9-yl)benzene] are developed and systematically investigated. These molecules hold distinguished merits of strong sky-blue delayed fluorescence with excellent ΦPL values, large horizontal dipole ratios, and balanced bipolar carrier transport, which furnish record-high ηext values of up to 26.1 and 38.6% in nondoped and doped sky-blue organic light-emitting diodes (OLEDs), respectively. Moreover, the state-of-the-art nondoped hybrid white OLED and all-fluorescence single-emitting layer white OLED are also realized, demonstrating great potentials in OLED industry of these molecules.
Collapse
Affiliation(s)
- Yan Fu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Hao Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Dezhi Yang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Dongge Ma
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou 510530, China
| |
Collapse
|
10
|
Chen YK, Jayakumar J, Hsieh CM, Wu TL, Liao CC, Pandidurai J, Ko CL, Hung WY, Cheng CH. Triarylamine-Pyridine-Carbonitriles for Organic Light-Emitting Devices with EQE Nearly 40. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008032. [PMID: 34297444 DOI: 10.1002/adma.202008032] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 05/16/2021] [Indexed: 06/13/2023]
Abstract
Highly efficient thermally activated delayed fluorescence (TADF) molecules are in urgent demand for solid-state lighting and full-color displays. Here, the design and synthesis of three triarylamine-pyridine-carbonitrile-based TADF compounds, TPAPPC, TPAmPPC, and tTPAmPPC, are shown. They exhibit excellent photoluminescence quantum yields of 79-100% with small ΔEST values, fast reverse intersystem crossing (RISC), and high horizontal dipole ratios (Θ// = 86-88%) in the thin films leading to the enhancement of device light outcoupling. Consequently, a green organic light-emitting diode (OLED) based on TPAmPPC shows a high average external quantum efficiency of 38.8 ± 0.6%, a current efficiency of 130.1 ± 2.1 cd A-1 , and a power efficiency of 136.3 ± 2.2 lm W-1 . The highest device efficiency of 39.8% appears to be record-breaking among TADF-based OLEDs to date. In addition, the TPAmPPC-based device shows superior operation lifetime and high-temperature resistance. It is worth noting that the TPA-PPC-based materials have excellent optical properties and the potential for making them strong candidates for TADF practical application.
Collapse
Affiliation(s)
- Yi-Kuan Chen
- Department of Chemistry, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Jayachandran Jayakumar
- Department of Chemistry, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Chia-Min Hsieh
- Department of Chemistry, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Tien-Lin Wu
- Department of Chemistry, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Chun-Cheng Liao
- Department of Chemistry, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Jayabalan Pandidurai
- Department of Chemistry, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Chang-Lun Ko
- Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Wen-Yi Hung
- Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Chien-Hong Cheng
- Department of Chemistry, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
11
|
Tenopala‐Carmona F, Lee OS, Crovini E, Neferu AM, Murawski C, Olivier Y, Zysman‐Colman E, Gather MC. Identification of the Key Parameters for Horizontal Transition Dipole Orientation in Fluorescent and TADF Organic Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100677. [PMID: 34338351 PMCID: PMC11468900 DOI: 10.1002/adma.202100677] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/21/2021] [Indexed: 06/13/2023]
Abstract
In organic light-emitting diodes (OLEDs), horizontal orientation of the emissive transition dipole moment (TDM) can improve light outcoupling efficiency by up to 50% relative to random orientation. Therefore, there have been extensive efforts to identify drivers of horizontal orientation. The aspect ratio of the emitter molecule and the glass-transition temperature (Tg ) of the films are currently regarded as particularly important. However, there remains a paucity of systematic studies that establish the extent to which these and other parameters control orientation in the wide range of emitter systems relevant for state-of-the-art OLEDs. Here, recent work on molecular orientation of fluorescent and thermally activated delayed fluorescent emitters in vacuum-processed OLEDs is reviewed. Additionally, to identify parameters linked to TDM orientation, a meta-analysis of 203 published emitter systems is conducted and combined with density-functional theory calculations. Molecular weight (MW) and linearity are identified as key parameters in neat systems. In host-guest systems with low-MW emitters, orientation is mostly influenced by the host Tg , whereas the length and MW of the emitter become more relevant for systems involving higher-MW emitters. To close, a perspective of where the field must advance to establish a comprehensive model of molecular orientation is given.
Collapse
Affiliation(s)
- Francisco Tenopala‐Carmona
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsKY16 9SSUK
- Humboldt Centre for Nano‐ and BiophotonicsDepartment of ChemistryUniversity of CologneGreinstr. 4‐650939KölnGermany
| | - Oliver S. Lee
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsKY16 9SSUK
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsKY16 9STUK
| | - Ettore Crovini
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsKY16 9STUK
| | - Ana M. Neferu
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsKY16 9SSUK
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsKY16 9STUK
| | - Caroline Murawski
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsKY16 9SSUK
- Present address:
Kurt‐Schwabe‐Institut für Mess‐ und Sensortechnik Meinsberg e.V.Kurt‐Schwabe‐Straße 4Waldheim04736Germany
| | - Yoann Olivier
- Unité de Chimie Physique Théorique et Structurale & Laboratoire de Physique du SolideNamur Institute of Structured MatterUniversité de NamurRue de Bruxelles, 61Namur5000Belgium
| | - Eli Zysman‐Colman
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsKY16 9STUK
| | - Malte C. Gather
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsKY16 9SSUK
- Humboldt Centre for Nano‐ and BiophotonicsDepartment of ChemistryUniversity of CologneGreinstr. 4‐650939KölnGermany
| |
Collapse
|
12
|
Wu Y, Zhang Y, Ran C, Lan J, Bin Z, You J. Management of Locally Excited States for Purine-based TADF Emitters: A Method to Reduce Device Efficiency Roll-Off. Org Lett 2021; 23:3839-3843. [PMID: 33960193 DOI: 10.1021/acs.orglett.1c00918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The programmed arylation of purine has been developed to construct a series of efficient thermally activated delayed fluorescent (TADF) materials. The corresponding organic light-emitting diodes (OLEDs) exhibit external quantum efficiency as high as 16.0% alongside small efficiency roll-off. Intriguingly, this work proves that the good management of localized states is an efficient way to reduce device efficiency roll-off and is crucial for the future design of high-performance OLEDs.
Collapse
Affiliation(s)
- Yangbo Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Yuming Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Chunhao Ran
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Jingbo Lan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Zhengyang Bin
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| |
Collapse
|
13
|
Arulaabaranam K, Muthu S, Mani G, Ben Geoffrey A. Speculative assessment, molecular composition, PDOS, topology exploration (ELF, LOL, RDG), ligand-protein interactions, on 5-bromo-3-nitropyridine-2-carbonitrile. Heliyon 2021; 7:e07061. [PMID: 34095571 PMCID: PMC8165421 DOI: 10.1016/j.heliyon.2021.e07061] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/18/2021] [Accepted: 05/11/2021] [Indexed: 01/29/2023] Open
Abstract
Computational calculations of 5-bromo-3-nitropyridine-2-carbonitrile (5B3N2C) on molecular structure and on energy are implemented using the 6-311++G(d,p) basis set by DFT/B3LYP method. The UV-Vis spectrum of 5B3N2C was obtained by TD-DFT with chloroform as a solvent. The analysis of molecular electrostatic potential (MEP) and frontier molecular orbital (FMO) were used to evaluate, the entire electron density and organic reactive sites of 5B3N2C. The electron-hole conversions were conjointly deliberated. Donor-acceptor interactions (NBO) analysis examines the intra-and intermolecular charge transfer, hyper conjugate interaction of the compound. The orbital molecular contributions are evaluated by density of states (DOS and PDOS). To discern the reactivity of the molecule, topology analyses were done. The biological prominence of the 5B3N2C molecule was investigated in a pertinent study of molecular docking with target protein 3CEJ exhibiting the centromere associated protein inhibitor property. Molecular Dynamics simulations were done to assess the stability of the complex. 5B3N2C physiochemical parameters were also compared to those of widely viable medications Ispinesib and Lonafarnib.
Collapse
Affiliation(s)
- K. Arulaabaranam
- Department of Physics, Arignar Anna Govt. Arts College, Cheyyar, 604407, Tamilnadu, India
- Thiruvalluvar University, Serkadu, Tamilnadu, India
| | - S. Muthu
- Department of Physics, Arignar Anna Govt. Arts College, Cheyyar, 604407, Tamilnadu, India
- Department of Physics, Puratchi Thalaivar Dr.M.G.R. Govt. Arts and Science College, Uthiramerur, 603406, India
| | - G. Mani
- Department of Physics, Arignar Anna Govt. Arts College, Cheyyar, 604407, Tamilnadu, India
| | - A.S. Ben Geoffrey
- Department of Physics, Madras Christian College, East Tambaram, 600059, Tamilnadu, India
- University of Madras, Chepauk, Chennai, 005, Tamilnadu, India
| |
Collapse
|
14
|
Hong G, Gan X, Leonhardt C, Zhang Z, Seibert J, Busch JM, Bräse S. A Brief History of OLEDs-Emitter Development and Industry Milestones. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005630. [PMID: 33458866 DOI: 10.1002/adma.202005630] [Citation(s) in RCA: 260] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/12/2020] [Indexed: 06/12/2023]
Abstract
Organic light-emitting diodes (OLEDs) have come a long way ever since their first introduction in 1987 at Eastman Kodak. Today, OLEDs are especially valued in the display and lighting industry for their promising features. As one of the research fields that equally inspires and drives development in academia and industry, OLED device technology has continuously evolved over more than 30 years. OLED devices have come forward based on three generations of emitter materials relying on fluorescence (first generation), phosphorescence (second generation), and thermally activated delayed fluorescence (third generation). Furthermore, research in academia and industry toward the fourth generation of OLEDs is in progress. Excerpts from the history of green, orange-red, and blue OLED emitter development on the side of academia and milestones achieved by key players in the industry are included in this report.
Collapse
Affiliation(s)
- Gloria Hong
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, Karlsruhe, 76131, Germany
| | - Xuemin Gan
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, Karlsruhe, 76131, Germany
| | - Céline Leonhardt
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, Karlsruhe, 76131, Germany
| | - Zhen Zhang
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, Karlsruhe, 76131, Germany
| | - Jasmin Seibert
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, Karlsruhe, 76131, Germany
| | - Jasmin M Busch
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, Karlsruhe, 76131, Germany
| | - Stefan Bräse
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, Karlsruhe, 76131, Germany
- Karlsruhe Institute of Technology (KIT), Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| |
Collapse
|
15
|
Pathak SK, Xiang Y, Huang M, Huang T, Cao X, Liu H, Xie G, Yang C. Fused tetracyclic tris[1,2,4]triazolo[1,3,5]triazine as a novel rigid electron acceptor for efficient thermally activated delayed fluorescence emitters. RSC Adv 2020; 10:15523-15529. [PMID: 35495445 PMCID: PMC9052375 DOI: 10.1039/d0ra01925a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/04/2020] [Indexed: 11/30/2022] Open
Abstract
Tris[1,2,4]triazolo[1,3,5]triazine, a new acceptor based on a fused triazole and triazine moiety, is utilized to construct D3–A star-shaped tristriazolotriazine derivatives, named 3,7,11-tris(4-(10H-phenoxazin-10 yl)phenyl)tris([1,2,4]triazolo)[1,3,5]triazine (TTT-PXZ) and 3,7,11-tris(4-(9,9-dimethylacridin-10(9H)yl)phenyl)tris([1,2,4])triazolo[1,3,5]triazine (TTT-DMAC). Both TTT-PXZ and TTT-DMAC emitters feature TADF activities and AIEE properties. Consequently, solution processed OLEDs based on TTT-PXZ green emitters exhibited good performances, with an external quantum efficiency (EQE) of up to 6.2%. Tris[1,2,4]triazolo[1,3,5]triazine, a new acceptor based on a fused triazole and triazine moiety, has been utilized to construct two new star-shaped TADF emitters.![]()
Collapse
Affiliation(s)
- Suraj Kumar Pathak
- Guangdong Research Center for Interfacial Engineering of Functional Materials
- Shenzhen Key Laboratory of Polymer Science and Technology
- College of Materials Science and Engineering
- Shenzhen University
- Shenzhen 518060
| | - Yepeng Xiang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials
- Department of Chemistry
- Wuhan University
- Wuhan
- P. R. China
| | - Manli Huang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials
- Department of Chemistry
- Wuhan University
- Wuhan
- P. R. China
| | - Taian Huang
- Guangdong Research Center for Interfacial Engineering of Functional Materials
- Shenzhen Key Laboratory of Polymer Science and Technology
- College of Materials Science and Engineering
- Shenzhen University
- Shenzhen 518060
| | - Xiaosong Cao
- Guangdong Research Center for Interfacial Engineering of Functional Materials
- Shenzhen Key Laboratory of Polymer Science and Technology
- College of Materials Science and Engineering
- Shenzhen University
- Shenzhen 518060
| | - He Liu
- Guangdong Research Center for Interfacial Engineering of Functional Materials
- Shenzhen Key Laboratory of Polymer Science and Technology
- College of Materials Science and Engineering
- Shenzhen University
- Shenzhen 518060
| | - Guohua Xie
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials
- Department of Chemistry
- Wuhan University
- Wuhan
- P. R. China
| | - Chuluo Yang
- Guangdong Research Center for Interfacial Engineering of Functional Materials
- Shenzhen Key Laboratory of Polymer Science and Technology
- College of Materials Science and Engineering
- Shenzhen University
- Shenzhen 518060
| |
Collapse
|
16
|
Qi Y, Chen C, Zheng C, Tang Y, Wan Y, Jiang H, Chen T, Tao Y, Chen R. Heteroatom-bridged heterofluorenes: a theoretical study on molecular structures and optoelectronic properties. Phys Chem Chem Phys 2020; 22:3675-3682. [DOI: 10.1039/c9cp06458c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A double heteroatom introduction strategy was proposed and theoretically investigated to construct highly rigid π-conjugated small molecules and polymers for optoelectronic applications.
Collapse
Affiliation(s)
- Yuanyuan Qi
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Cailin Chen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Chao Zheng
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Yuting Tang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Yifang Wan
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - He Jiang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Ting Chen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Ye Tao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Runfeng Chen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| |
Collapse
|