1
|
Feng Q, Li X, Li X. A Route to Two-Dimensional Room-Temperature Organometallic Multiferroics: The Marriage of d-p Spin Coupling and Structural Inversion Symmetry Breaking. NANO LETTERS 2024; 24:3462-3469. [PMID: 38451166 DOI: 10.1021/acs.nanolett.4c00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Two-dimensional (2D) room-temperature multiferroic materials are highly desirable but still very limited. Herein, we propose a potential strategy to obtain such materials in 2D metal-organic frameworks (MOFs) by utilizing the d-p direct spin coupling in conjunction with center-symmetry-breaking six-membered heterocyclic rings. Based on this strategy, a screening of 128 2D MOFs results in the identification of three multiferroics, that is, Cr(1,2-oxazine)2, Cr(1,2,4-triazine)2, and Cr(1,2,3,4-trazine)2, simultaneously exhibiting room-temperature ferrimagnetism and ferroelectricity/antiferroelectricity. The room-temperature ferrimagnetic order (306-495 K) in these MOFs originates from the strong d-p direct magnetic exchange interaction between Cr cations and ligand anions. Specifically, Cr(1,2-oxazine)2 exhibits ferroelectric behavior with an out-of-plane polarization of 4.24 pC/m, whereas the other two manifest antiferroelectric characteristics. Notably, all three materials present suitable polarization switching barriers (0.18-0.31 eV). Furthermore, these MOFs are all bipolar magnetic semiconductors with moderate band gaps, in which the spin direction of carriers can be manipulated by electrical gating.
Collapse
Affiliation(s)
- Qingqing Feng
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei Institute for Public Safety Research, Tsinghua University, Hefei, Anhui 320601, China
| | - Xiangyang Li
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xingxing Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
2
|
Liu X, Wang H, Chen Z, Zhu W, Li Z, Hu W, Xiao H, Zeng XC. Enhanced Direct Exchange Interaction and Hybridization by Single-Atom Linkers for High Curie Temperature and Superior Visible-Light Harvesting in Cr 3(CN 3) 2. NANO LETTERS 2024; 24:35-42. [PMID: 38117034 DOI: 10.1021/acs.nanolett.3c03044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Designing two-dimensional (2D) ferromagnetic (FM) semiconductors with elevated Curie temperature, high carrier mobility, and strong light harvesting is challenging but crucial to the development of spintronics with multifunctionalities. Herein, we show first-principles computation evidence of the 2D metal-organic framework Kagome ferromagnet Cr3(CN3)2. Monolayer Cr3(CN3)2 is predicted to be an FM semiconductor with a record-high Curie temperature of 943 K owing to the use of a single-atom linker (N), which results in strong direct d-p exchange interaction and hybridization between dyz/xz and pz of Cr and N, as well as excellent matching characteristics in energy and symmetry. The single-atom linker structural feature also leads to notable band dispersion and a relatively high carrier mobility of 420 cm2 V-1 s-1. Moreover, under the in-plane strain, 2D Cr3(CN3)2 can be tuned to possess a strong visible-light-harvesting functionality. These novel properties render monolayer Cr3(CN3)2 a distinct 2D ferromagnet with high potential for the development of multifunctional spintronics.
Collapse
Affiliation(s)
- Xiaofeng Liu
- School of Physics, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Haidi Wang
- School of Physics, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Zhao Chen
- School of Physics, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Weiduo Zhu
- School of Physics, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Zhongjun Li
- School of Physics, Hefei University of Technology, Hefei 230009, People's Republic of China
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Wei Hu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Haixiao Xiao
- School of Physics, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Xiao Cheng Zeng
- Department of Materials Science & Engineering, City University of Hong Kong, Hong Kong 999077, People's Republic of China
| |
Collapse
|
3
|
Sheoran S, Monga S, Phutela A, Bhattacharya S. Coupled Spin-Valley, Rashba Effect, and Hidden Spin Polarization in WSi 2N 4 Family. J Phys Chem Lett 2023; 14:1494-1503. [PMID: 36745045 DOI: 10.1021/acs.jpclett.2c03108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Using first-principles calculations, we report the electronic properties with a special focus on the band splitting in the WSi2N4 class of materials. Due to the broken inversion symmetry and strong spin-orbit coupling, we detect coupled spin-valley effects at the corners of the first Brillouin zone (BZ). Additionally, we observe cubically and linearly split bands around the Γ and M points, respectively. The in-plane mirror symmetry (σh) and reduced symmetry of the arbitrary k-point, enforce the persistent spin textures (PST) to occur in full BZ. We induce the Rashba splitting by breaking the σh through an out-of-plane external electric field (EEF). The inversion asymmetric site point group of the W atom introduces the hidden spin polarization in centrosymmetric layered bulk counterparts. Low energy k.p models demonstrate that the PST along the M-K line is robust to EEF and layer thickness, making them suitable for applications in spintronics and valleytronics.
Collapse
Affiliation(s)
- Sajjan Sheoran
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Sanchi Monga
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Ankita Phutela
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Saswata Bhattacharya
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
4
|
Zhang S, Wu H, Yang L, Zhang G, Xie Y, Zhang L, Zhang W, Chang H. Two-dimensional magnetic atomic crystals. MATERIALS HORIZONS 2022; 9:559-576. [PMID: 34779810 DOI: 10.1039/d1mh01155c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) magnetic crystals show many fascinating physical properties and have potential device applications in many fields. In this paper, the preparation, physical properties and device applications of 2D magnetic atomic crystals are reviewed. First, three preparation methods are presented, including chemical vapor deposition (CVD) molecular beam epitaxy (MBE) and single-crystal exfoliation. Second, physical properties of 2D magnetic atomic crystals, including ferromagnetism, antiferromagnetism, magnetic regulation and anomalous Hall effect are presented. Third, the application of 2D magnetic atomic crystals in heterojunctions reluctance and other aspects are briefly introduced. Finally, the future development direction and possible challenges of 2D magnetic atomic crystals are briefly addressed.
Collapse
Affiliation(s)
- Shanfei Zhang
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Hao Wu
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Li Yang
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Gaojie Zhang
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yuanmiao Xie
- School of Microelectronics and Materials Engineering and School of Science, Guangxi University of Science and Technology, Liuzhou, China
| | - Liang Zhang
- School of Microelectronics and Materials Engineering and School of Science, Guangxi University of Science and Technology, Liuzhou, China
| | - Wenfeng Zhang
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Haixin Chang
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
5
|
Gong L, Zhang C, Nie A, Lin C, Zhang H, Gao C, Wang M, Zhang X, Han N, Su H, Lin C, Jin Y, Zhang C, Zhang X, Dai JF, Cheng Y, Huang W. Epitaxial growth of large-grain-size ferromagnetic monolayer CrI 3 for valley Zeeman splitting enhancement. NANOSCALE 2021; 13:2955-2962. [PMID: 33506851 DOI: 10.1039/d0nr08248a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional (2D) magnetic CrI3 has received considerable research attention because of its intrinsic features, including insulation, Ising ferromagnetism, and stacking-order-dependent magnetism, as well as potential in spintronic applications. However, the current strategy for the production of ambient-unstable CrI3 thin layer is limited to mechanical exfoliation, which normally suffers from uncontrollable layer thickness, small size, and low yet unpredictable yield. Here, via a confined vapor epitaxy (CVE) method, we demonstrate the mass production of flower-like CrI3 monolayers on mica. Interestingly, we discovered the crucial role of K ions on the mica surface in determining the morphology of monolayer CrI3, reacting with precursors to form a KIx buffer layer. Meanwhile, the transport agent affects the thickness and size of the as-grown CrI3. Moreover, the Curie temperature of CrI3 is greatly affected by the interaction between CrI3 and the substrate. The monolayer CrI3 on mica could act as a magnetic substrate for valley Zeeman splitting enhancement of WSe2. We reckon our work represents a major advancement in the mass production of monolayer 2D CrI3 and anticipate that our growth strategy may be extended to other transition metal halides.
Collapse
Affiliation(s)
- Lipeng Gong
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
The Magnetic Proximity Effect Induced Large Valley Splitting in 2D InSe/FeI 2 Heterostructures. NANOMATERIALS 2020; 10:nano10091642. [PMID: 32825747 PMCID: PMC7557779 DOI: 10.3390/nano10091642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 11/21/2022]
Abstract
The manipulation of valley splitting has potential applications in valleytronics, which lacks in pristine two-dimensional (2D) InSe. Here, we demonstrate that valley physics in InSe can be activated via the magnetic proximity effect exerted by ferromagnetic FeI2 substrate with spin-orbit coupling. The valley splitting energy can reach 48 meV, corresponding to a magnetic exchange field of ~800 T. The system also presents magnetic anisotropy behavior with its easy magnetization axis tunable from in-plane to out-of-plane by the stacking configurations and biaxial tensile strain. The d-orbital-resolved magnetic anisotropic energy contributions indicate that the tensile strain effect arises from the increase of hybridization between minority Fe dxy and dx2−y2 states. Our results reveal that the magnetic proximity effect is an effective approach to stimulate the valley properties in InSe to extend its spintronic applications, which is expected to be feasible in other group-III monochalcogenides.
Collapse
|
7
|
Chen S, Wu F, Li Q, Sun H, Ding J, Huang C, Kan E. Prediction of room-temperature ferromagnetism in a two-dimensional direct band gap semiconductor. NANOSCALE 2020; 12:15670-15676. [PMID: 32677637 DOI: 10.1039/d0nr03340e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two-dimensional (2D) ferromagnetic (FM) semiconductors with a direct electronic band gap have recently drawn much attention due to their promising potential for spintronic and magneto-optical applications. However, the Curie temperature (TC) of recently synthesized 2D FM semiconductors is too low (∼45 K) and a room-temperature 2D direct band gap FM semiconductor has never been reported, which hinders the development for practical magneto-optical applications. Here, we show that through isovalent alloying, one can increase the TC of a 2D FM semiconductor up to room temperature and simultaneously turn it from an indirect to a direct band gap semiconductor. Using the first-principles calculations, we predict that the alloyed CrMoS2Br2 monolayer is a direct band gap semiconductor with a TC of ∼360 K, whereas the pristine CrSBr monolayer is an indirect band gap semiconductor with a TC of ∼180 K. These findings provide a promising pathway to realize 2D direct band gap FM semiconductors with TC above room temperature, which will greatly stimulate theoretical and experimental interest in future spintronic and magneto-optical applications.
Collapse
Affiliation(s)
- Shanbao Chen
- Department of Applied Physics and Institution of Energy and Microstructure, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
8
|
Sheng H, Zhu Y, Bai D, Wu X, Wang J. Thermoelectric properties of two-dimensional magnet CrI 3. NANOTECHNOLOGY 2020; 31:315713. [PMID: 32311678 DOI: 10.1088/1361-6528/ab8b0d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The thermoelectric, phonon transport, and electronic transport properties of two-dimensional magnet CrI3 are systematically investigated by combining density functional theory with Boltzmann transport theory. A low lattice thermal conductivity of 1.355 W m-1K-1 is presented at 300 K due to the low Debye temperature and phonon group velocity. The acoustic modes dominate the lattice thermal conductivity, and the longitudinal acoustic mode has the largest contribution of 42.31% on account of its relatively large phonon group velocity and phonon lifetime. The high band degeneracy and the peaky density of states near the conduction band minimum appear for the CrI3 monolayer, which is beneficial for forming a significantly increased Seebeck coefficient (1561 μV K-1). Furthermore, the thermoelectric figure of merit is calculated reasonably, and the value is 1.57 for the optimal n-type doping level at 900 K. N-type doping maintains a higher thermoelectric conversion efficiency than p-type doping throughout the temperature range, while the difference gradually increases as the temperature rises. Our investigation may provide some theoretical support for the application of the CrI3 monolayer in the thermoelectric field.
Collapse
Affiliation(s)
- Haohao Sheng
- School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | | | | | | | | |
Collapse
|
9
|
Li H, Xu YK, Cheng ZP, He BG, Zhang WB. Spin-dependent Schottky barriers and vacancy-induced spin-selective ohmic contacts in magnetic vdW heterostructures. Phys Chem Chem Phys 2020; 22:9460-9466. [DOI: 10.1039/d0cp01014f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Schottky barriers are spin-dependent in magnetic vdW heterostructures.
Collapse
Affiliation(s)
- Hongxing Li
- School of Physics and Electronic Sciences
- Changsha University of Science and Technology
- Changsha 410114
- People's Republic of China
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering
| | - Yuan-Kai Xu
- School of Physics and Electronic Sciences
- Changsha University of Science and Technology
- Changsha 410114
- People's Republic of China
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering
| | - Zi-Peng Cheng
- School of Physics and Electronic Sciences
- Changsha University of Science and Technology
- Changsha 410114
- People's Republic of China
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering
| | - Bin-Guang He
- School of Physics and Electronic Sciences
- Changsha University of Science and Technology
- Changsha 410114
- People's Republic of China
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering
| | - Wei-Bing Zhang
- School of Physics and Electronic Sciences
- Changsha University of Science and Technology
- Changsha 410114
- People's Republic of China
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering
| |
Collapse
|