1
|
Yang X, Zhang L, Liu G, Pang G, Wang D, Li M, Li C, Liao Z, Li Q, Zhao C, Liang J, Yan P, Wang K, Xiao B, Geng D. Phase Transition Modulated by Grain Size and Lattice Distortion in Layered Transition Metal Oxide for Sodium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39054601 DOI: 10.1021/acsami.4c02941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Low-cost sodium-ion batteries have demonstrated great prospects in energy storage, among which layered transition metal oxides hold great potential as a cathode material. However, the notorious phase transition in layered cathode materials has greatly hampered their cycle life due to large volume changes upon desodiation/sodiation. In this study, by adopting an O3-type NaNi1/3Fe1/3Mn1/3O2 (NFM) with controlled synthesis temperatures, we have revealed that the grain size is closely related to its phase transition behaviors. The layered material with a smaller grain size and more distorted lattice tends to experience a shorter plateau of the O3-P3-O3 phase transitions during the charge/discharge process. Despite having a lower nominal discharge capacity without the phase transition plateau, its cycling stability increases from 77.4% to 96.2% after 100 cycles with greatly reduced intragranular cracks. The smaller grain size and lattice distortion act as a barrier that prevents the smooth layer from gliding upon sodium intercalation and deintercalation. This study focuses on the influence of grain size on battery cycle stability and provides a basis for future analysis of the structural instability of layered materials.
Collapse
Affiliation(s)
- Xuan Yang
- University of Science and Technology Beijing, Beijing 100083, PR China
- GRINM (Guangdong) Research Institute for Advanced Materials and Technology, Foshan, Guangdong 528051, PR China
| | - Lihan Zhang
- Beijing Key Laboratory of Microstructure and Properties of Solids, Beijing University of Technology, Beijing 100124, PR China
| | - Guozhuang Liu
- Guangxi Zhuoneng New Energy Co., LTD, Nanning, Guangxi 530024, PR China
| | - Guoyao Pang
- GRINM (Guangdong) Research Institute for Advanced Materials and Technology, Foshan, Guangdong 528051, PR China
| | - Dongniu Wang
- Institute of Advanced Science Facilities, Shenzhen, Guangdong 518107, PR China
| | - Meng Li
- University of Science and Technology Beijing, Beijing 100083, PR China
- GRINM (Guangdong) Research Institute for Advanced Materials and Technology, Foshan, Guangdong 528051, PR China
| | - Chenxiang Li
- University of Science and Technology Beijing, Beijing 100083, PR China
- GRINM (Guangdong) Research Institute for Advanced Materials and Technology, Foshan, Guangdong 528051, PR China
| | - Zhou Liao
- GRINM (Guangdong) Research Institute for Advanced Materials and Technology, Foshan, Guangdong 528051, PR China
| | - Qian Li
- National Institute of Clean and Low Carbon Energy, Beijing, Changping 102211, PR China
| | - Changtai Zhao
- GRINM (Guangdong) Research Institute for Advanced Materials and Technology, Foshan, Guangdong 528051, PR China
| | - Jianwen Liang
- GRINM (Guangdong) Research Institute for Advanced Materials and Technology, Foshan, Guangdong 528051, PR China
| | - Pengfei Yan
- Beijing Key Laboratory of Microstructure and Properties of Solids, Beijing University of Technology, Beijing 100124, PR China
| | - Kuan Wang
- GRINM (Guangdong) Research Institute for Advanced Materials and Technology, Foshan, Guangdong 528051, PR China
| | - Biwei Xiao
- GRINM (Guangdong) Research Institute for Advanced Materials and Technology, Foshan, Guangdong 528051, PR China
| | - Dongsheng Geng
- University of Science and Technology Beijing, Beijing 100083, PR China
- Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, PR China
| |
Collapse
|
2
|
Huang S, Wang Z, Zhou Q, Yang S, Huang R, Mai K, Qin W, Huang J, Yu G, Feng Y, Li J. Tuning interfacial microstructure of alginate-based amphiphile by dynamic bonding for stabilizing Pickering emulsion. Carbohydr Polym 2023; 310:120720. [PMID: 36925246 DOI: 10.1016/j.carbpol.2023.120720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023]
Abstract
Polysaccharide-based soft colloidal particles mediated by the dynamic bonding-engineered interfacial self-assembly can regulate the properties of oil-water interfacial films, availing the stability of emulsions under a wide pH range. The amphiphilic phenylboronic alginate soft colloidal particles (Alg-PBA) were designed to stabilize pH-responsive Pickering emulsions (PEs). Combining stability analysis with quartz crystal microbalance and dissipation monitoring (QCM-D), the microstructure and viscoelasticity of Alg-PBA at the oil-water interface were determined. The results showed that PEs stabilized by Alg-PBA due to a thicker and stronger viscoelastic interface film induced by BO bonds and hydrogen bonds. The structure-function relationship of the Alg-PBA emulsifier driven by dynamic bonds was further elaborated at multiple scales by laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Meanwhile, the microstructure of aerogels templated by emulsion could be tuned by adjusting dynamic bonds, which provides a new idea for polysaccharide soft material engineering.
Collapse
Affiliation(s)
- Shuntian Huang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Zhaojun Wang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Qichang Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Shujuan Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Riting Huang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Keyang Mai
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Wenqi Qin
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Junhao Huang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
| | - Gaobo Yu
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
| | - Yuhong Feng
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
| | - Jiacheng Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
| |
Collapse
|
3
|
Liu L, Lu Y, Qiu D, Wang D, Ding Y, Wang G, Liang Z, Shen Z, Li A, Chen X, Song H. Sodium alginate-derived porous carbon: Self-template carbonization mechanism and application in capacitive energy storage. J Colloid Interface Sci 2022; 620:284-292. [DOI: 10.1016/j.jcis.2022.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022]
|
4
|
Wang Q, Yang L, Li H, Chen D, Sun Y, Liu Y, Liu Y, Zhao X, Wu Z, Guo X. Tuning the Delithiation State of LiNi 0.5Co 0.2Mn 0.3O 2 Enabling the Electronic Structure Modification to Enhance the Conversion of Polysulfides in a Lithium–Sulfur Battery. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qianwen Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Liwen Yang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Haoyu Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Dequan Chen
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yan Sun
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Yang Liu
- School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yuxia Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xuhong Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhenguo Wu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xiaodong Guo
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
- Institute for Advanced Study, Chengdu University, Chengdu 610065, China
| |
Collapse
|
5
|
Chen X, Yang Y, Guan Y, Luo C, Bao M, Li Y. A solar-heated antibacterial sodium alginate aerogel for highly efficient cleanup of viscous oil spills. J Colloid Interface Sci 2022; 621:241-253. [PMID: 35461139 DOI: 10.1016/j.jcis.2022.04.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
HYPOTHESIS Major oil spills highlight the need for environmentally responsible and cost-effective recovery technologies. However, challenges remain for heavy oil spill recovery because of its high viscosity and low fluidity. To achieve this goal, an ecofriendly bio-based aerogel with efficient photothermal conversion ability was developed as a novel absorbent to achieve the fast removal of heavy oil spill by reducing the oil viscosity. EXPERIMENTS From the renewable and abundant raw material sodium alginate (SA), hydrophobic and antibacterial SA/graphene oxide/ZIF-8 aerogel (SAGZM) was successfully fabricated via freezing-drying and chemical vapor deposition (CVD) technique. A series of characterization and tests, including aerogel structure, selective wettability, photothermal conversion ability, crude oil removal capability, and antibacterial ability, have been investigated in detail. SAGZM aerogels have rich pore structure, high porosity, excellent mechanical properties, and better photothermal conversion efficiency. FINDINGS Under sunlight illumination, the recovery ability of SAGZM for heavy crude oil was investigated through infrared thermal imaging, oil permeability behavior analysis, and the continuous absorption for crude oil. In addition, these results are well supported by the theoretical liquid absorption coefficient. This study indicates that SAGZM is highly efficient in in situ regulating oil viscosity through its remarkably photothermal conversion capability. Importantly, SAGZM possesses an excellent antibacterial ability that is often neglected in the design of environmentally friendly materials in extending its service life. The findings of this work not only provide an eco-friendly bio-based aerogel material but also demonstrate that the photo-responsive SAGZM is efficient in heavy crude oil absorption. The proposed solar-heated SA-based aerogel provides a sustainable approach and material to solve the recovery problem of viscous crude oil spills.
Collapse
Affiliation(s)
- Xiuping Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, PR China
| | - Yushuang Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, PR China
| | - Yihao Guan
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, PR China
| | - Chengyi Luo
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, PR China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, PR China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, PR China.
| |
Collapse
|
6
|
Enhanced Electrochemical Properties of Na0.67MnO2 Cathode for Na-Ion Batteries Prepared with Novel Tetrabutylammonium Alginate Binder. BATTERIES-BASEL 2022. [DOI: 10.3390/batteries8010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Both the binder and solid–electrolyte interface play an important role in improving the cycling stability of electrodes for Na-ion batteries. In this study, a novel tetrabutylammonium (TBA) alginate binder is used to prepare a Na0.67MnO2 electrode for sodium-ion batteries with improved electrochemical performance. The ageing of the electrodes is characterized. TBA alginate-based electrodes are compared to polyvinylidene fluoride- (PVDF) and Na alginate-based electrodes and show favorable electrochemical performance, with gravimetric capacity values of up to 164 mAh/g, which is 6% higher than measured for the electrode prepared with PVDF binder. TBA alginate-based electrodes also display good rate capability and improved cyclability. The solid–electrolyte interface of TBA alginate-based electrodes is similar to that of PVDF-based electrodes. As the only salt of alginic acid soluble in non-aqueous solvents, TBA alginate emerges as a good alternative to PVDF binder in battery applications where the water-based processing of electrode slurries is not feasible, such as the demonstrated case with Na0.67MnO2.
Collapse
|
7
|
Chu S, Guo S, Zhou H. Advanced cobalt-free cathode materials for sodium-ion batteries. Chem Soc Rev 2021; 50:13189-13235. [PMID: 34719701 DOI: 10.1039/d1cs00442e] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Attempts to utilize lithium-ion batteries (LIBs) in large-scale electrochemical energy storage systems have achieved initial success, and solid-state LIBs using metallic lithium as the anode have also been well developed. However, the sharply increased demands/costs and the limited reserves of the two most important metal elements (Li & Co) for LIBs have raised concerns about future development. Sodium-ion batteries (SIBs) equipped with advanced cobalt-free cathodes show great potential in solving both "lithium panic" and "cobalt panic", and have made remarkable progress in recent years. In this review, we comprehensively summarize the recent advances of high-performance cobalt-free cathode materials for advanced SIBs, systematically analyze the conflicts of structural/electrochemical stability with intrinsic insufficiencies of cobalt-free cathode materials, and extensively discuss the strategies of constructing stable cobalt-free cathode materials by making full use of non-cobalt transition-metal elements and suitable crystal structures, all of which aim to provide insights into the key factors (e.g., phase transformation, particle cracks, crystal defects, lattice distortion, lattice oxygen oxidation, morphology, transition-metal migration/dissolution, and the synergistic effects of composite structures) that can determine the stability of cobalt-free cathode materials, provide guidelines for future research, and stimulate more interest on constructing high-performance cobalt-free cathode materials.
Collapse
Affiliation(s)
- Shiyong Chu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Shaohua Guo
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China. .,Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Haoshen Zhou
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
8
|
Li RR, Yang Z, He XX, Liu XH, Zhang H, Gao Y, Qiao Y, Li L, Chou SL. Binders for sodium-ion batteries: progress, challenges and strategies. Chem Commun (Camb) 2021; 57:12406-12416. [PMID: 34726685 DOI: 10.1039/d1cc04563f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Binders as a bridge in electrodes can bring various components together thus guaranteeing the integrity of electrodes and electronic contact during battery cycling. In this review, we summarize the recent progress of traditional binders and novel binders in the different electrodes of SIBs. The challenges faced by binders in terms of bond strength, wettability, thermal stability, conductivity, cost, and environment are also discussed in details. Correspondingly, the designing principle and advanced strategies of future research on SIB binders are also provided. Moreover, a general conclusion and perspective on the development of binder design for SIBs in the future are presented.
Collapse
Affiliation(s)
- Rong-Rong Li
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.
| | - Zhuo Yang
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China.
| | - Xiang-Xi He
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.
| | - Xiao-Hao Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.
| | - Hang Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yun Gao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yun Qiao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.
| | - Li Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.
| | - Shu-Lei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China.
| |
Collapse
|
9
|
Maity C, Das N. Alginate-Based Smart Materials and Their Application: Recent Advances and Perspectives. Top Curr Chem (Cham) 2021; 380:3. [PMID: 34812965 DOI: 10.1007/s41061-021-00360-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Nature produces materials using available molecular building blocks following a bottom-up approach. These materials are formed with great precision and flexibility in a controlled manner. This approach offers the inspiration for manufacturing new artificial materials and devices. Synthetic artificial materials can find many important applications ranging from personalized therapeutics to solutions for environmental problems. Among these materials, responsive synthetic materials are capable of changing their structure and/or properties in response to external stimuli, and hence are termed "smart" materials. Herein, this review focuses on alginate-based smart materials and their stimuli-responsive preparation, fragmentation, and applications in diverse fields from drug delivery and tissue engineering to water purification and environmental remediation. In the first part of this report, we review stimuli-induced preparation of alginate-based materials. Stimuli-triggered decomposition of alginate materials in a controlled fashion is documented in the second part, followed by the application of smart alginate materials in diverse fields. Because of their biocompatibility, easy accessibility, and simple techniques of material formation, alginates can provide solutions for several present and future problems of humankind. However, new research is needed for novel alginate-based materials with new functionalities and well-defined properties for targeted applications.
Collapse
Affiliation(s)
- Chandan Maity
- Department of Chemistry, School of Advanced Science (SAS), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Nikita Das
- Department of Chemistry, School of Advanced Science (SAS), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
10
|
Yang Z, Chen T, Chen D, Shi X, Yang S, Zhong Y, Liu Y, Wang G, Zhong B, Song Y, Wu Z, Guo X. A Ge/Carbon Atomic-Scale Hybrid Anode Material: A Micro-Nano Gradient Porous Structure with High Cycling Stability. Angew Chem Int Ed Engl 2021; 60:12539-12546. [PMID: 33650291 DOI: 10.1002/anie.202102048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 01/27/2023]
Abstract
The continuous growth of the solid-electrolyte interface (SEI) and material crushing are the fundamental issues that hinder the application of Ge anodes in lithium-ion batteries. Solving Ge deformation crushing during discharge/charge cycles is challenging using conventional carbon coating modification methods. Due to the chemical stability and high melting point of carbon (3500 °C), Ge/carbon hybridization at the atomic level is challenging. By selecting a suitable carbon source and introducing an active medium, we have achieved the Ge/carbon doping at the atom-level, and this Ge/carbon anode shows excellent electrochemical performance. The reversible capacity is maintained at 1127 mAh g-1 after 1000 cycles (2 A g-1 (2-71 cycles), 4 A g-1 (72-1000 cycles)) with a retention of 84 % compared to the second cycle. The thickness of the SEI is only 17.4 nm after 1000 cycles. The excellent electrochemical performance and stable SEI fully reflect the application potential of this material.
Collapse
Affiliation(s)
- Zhiwei Yang
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Ting Chen
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Dequan Chen
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xinyu Shi
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shan Yang
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yanjun Zhong
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yuxia Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Gongke Wang
- School of Materials Science and Engineering, Henan Normal University, XinXiang, 453007, P. R. China
| | - Benhe Zhong
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yang Song
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhenguo Wu
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xiaodong Guo
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
11
|
Yang Z, Chen T, Chen D, Shi X, Yang S, Zhong Y, Liu Y, Wang G, Zhong B, Song Y, Wu Z, Guo X. A Ge/Carbon Atomic‐Scale Hybrid Anode Material: A Micro–Nano Gradient Porous Structure with High Cycling Stability. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhiwei Yang
- College of Chemical Engineering Sichuan University Chengdu 610065 P. R. China
| | - Ting Chen
- College of Chemical Engineering Sichuan University Chengdu 610065 P. R. China
| | - Dequan Chen
- College of Chemical Engineering Sichuan University Chengdu 610065 P. R. China
| | - Xinyu Shi
- College of Chemical Engineering Sichuan University Chengdu 610065 P. R. China
| | - Shan Yang
- College of Chemical Engineering Sichuan University Chengdu 610065 P. R. China
| | - Yanjun Zhong
- College of Chemical Engineering Sichuan University Chengdu 610065 P. R. China
| | - Yuxia Liu
- School of Chemistry and Chemical Engineering Qufu Normal University Qufu 273165 P. R. China
| | - Gongke Wang
- School of Materials Science and Engineering Henan Normal University XinXiang 453007 P. R. China
| | - Benhe Zhong
- College of Chemical Engineering Sichuan University Chengdu 610065 P. R. China
| | - Yang Song
- College of Chemical Engineering Sichuan University Chengdu 610065 P. R. China
| | - Zhenguo Wu
- College of Chemical Engineering Sichuan University Chengdu 610065 P. R. China
| | - Xiaodong Guo
- College of Chemical Engineering Sichuan University Chengdu 610065 P. R. China
| |
Collapse
|
12
|
Polysaccharides for sustainable energy storage - A review. Carbohydr Polym 2021; 265:118063. [PMID: 33966827 DOI: 10.1016/j.carbpol.2021.118063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/22/2022]
Abstract
The increasing amount of electric vehicles on our streets as well as the need to store surplus energy from renewable sources such as wind, solar and tidal parks, has brought small and large scale batteries into the focus of academic and industrial research. While there has been huge progress in performance and cost reduction in the past years, batteries and their components still face several environmental issues including safety, toxicity, recycling and sustainability. In this review, we address these challenges by showcasing the potential of polysaccharide-based compounds and materials used in batteries. This particularly involves their use as electrode binders, separators and gel/solid polymer electrolytes. The review contains a historical section on the different battery technologies, considerations about safety on batteries and requirements of polysaccharide components to be used in different types of battery technologies. The last sections cover opportunities for polysaccharides as well as obstacles that prevent their wider use in battery industry.
Collapse
|
13
|
Yang X, Zhang M, Chen Z, Bu Y, Gao X, Sui Y, Yu Y. Sodium Alginate Micelle-Encapsulating Zinc Phthalocyanine Dye-Sensitized Photoelectrochemical Biosensor with CdS as the Photoelectric Material for Hg 2+ Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16828-16836. [PMID: 33784812 DOI: 10.1021/acsami.1c00215] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A simple and selective photoelectrochemical (PEC) biosensor was constructed for Hg2+ detection based on zinc phthalocyanine (ZnPc) dye-sensitized CdS using alginate not only as a carrier but also as a binder. First, CdS as a photoactive material was in situ modified on the electrode surface using a rapid and simple electrodeposition to obtain an initial photocurrent signal. Second, ZnPc was loaded in the amphiphilic alginate micelle and then was coated onto the CdS film surface via alginate as the binder. The photocurrent was subsequently enhanced due to the favorable dye sensitization effect of ZnPc to CdS. Finally, the thymine-rich probe DNA was immobilized on the modified ITO surface via coupling reaction between the carbonyl groups of the amphiphilic polymer and the amino groups of the probe DNA. In the presence of Hg2+, the thymine-Hg2+-thymine (T-Hg2+-T) structure was formed due to the specific bond of Hg2+ with thymine, resulting in the decrease of photocurrent due to the increase of steric hindrance on the modified electrode surface. The proposed PEC biosensor for Hg2+ detection possessed a wide linear range from 10 pM to 1.0 μM with a detection limit of 5.7 pM. This biosensor provides a promising platform for detecting other biomolecules of interest.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Mengjie Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zixuan Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yuwei Bu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xue Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yongkun Sui
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yueqin Yu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|
14
|
Li R, Bai CJ, Liu H, Yang LW, Ming Y, Xu CL, Wei Z, Song Y, Wang GK, Liu YX, Zhong BH, Zhong YJ, Wu ZG, Guo XD. New Insights into the Mechanism of Enhanced Performance of Li[Ni 0.8Co 0.1Mn 0.1]O 2 with a Polyacrylic Acid-Modified Binder. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10064-10070. [PMID: 33591734 DOI: 10.1021/acsami.0c22052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A binder is an important component in lithium-ion batteries and plays a significant role in maintaining the properties of active substances. Most studies in the field of binders have only focussed on physical properties such as bonding performance. Here, a polyacrylic acid-modified binder was designed and adapted to Li[Ni0.8Co0.1Mn0.1]O2, which enhanced the electrochemical stability of Li[Ni0.8Co0.1Mn0.1]O2 from 30.2 to 66.6% (300 cycles at 1 C). We for the first time discovered that this was caused by a chemical reaction between polyacrylic acid and the residual lithium on the surface during the cycling, which formed a lithium propionic acid coating layer and maintained the stability of the layered structure.
Collapse
Affiliation(s)
- Rong Li
- College of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Chang-Jiang Bai
- College of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Hao Liu
- College of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Li-Wen Yang
- College of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yong Ming
- College of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Chun-Liu Xu
- College of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Zhou Wei
- College of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yang Song
- College of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Gong-Ke Wang
- School of Materials Science and Engineering, Henan Normal University, XinXiang 453007, PR China
| | - Yu-Xia Liu
- The Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical, Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Ben-He Zhong
- College of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yan-Jun Zhong
- College of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Zhen-Guo Wu
- College of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xiao-Dong Guo
- College of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
15
|
Yang Y, Chen X, Li Y, Yin Z, Bao M. Construction of a Superhydrophobic Sodium Alginate Aerogel for Efficient Oil Absorption and Emulsion Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:882-893. [PMID: 33415974 DOI: 10.1021/acs.langmuir.0c03229] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bio-based aerogels serve as potential materials in separation of oil/water mixtures. Nevertheless, there remain some key challenges, including expensive/toxic organic cross-linkers, unpromising reusability, and poor performance in emulsion separation. Hereby, a novel, robust, and superhydrophobic sodium alginate/graphene oxide/silicon oxide aerogel (SA/GO/SiO2-M) was fabricated by simple calcium ion cross-linking self-assembly, freeze-drying, and chemical vapor deposition methods based on the renewable and abundant raw materials. The as-prepared SA-based aerogel possesses high absorbency for varieties of organic solvents and oils. Importantly, it shows high efficiency in the separation of surfactant-stabilized water-in-oil emulsions. SA/GO/SiO2-M aerogels display excellent reusability in both absorption and separation because of their good mechanical properties in the air and oil phase, and the mechanism in emulsion separation is discussed. This study shows that SA/GO/SiO2-M aerogels are a promising material in treating oil contaminants from different fields.
Collapse
Affiliation(s)
- Yushuang Yang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P.R. China
| | - Xiuping Chen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P.R. China
| | - Yiming Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P.R. China
| | - Zichao Yin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P.R. China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P.R. China
| |
Collapse
|
16
|
Yan M, Shi J, Tang S, Zhou G, Zeng J, Zhang Y, Zhang H, Yu Y, Guo J. Design for dynamic hydrogen bonding in a double network structure to improve the mechanical properties of sodium alginate fibers. NEW J CHEM 2021. [DOI: 10.1039/d1nj03268b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The SA/PAA-VSNP fiber was obtained using dynamic wet spinning through dynamic hydrogen bonding in the double network structure.
Collapse
Affiliation(s)
- Ming Yan
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Junfeng Shi
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Song Tang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Guohang Zhou
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Jiexiang Zeng
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yixin Zhang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Hong Zhang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yue Yu
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Jing Guo
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|