1
|
Bouzari N, Nasseri R, Huang J, Ganguly S, Tang XS, Mekonnen TH, Aghakhani A, Shahsavan H. Hybrid Zwitterionic Hydrogels with Encoded Differential Swelling and Programmed Deformation for Small-Scale Robotics. SMALL METHODS 2024:e2400812. [PMID: 39044713 DOI: 10.1002/smtd.202400812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Indexed: 07/25/2024]
Abstract
Stimuli-responsive shape-morphing hydrogels with self-healing and tunable physiochemical properties are excellent candidates for functional building blocks of untethered small-scale soft robots. With mechanical properties similar to soft organs and tissues, such robots enable minimally invasive medical procedures, such as cargo/cell transportation. In this work, responsive hydrogels based on zwitterionic/acrylate chemistry with self-healing and stimuli-responsiveness are synthesized. Such hydrogels are then judiciously cut and pasted to form hybrid constructs with predetermined swelling and elastic anisotropy. This method is used to program hydrogel constructs with predetermined 2D-to-3D deformation upon exposure to different environmental ionic strengths. Untethered soft robotic functionalities are demonstrated, such as actuation, magnetic locomotion, and targeted transport of soft and light cargo in flooded media. The proposed hydrogel expands the repertoire of functional materials for fabricating small-scale soft robots.
Collapse
Affiliation(s)
- Negin Bouzari
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Rasool Nasseri
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Junting Huang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Sayan Ganguly
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Xiaowu Shirley Tang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Tizazu H Mekonnen
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Institute of Polymer Research, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Amirreza Aghakhani
- Institute of Biomaterials and Biomolecular Systems (IBBS), University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Hamed Shahsavan
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Center for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
2
|
Zuo L, Wu M, Zhang H, Zhang S, Ma Z, Luo J, Ding C, Li J. A hydrogel gripper enabling fine movement based on spatiotemporal mineralization. J Mater Chem B 2023; 11:8966-8973. [PMID: 37695077 DOI: 10.1039/d3tb01252b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Fine tailoring of the subtle movements of a hydrogel actuator through simple methods has widespread application prospects in wearable electronics, bionic robots and biomedical engineering. However, to the best of our knowledge, this challenge is not yet completed. Inspired by the diffusion-reaction process in nature, a hydrogel gripper with the capability of fine movement was successfully prepared based on the spatiotemporal fabrication of the polypyrrole (PPY) pattern in a poly (N-isopropylacrylamide) (PNIPAM) hydrogel. The hydrogel was given gradient porous structures using a one-step UV irradiation method. Moreover, photothermal PPY patterns on the hydrogel were obtained through spatiotemporal mineralization of ferric hydroxide followed by the polymerization of pyrrole in a controllable manner. Taking advantage of the unique structures, the hydrogel gripper can not only achieve reversible grasping-releasing of substrates with the tuning of temperature (similar to that of hands), but also generate delicate movement under the irradiation of light (resembling that of finger joints). The strategy reported here is easily accessible and there is no need for sophisticated templates, therefore making it superior to other existing methods. We believe this work will provide references for the design and application of more advanced soft actuators.
Collapse
Affiliation(s)
- Liangrui Zuo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Mingzhen Wu
- Guangxi Institute for Food and Drug Control, Nanning 530021, China
| | - Hongbo Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Shikai Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhengxin Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Chunmei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Qian X, Mu N, Zhao X, Shi C, Jiang S, Wan M, Yu B. Novel self-healing and recyclable fire-retardant polyvinyl alcohol/borax hydrogel coatings for the fire safety of rigid polyurethane foam. SOFT MATTER 2023; 19:6097-6107. [PMID: 37526969 DOI: 10.1039/d3sm00709j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Rigid polyurethane foam (RPUF) has attracted great attention as an insulation material, but its inherent flammability restricts its practical application. Developing a sustainable fire-retardant strategy that can improve its fire safety is particularly desirable and challenging. Herein, novel fire-retardant hydrogel coatings based on polyvinyl alcohol (PVA) and borax are proposed and applied in RPUF, and the self-healing, recyclability and flame retardant properties of the coatings are investigated. The dynamic and reversible cross-linked networks based on the borate ester bonds and hydrogen bonds endow the hydrogels with excellent repairability, recyclability, and elasticity. Compared with a neat RUPF, the coated RPUF exhibited improved fire-retardant properties without the inherent advantages being influenced and can be reflected by the 8% increase in the limiting oxygen index (LOI), 20% reduction in total heat release (THR), and 25% decrease in total smoke production (TSP) with the coatings, along with a rapid self-quenching behavior. The novel hydrogel coatings provide a new strategy for the development of flame-retardant coatings, demonstrating the potential of the next generation of self-healing hydrogel coatings to reduce the fire risk of the RPUF.
Collapse
Affiliation(s)
- Xiaodong Qian
- Beijing Key Laboratory of Metro Fire and Passenger Transportation Safety, China Academy of Safety Science and Technology, Beijing 100012, China.
| | - Nire Mu
- Institute of Safety Science and Engineering, School of Mechanicaland Automotive Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510641, China.
| | - Xiaojiong Zhao
- Institute of Safety Science and Engineering, School of Mechanicaland Automotive Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510641, China.
| | - Congling Shi
- Beijing Key Laboratory of Metro Fire and Passenger Transportation Safety, China Academy of Safety Science and Technology, Beijing 100012, China.
| | - Saihua Jiang
- Institute of Safety Science and Engineering, School of Mechanicaland Automotive Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510641, China.
| | - Mei Wan
- Beijing Key Laboratory of Metro Fire and Passenger Transportation Safety, China Academy of Safety Science and Technology, Beijing 100012, China.
| | - Bin Yu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Peng S, Cao X, Sun Y, Chen L, Ma C, Yang L, Zhao H, Liu Q, Liu Z, Ma C. Polyurethane Shape Memory Polymer/pH-Responsive Hydrogel Hybrid for Bi-Function Synergistic Actuations. Gels 2023; 9:gels9050428. [PMID: 37233019 DOI: 10.3390/gels9050428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023] Open
Abstract
Stimuli-responsive actuating hydrogels response to the external stimulus with complex deformation behaviors based on the programmable anisotropic structure design are one of the most important smart soft materials, which have great potential applications in artificial muscles, smart values, and mini-robots. However, the anisotropic structure of one actuating hydrogel can only be programmed one time, which can only provide single actuating performance, and subsequently, has severely limited their further applications. Herein, we have explored a novel SMP/hydrogel hybrid actuator through combining polyurethane shape memory polymer (PU SMP) layer and pH-responsive polyacrylic-acid (PAA) hydrogel layer by a napkin with UV-adhesive. Owing to both the super-hydrophilicity and super-lipophilicity of the cellulose-fiber based napkin, the SMP and the hydrogel can be bonded firmly by the UV-adhesive in the napkin. More importantly, this bilayer hybrid 2D sheet can be programmed by designing a different temporary shape in heat water which can be fixed easily in cool water to achieve various fixed shapes. This hybrid with a fixed temporary shape can achieve complex actuating performance based on the bi-functional synergy of temperature-triggered SMP and pH-responsive hydrogel. The relatively high modulus PU SMP achieved high to 87.19% and 88.92% shape-fixing ratio, respectively, correspond to bending and folding shapes. The hybrid actuator can actuate with the 25.71 °/min actuating speed. Most importantly, one SMP/hydrogel bi-layer hybrid sheet was repeatedly programmed at least nine times in our research to fix various temporary 1D, 2D and 3D shapes, including bending, folding and spiraling shapes. As a result, only one SMP/hydrogel hybrid can provide various complex stimuli-responsive actuations, including the reversable bending-straightening, spiraling-unspiraling. A few of the intelligent devices have been designed to simulate the movement of the natural organisms, such as bio-mimetic "paw", "pangolin" and "octopus". This work has developed a new SMP/hydrogel hybrid with excellent multi-repeatable (≥9 times) programmability for high-level complex actuations, including the 1D to 2D bending and the 2D to 3D spiraling actuations, which also provides a new strategy to design other new soft intelligent materials and systems.
Collapse
Affiliation(s)
- Shuyi Peng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xingyu Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Ye Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Lin Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Chao Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Lang Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Hongliang Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Key Laboratory of Quality Safe Evaluation and Research of Degradable Material for State Market Regulation, Products Quality Supervision and Testing Institute of Hainan Province, Haikou 570203, China
| | - Qijie Liu
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University-Taizhou, Taizhou 318000, China
| | - Zhenzhong Liu
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University-Taizhou, Taizhou 318000, China
| | - Chunxin Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Key Laboratory of Quality Safe Evaluation and Research of Degradable Material for State Market Regulation, Products Quality Supervision and Testing Institute of Hainan Province, Haikou 570203, China
| |
Collapse
|
5
|
Zhang Y, Cao X, Zhao Y, Li H, Xiao S, Chen Z, Huang G, Sun Y, Liu Z, He Z. An Anisotropic Hydrogel by Programmable Ionic Crosslinking for Sequential Two-Stage Actuation under Single Stimulus. Gels 2023; 9:gels9040279. [PMID: 37102891 PMCID: PMC10137370 DOI: 10.3390/gels9040279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
As one of the most important anisotropic intelligent materials, bi-layer stimuli-responsive actuating hydrogels have proven their wide potential in soft robots, artificial muscles, biosensors, and drug delivery. However, they can commonly provide a simple one-actuating process under one external stimulus, which severely limits their further application. Herein, we have developed a new anisotropic hydrogel actuator by local ionic crosslinking on the poly(acrylic acid) (PAA) hydrogel layer of the bi-layer hydrogel for sequential two-stage bending under a single stimulus. Under pH = 13, ionic-crosslinked PAA networks undergo shrinking (-COO−/Fe3+ complexation) and swelling (water absorption) processes. As a combination of Fe3+ crosslinked PAA hydrogel (PAA@Fe3+) with non-swelling poly(3-(1-(4-vinylbenzyl)-1H-imidazol-3-ium-3-yl)propane-1-sulfonate) (PZ) hydrogel, the as-prepared PZ-PAA@Fe3+ bi-layer hydrogel exhibits distinct fast and large-amplitude bidirectional bending behavior. Such sequential two-stage actuation, including bending orientation, angle, and velocity, can be controlled by pH, temperature, hydrogel thickness, and Fe3+ concentration. Furthermore, hand-patterning Fe3+ to crosslink with PAA enables us to achieve various complex 2D and 3D shape transformations. Our work provides a new bi-layer hydrogel system that performs sequential two-stage bending without switching external stimuli, which will inspire the design of programmable and versatile hydrogel-based actuators.
Collapse
Affiliation(s)
- Yanjing Zhang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Xingyu Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yuyu Zhao
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Huahuo Li
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Shengwei Xiao
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
- Correspondence: (S.X.); (Y.S.); (Z.H.)
| | - Zhangxin Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Guobo Huang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Ye Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Correspondence: (S.X.); (Y.S.); (Z.H.)
| | - Zhenzhong Liu
- Research Institute of Zhejiang University-Taizhou, Taizhou 318000, China
| | - Zhicai He
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
- Correspondence: (S.X.); (Y.S.); (Z.H.)
| |
Collapse
|
6
|
Yang Y, Liu E, An W, Hu Y, Xia X, Xu S. Amphibious Nastic Hydrogel Based on the Tropic Movement of Gelatin and Its Opposite Phase Transition to PNIPAm. Biomacromolecules 2023; 24:1522-1531. [PMID: 36757084 DOI: 10.1021/acs.biomac.3c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Mimicking the anisotropic structure and environmental adaptation of organisms in nature remains a key objective in the field of hydrogels. However, it has been very challenging due to complex fabrication and confined application only in water. Here, we demonstrate a new strategy of spontaneous fabrication of an anisotropic hydrogel based on our finding in the tropic movement of gelatin toward the Teflon template. The obtained hydrogel exhibits fast response and recovery under temperature stimuli both in aqueous and non-aqueous environments, making use of the approximate transition temperature and opposite phase transition behavior of gelatin and poly(N-isopropylacrylamide) (PNIPAm). Its recovery performance in water is more than 50 times faster than that of the PNIPAm hydrogel. Furthermore, the PNIPAm/gelatin hydrogel can achieve 3D complex deformations, stealth deformation, erasable and reprogrammed surface patterning, and multistage encryption by simply modulating the location and shape of gelatin to achieve an anisotropic structure. The work provides a simple and versatile way to obtain an anisotropic hydrogel with a definite and predictable structure, which is demonstrated across a range of different monomers. It improves the responsive performance and broadens the hydrogel application to the non-aqueous environment. Additionally, this tropic movement of gelatin can be extended for the design of new types of anisotropic materials and thus endows the materials with diverse functionality.
Collapse
Affiliation(s)
- Yang Yang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - E Liu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Wenli An
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yan Hu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xuehuan Xia
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Shimei Xu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
7
|
A Metal Ion and Thermal-Responsive Bilayer Hydrogel Actuator Achieved by the Asymmetric Osmotic Flow of Water between Two Layers under Stimuli. Polymers (Basel) 2022; 14:polym14194019. [PMID: 36235968 PMCID: PMC9570860 DOI: 10.3390/polym14194019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Shape-morphing hydrogels have drawn great attention due to their wide applications as soft actuators, while asymmetric responsive shape-morphing behavior upon encountering external stimuli is fundamental for the development of hydrogel actuators. Therefore, in this work, bilayer hydrogels were prepared and the shrinkage ratios (LA/LN) of the AAm/AAc layer to the NIPAM layer immersed in different metal ion solutions, leading to bending in different directions, were investigated. The difference in the shrinkage ratio was attributed to the synergistic effect of the osmolarity difference between the inside and outside of the hydrogels and the interaction difference between the ion and hydrogel polymer chains. Additionally, under thermal stimuli, the hydrogel actuator would bend toward the NIPAM layer due to the shrinkage of the hydrogel networks caused by the hydrophilic–hydrophobic phase transition of NIPAM blocks above the LCST. This indicates that metal ion and thermal-responsive shape-morphing hydrogel actuators with good mechanical properties could be used as metal ion or temperature-controllable switches or other smart devices.
Collapse
|
8
|
Xiao S, Zhao Y, Jin S, He Z, Duan G, Gu H, Xu H, Cao X, Ma C, Wu J. Regenerable bacterial killing–releasing ultrathin smart hydrogel surfaces modified with zwitterionic polymer brushes. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Building long-lasting antimicrobial and clean surfaces is one of the most effective strategies to inhibit bacterial infection, but obtaining an ideal smart surface with highly efficient, controllable, and regenerative properties still encounters many challenges. Herein, we fabricate an ultrathin brush–hydrogel hybrid coating (PSBMA-P(HEAA-co-METAC)) by integrating antifouling polyzwitterionic (PSBMA) brushes and antimicrobial polycationic (P(HEAA-co-METAC)) hydrogels. The smart bacterial killing–releasing properties can be achieved independently by the opposite volume and conformation changes between the swelling (shrinking) of P(HEAA-co-METAC) hydrogel layer and the shrinking (swelling) of PSBMA brushes. The friction test reveals that both METAC and SBMA components support great lubrication. By tuning the initial organosilane (BrTMOS:KH570) ratios, the prepared PSBMA-P(HEAA-co-METAC) coating exhibits different antibacterial abilities from single “capturing–killing” to versatile “capturing–killing–releasing.” Most importantly, 99% of the bacterial-releasing rate can be easily achieved via 0.5 M NaCl treatment. This smart surface not only possesses long-lasting antibacterial performance, only ∼1.09 × 105 cell·cm−2 bacterial residue even after 72 h exposure to bacteria solutions, but also can be regenerated and triggered between water and salt solution multiple times. This work provides a new way to fabricate antibacterial smart hydrogel coatings with bacterial “killing–releasing” functions and shows great potential for biomedical applications.
Collapse
Affiliation(s)
- Shengwei Xiao
- Department of Chemistry, Zhejiang University , Hangzhou 310027 , China
- School of Pharmaceutical and Materials Engineering, Taizhou University , Taizhou 318000 , Zhejiang , China
| | - Yuyu Zhao
- School of Pharmaceutical and Materials Engineering, Taizhou University , Taizhou 318000 , Zhejiang , China
| | - Shuqi Jin
- School of Pharmaceutical and Materials Engineering, Taizhou University , Taizhou 318000 , Zhejiang , China
| | - Zhicai He
- School of Pharmaceutical and Materials Engineering, Taizhou University , Taizhou 318000 , Zhejiang , China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University , Nanjing , 210037 , China
| | - Haining Gu
- Zhejiang Benli Technology Co., LTD , Taizhou 318000 , Zhejiang , China
| | - Hongshun Xu
- Zhejiang Benli Technology Co., LTD , Taizhou 318000 , Zhejiang , China
| | - Xingyu Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
| | - Chunxin Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
| | - Jun Wu
- Department of Chemistry, Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|
9
|
Wang F, Wang S, Nan L, Lu J, Zhu Z, Yang J, Zhang D, Liu J, Zhao X, Wu D. Conductive Adhesive and Antibacterial Zwitterionic Hydrogel Dressing for Therapy of Full-Thickness Skin Wounds. Front Bioeng Biotechnol 2022; 10:833887. [PMID: 35295646 PMCID: PMC8919325 DOI: 10.3389/fbioe.2022.833887] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/31/2022] [Indexed: 01/17/2023] Open
Abstract
Any sort of wound injury leads to the destruction of skin integrity and wound formation, causing millions of deaths every year and accounting for 10% of death rate insight into various diseases. The ideal biological wound dressings are expected to possess extraordinary mechanical characterization, cytocompatibility, adhesive properties, antibacterial properties, and conductivity of endogenous electric current to enhance the wound healing process. Recent studies have demonstrated that biomedical hydrogels can be used as typical wound dressings to accelerate the whole healing process due to them having a similar composition structure to skin, but they are also limited by ideal biocompatibility and stable mechanical properties. To extend the number of practical candidates in the field of wound healing, we designed a new structural zwitterion poly[3-(dimethyl(4-vinylbenzyl) ammonium) propyl sulfonate] (SVBA) into a poly-acrylamide network, with remarkable mechanical properties, stable rheological property, effective antibacterial properties, strong adsorption, high penetrability, and good electroactive properties. Both in vivo and in vitro evidence indicates biocompatibility, and strong healing efficiency, indicating that poly (AAm-co-SVBA) (PAS) hydrogels as new wound healing candidates with biomedical applications.
Collapse
Affiliation(s)
- Feng Wang
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuguang Wang
- Department of Orthopedic, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liping Nan
- Department of Orthopedic, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiawei Lu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ziqi Zhu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jintao Yang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, College of Engineering and Polymer Science, The University of Akron, Akron, OH, United States
| | - Junjian Liu
- Department of Orthopedic, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Junjian Liu, ; Xiao Zhao, ; Desheng Wu,
| | - Xiao Zhao
- Department of Anesthesiology, Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Junjian Liu, ; Xiao Zhao, ; Desheng Wu,
| | - Desheng Wu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Junjian Liu, ; Xiao Zhao, ; Desheng Wu,
| |
Collapse
|
10
|
Liu J, Miao J, Zhao L, Liu Z, Leng K, Xie W, Yu Y. Versatile Bilayer Hydrogel for Wound Dressing through PET-RAFT Polymerization. Biomacromolecules 2022; 23:1112-1123. [PMID: 35171579 DOI: 10.1021/acs.biomac.1c01428] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multifunctional hydrogel-based wound dressings have been explored for decades due to their huge potential in multifaceted medical intervention to wound healing. However, it is usually not easy to fabricate a single hydrogel with all of the desirable functions at one time. Herein, a bilayer model with an outer layer for hydrogel wound dressing was proposed. The inner layer (Hm-PNn) was a hybrid hydrogel prepared by N-isopropylacrylamide and chitosan-N-2-hydroxypropyl trimethylammonium chloride (HACC), and the outer layer (PVAo-PAmp) was prepared by polyvinyl alcohols and acrylamide. The two hydrogel layers of the bilayer model were covalently connected with excellent interfacial strength by photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. The outer layer exposed to the ambient environment exhibited good stretchability and toughness, while the inner-layer hydrogel adhered to the skin exhibited excellent softness, antibacterial activity, thermoresponsivity, and biocompatibility. In particular, the inner layer of a hydrogel demonstrated excellent antibacterial capability toward both Staphylococcus aureus as Gram-positive bacteria and Escherichia coli as Gram-negative bacteria. Cell cytotoxicity showed that the cell viability of all Hm-PNn layer hydrogels exceeds 80%, confirming that the hydrogels bear excellent biocompatibility. In vivo experimental results indicated that the Hm-PNn/PVAo-PAmp bilayer hydrogel has a significant effect on the acceleration of wound healing, which was demonstrated in a full-thickness skin defect model showing improved collagen disposition and granulation tissue thickness. With these results, the established multifunctional bilayer hydrogel exhibits potential as an excellent wound dressing for wound healing applications, especially for open and infected traumas.
Collapse
Affiliation(s)
- Jianzhi Liu
- State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Junkui Miao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China
| | - Ling Zhao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China
| | - Zhibang Liu
- State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kailiang Leng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China
| | - Wancui Xie
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yueqin Yu
- State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
11
|
He X, Wang S, Zhou J, Zhang D, Xue Y, Yang X, Che L, Li D, Xiao S, Liu S, Zheng SY, Yang J. Versatile and Simple Strategy for Preparing Bilayer Hydrogels with Janus Characteristics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4579-4587. [PMID: 35029363 DOI: 10.1021/acsami.1c22887] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bilayer hydrogels are attracting tremendous attention for their capability to integrate several different functions on the two sides of the gel, that is, imparting the gel with Janus characteristics, which is highly desired in many engineering and biomedical applications including soft actuators, hydrogel patches, and wearable electronics. However, the preparation process of the bilayer materials usually involves several complicated steps and is time-consuming, while the interfacial bonding is another main concern. Here, a simple and versatile method is proposed to obtain bilayer hydrogels within just one step based on the method of introducing viscosity contrast of the precursors for different layers. The bilayer structure can be well maintained during the whole preparation process with a constrained interfacial molecular exchange to ensure the strong bonding strength. The key requirements for forming distinct bilayer structures in situ are studied and discussed in detail. Bilayer hydrogels with different chemical designs are prepared via this strategy to tailor the good distribution of desired functions for soft actuators, wound healing patches, and wearable electronics. We believe that the strategy illustrated here will provide new insights into the preparation and application of bilayer materials.
Collapse
Affiliation(s)
- Xiaomin He
- College of Materials Science& Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shuaibing Wang
- College of Materials Science& Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jiahui Zhou
- College of Materials Science& Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, College of Engineering and Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Yaoting Xue
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xuxu Yang
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, P. R. China
| | - Lingbin Che
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Danyang Li
- College of Materials Science& Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shengwei Xiao
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Shanqiu Liu
- College of Materials Science& Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Si Yu Zheng
- College of Materials Science& Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jintao Yang
- College of Materials Science& Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
12
|
Alginate/chitosan bi-layer hydrogel as a novel tea bag with in-cup decaffeination. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Xiao S, He X, Zhao Z, Huang G, Yan Z, He Z, Zhao Z, Chen F, Yang J. Strong anti-polyelectrolyte zwitterionic hydrogels with superior self-recovery, tunable surface friction, conductivity, and antifreezing properties. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
14
|
Ji W, Wu Q, Han X, Zhang W, Wei W, Chen L, Li L, Huang W. Photosensitive hydrogels: from structure, mechanisms, design to bioapplications. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1813-1828. [PMID: 33216277 DOI: 10.1007/s11427-019-1710-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022]
Abstract
Hydrogel is a smart material with a three-dimensional network structure and has been widely used in various fields due to its good biodegradability, biocompatibility, and modification. Photosensitive hydrogel is a smart hydrogel, and its amenability to remote, precise control, and flexible and convenient regulation of stimulating factors make it an ideal candidate for use in fields such as biological materials, drug carriers, and sensors. In this review, we discuss the structure, mechanisms, design principles, and bioapplications of photosensitive hydrogels as developed in recent years. Finally, their potential for development and potential future challenges are outlined.
Collapse
Affiliation(s)
- Wenhui Ji
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211800, China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211800, China.
| | - Xisi Han
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211800, China
| | - Wei Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211800, China
| | - Wei Wei
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Liang Chen
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211800, China.
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211800, China.,Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
15
|
Song Y, He J, Zhang Y. Controllable, Bidirectional Water/Organic Vapors Responsive Actuators Fabricated by One-Step Thiol-Ene Click Polymerization. Macromol Rapid Commun 2020; 41:e2000456. [PMID: 33196123 DOI: 10.1002/marc.202000456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/28/2020] [Indexed: 11/11/2022]
Abstract
It is challenging to synthesize stimuli-responsive materials with the well-balanced performance of fast stimulus-response speed, good mechanical strength, multi-functionality, and deformation diversity as well. This work reports a facile, one-step thiol-ene click polymerization strategy for preparation of water/acetone vapor-responsive hierarchical films, by using diallyl terephthalate (P) as hydrophobic ene-monomer, 1,4-diallyl-1,4-diazabicyclo [2.2.2]octane-1,4-diium bromide (B) as hydrophilic ene-monomer, and pentaerythritol tetra(3-mercaptopropionate) (PETMP) as thiol monomer. Besides, by taking advantage of the specific hydrophilic/hydrophobic induction effect of substrate and adjusting the molar ratio of P to B, P60 B40 -HPI film is fabricated on hydrophilic substrate "with plasma treatment" whereas P80 B20 -HPO film is obtained on hydrophobic substrate "without plasma treatment". Their "upper-dense and lower-porous" structural feature ensured the excellent combination of fast stimuli-response speed endowed by the porous structure and good mechanical strength enhanced by the upper dense surface. Both films are bidirectional water/acetone vapor-responsive materials, but their bending directions responding to the stimuli factors are completely opposite. This strategy showed great potential in the development of smart stimuli-responsive materials.
Collapse
Affiliation(s)
- Yanjiao Song
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| |
Collapse
|
16
|
Yin J, Zhang D, Xu Z, Fan W, Xia Y, Sui K. Precisely Controlling the Output Force of Hydrogel Actuator Based on Thermodynamic Nonequilibrium Temporary Deformation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49042-49049. [PMID: 33113636 DOI: 10.1021/acsami.0c13160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-shaping hydrogel actuators have promising applications in various fields. However, one hydrogel actuator can generally access only one specifically predefined deformation and output force, which are determined by its thermodynamic equilibrium swelling state under external stimuli. Here, we present a simple yet versatile strategy for precisely programming the output force/energy of dual-gradient hydrogel actuators. The strategy is based on thermodynamic nonequilibrium snapping deformations occurring during the recovery process of predeformed dual-gradient hydrogel actuators in low-temperature water. The output force/energy of such thermodynamic nonequilibrium snapping deformation is highly associated with predeformation conditions of the hydrogel actuators, which increases with the increase of the predeformation temperature or time. In consequence, just by adjusting the predeformation conditions of the dual-gradient hydrogel actuators, their output force, energy, and power can be modulated precisely and continuously during the snapping deformation. The as-prepared hydrogel actuators can not only be used as smart lifters and grippers with ultrahigh accuracy of weight identification but also act as smart switches in the timing circuits with precisely adjustable operating time, paving the way for the design of a new generation of actuation materials.
Collapse
Affiliation(s)
- Jincai Yin
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, P. R. China
| | - Delin Zhang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, P. R. China
| | - Zihan Xu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, P. R. China
| | - Wenxin Fan
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, P. R. China
| | - Yanzhi Xia
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, P. R. China
| | - Kunyan Sui
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
17
|
Wang X, Zhang D, Wu J, Protsak I, Mao S, Ma C, Ma M, Zhong M, Tan J, Yang J. Novel Salt-Responsive SiO 2@Cellulose Membranes Promote Continuous Gradient and Adjustable Transport Efficiency. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42169-42178. [PMID: 32835481 DOI: 10.1021/acsami.0c12399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Continuously growing interest in the controlled and tunable transport or separation of target molecules has attracted more attention recently. However, traditional "on-off" stimuli-responsive membranes are limited to nongradient feedback, which manifests as filtration efficiency that cannot be increased or decreased gradually along with the different stimuli conditions; indeed, only the transformation of on/off state is visible. Herein, we design and fabricate a series of robust salt-responsive SiO2@cellulose membranes (SRMs) by simply combining salt-responsive poly[3-(dimethyl(4-vinylbenzyl)ammonium)propyl sulfonate] (polyDVBAPS)-modified SiO2 nanoparticles and cellulose membranes under negative-pressure filtering. The antipolyelectrolyte effect induces stretch/shrinkage of polyDVBAPS chains inside the channels and facilities the directional aperture size and surface wettability variation, greatly enhancing the variability of interfacial transport and separation efficiency. Due to the linear salt-responsive feedback mechanism, the optimal SRMs achieve highly efficient target macromolecule separation (>75%) and rapid oil/saline separation (>97%) with a continuous gradient and adjustable permeability, instead of simply an "on-off" switch. The salt-responsive factors (SiO2-polyDVBAPS) could be reversibly separated or self-assembled to membrane substrates; thus, SRMs achieved unprecedented repeatability and reusability even after long-term cyclic testing, which exceeds those of currently reported membranes. Such SRMs possess simultaneously a superfast responsive time, a controllable gradient permeability, a high gating ratio, and an excellent reusability, making our strategy a potentially exciting approach for efficient osmotic transportation and target molecule separation in a more controllable manner.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Dong Zhang
- Department of Chemical, Biomolecular and Corrosion Engineering. The University of Akron, Ohio 44325, United States
| | - Jiahui Wu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Iryna Protsak
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, Kyiv 03164, Ukraine
| | - Shihua Mao
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Chunxin Ma
- State Key Laboratory of Marine Resources Utilization in South China Sea, Haikou 570228, PR China
| | - Meng Ma
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Mingqiang Zhong
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jun Tan
- College of Biological, Chemical Science and Technology, Jiaxing University, Jiaxing 314001, PR China
| | - Jintao Yang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
18
|
Liang Y, Liu C, Xiu H, Chang Y, Zhao Q, Ren L. Effect of 3D Printing Parameters on Self‐Driven Deformation Characteristics of Intelligent Hydrogel Actuators. ChemistrySelect 2020. [DOI: 10.1002/slct.202002424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yunhong Liang
- The Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun 130025 China
| | - Chang Liu
- The Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun 130025 China
| | - Haohua Xiu
- The Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun 130025 China
| | - Yanjiao Chang
- The Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun 130025 China
| | - Qian Zhao
- The Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun 130025 China
| | - Luquan Ren
- The Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun 130025 China
| |
Collapse
|
19
|
Fitzgerald ER, Mineo AM, Pryor ML, Buck ME. Photomediated post-fabrication modification of azlactone-functionalized gels for the development of hydrogel actuators. SOFT MATTER 2020; 16:6044-6049. [PMID: 32638814 DOI: 10.1039/d0sm00832j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report an approach for the photomediated post-fabrication modification of reactive, azlactone-containing gels using light-initiated deprotection of amines caged with 2-(nitrophenyl)propyloxycarbonyl (NPPOC). Photomediated modification of these gels can be used to generate a gradient in chemical functionality. When functionalized with tertiary amine groups, these gradient gels exhibit rapid and reversible shape deformations in response to changes in pH.
Collapse
Affiliation(s)
- Emily R Fitzgerald
- Department of Chemistry, Smith College, Northampton, Massachusetts 01063, USA.
| | - Autumn M Mineo
- Department of Chemistry, Smith College, Northampton, Massachusetts 01063, USA.
| | - Mae L Pryor
- Department of Chemistry, Smith College, Northampton, Massachusetts 01063, USA.
| | - Maren E Buck
- Department of Chemistry, Smith College, Northampton, Massachusetts 01063, USA.
| |
Collapse
|
20
|
Xiao S, He X, Qian J, Wu X, Huang G, Jiang H, He Z, Yang J. Natural Lipid Inspired Hydrogel–Organogel Bilayer Actuator with a Tough Interface and Multiresponsive, Rapid, and Reversible Behaviors. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00688] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shengwei Xiao
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou, 318000, China
| | - Xiaomin He
- College of Materials Science& Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jie Qian
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou, 318000, China
| | - Xiaohui Wu
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou, 318000, China
| | - Guobo Huang
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou, 318000, China
| | - Huajiang Jiang
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou, 318000, China
| | - Zhicai He
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou, 318000, China
| | - Jintao Yang
- College of Materials Science& Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|