1
|
Cai D, Liu T, Weng W, Zhu X. Research Progress on Extracellular Matrix-Based Composite Materials in Antibacterial Field. Biomater Res 2025; 29:0128. [PMID: 39822928 PMCID: PMC11735711 DOI: 10.34133/bmr.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/07/2024] [Accepted: 12/14/2024] [Indexed: 01/19/2025] Open
Abstract
Due to their exceptional cell compatibility, biodegradability, and capacity to trigger tissue regeneration, extracellular matrix (ECM) materials have drawn considerable attention in tissue healing and regenerative medicine. Interestingly, these materials undergo continuous degradation and release antimicrobial peptides (AMPs) while simultaneously promoting tissue regeneration, thereby exerting a potent antibacterial effect. On this basis, a variety of basic properties of ECM materials, such as porous adsorption, hydrophilic adsorption, group crosslinking, and electrostatic crosslinking, can be used to facilitate the integration of ECM materials and antibacterial agents through physical and chemical approaches in order to enhance the antibacterial efficacy. This article reviews the recent advancements in the study of ECM antibacterial materials, including the antibacterial function and antibacterial mechanism of free-standing ECM materials and ECM-based composite materials. In addition, the urgent challenges and future research prospects of ECM materials in the anti-infection industry are discussed.
Collapse
Affiliation(s)
- Dan Cai
- Department of Orthopedics, The First People’s Hospital of Huzhou,
First Affiliated Hospital of Huzhou University, Zhejiang 313000, China
| | - Tuoqin Liu
- Intensive Care Unit, People’s Hospital of Wuxing District, Wuxing District Maternal and Child Health Hospital, Huzhou, Zhejiang 313000, China
| | - Wei Weng
- Department of Orthopedics, The First People’s Hospital of Huzhou,
First Affiliated Hospital of Huzhou University, Zhejiang 313000, China
| | - Xinhong Zhu
- Department of Orthopedics, The First People’s Hospital of Huzhou,
First Affiliated Hospital of Huzhou University, Zhejiang 313000, China
| |
Collapse
|
2
|
Villegas M, Bayat F, Kramer T, Schwarz E, Wilson D, Hosseinidoust Z, Didar TF. Emerging Strategies to Prevent Bacterial Infections on Titanium-Based Implants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404351. [PMID: 39161205 DOI: 10.1002/smll.202404351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/15/2024] [Indexed: 08/21/2024]
Abstract
Titanium and titanium alloys remain the gold standard for dental and orthopedic implants. These materials are heavily used because of their bioinert nature, robust mechanical properties, and seamless integration with bone. However, implant-associated infections (IAIs) remain one of the leading causes of implant failure. Eradicating an IAI can be difficult since bacteria can form biofilms on the medical implant, protecting the bacterial cells against systemic antibiotics and the host's immune system. If the infection is not treated promptly and aggressively, device failure is inevitable, leading to costly multi-step revision surgeries. To circumvent this dire situation, scientists and engineers continue to develop novel strategies to protect the surface of medical implants from bacteria. In this review, details on emerging strategies to prevent infection in titanium implants are reported. These strategies include anti-adhesion properties provided by polymers, superhydrophobic, superhydrophilic, and liquid-infused surface coatings, as well as strategies and coatings employed to lyse the bacteria. Additionally, commercially available technologies and those under preclinical trials are examined while discussing current and future trends.
Collapse
Affiliation(s)
- Martin Villegas
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Fereshteh Bayat
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Taylor Kramer
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Elise Schwarz
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - David Wilson
- Division of Orthopedic Surgery, Halifax Infirmary, Halifax, NS, B3H3A6, Canada
| | - Zeinab Hosseinidoust
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| |
Collapse
|
3
|
Kozuka Y, Masuda T, Isu N, Takai M. Antimicrobial Peptide Assembly on Zwitterionic Polymer Films to Slow Down Biofilm Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7029-7037. [PMID: 38520398 DOI: 10.1021/acs.langmuir.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Formation of biofilms on equipment used in various fields, such as medicine, domestic sanitation, and marine transportation, can cause serious problems. The use of antibiofouling and bactericidal modifications is a promising strategy for inhibiting bacterial adhesion and biofilm formation. To further enhance the antibiofilm properties of a surface, various combinations of bactericidal modifications alongside antibiofouling modifications have been developed. Optimization of the arrangements of antimicrobial peptides on the antibiofouling surface would allow us to design longer-life antibiofilm surface modifications. In this study, a postmodification was conducted with different design using the antimicrobial peptide KR12 on an antibiofouling copolymer film consisting of 2-methacryloyloxyethyl phosphorylcholine, 3-methacryloxypropyl trimethoxysilane, and 3-(methacryloyloxy) propyl-tris(trimethylsilyloxy) silane. The distance of KR12 from the film was adjusted by combining different lengths of poly(ethylene glycol) (PEG) spacers (molecular weights are 2000 and 5000). The density of KR12 was ranged from 0.06 to 0.22 nm-2. When these modified surfaces were exposed to a nutrient-rich TSB suspension, the bacterial area formed by E. coli covered 5-127% of the original copolymer film. We found that a significant distance between the bactericidal and antibiofouling modifications, along with a higher density of bactericidal modifications, slows down the biofilm formation.
Collapse
Affiliation(s)
- Yuta Kozuka
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| | - Tsukuru Masuda
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| | - Norifumi Isu
- LIXIL Corporation, 2-1-1 Ojima, Koto-ku, 136-8535 Tokyo, Japan
| | - Madoka Takai
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| |
Collapse
|
4
|
Lu G, Zhao G, Wang S, Li H, Yu Q, Sun Q, Wang B, Wei L, Fu Z, Zhao Z, Yang L, Deng L, Zheng X, Cai M, Lu M. Injectable Nano-Micro Composites with Anti-bacterial and Osteogenic Capabilities for Minimally Invasive Treatment of Osteomyelitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306964. [PMID: 38234236 DOI: 10.1002/advs.202306964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/17/2023] [Indexed: 01/19/2024]
Abstract
The effective management of osteomyelitis remains extremely challenging due to the difficulty associated with treating bone defects, the high probability of recurrence, the requirement of secondary surgery or multiple surgeries, and the difficulty in eradicating infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Hence, smart biodegradable biomaterials that provide effective and precise local anti-infection effects and can promote the repair of bone defects are actively being developed. Here, a novel nano-micro composite is fabricated by combining calcium phosphate (CaP) nanosheets with drug-loaded GelMA microspheres via microfluidic technology. The microspheres are covalently linked with vancomycin (Van) through an oligonucleotide (oligo) linker using an EDC/NHS carboxyl activator. Accordingly, a smart nano-micro composite called "CaP@MS-Oligo-Van" is synthesized. The porous CaP@MS-Oligo-Van composites can target and capture bacteria. They can also release Van in response to the presence of bacterial micrococcal nuclease and Ca2+, exerting additional antibacterial effects and inhibiting the inflammatory response. Finally, the released CaP nanosheets can promote bone tissue repair. Overall, the findings show that a rapid, targeted drug release system based on CaP@MS-Oligo-Van can effectively target bone tissue infections. Hence, this agent holds potential in the clinical treatment of osteomyelitis caused by MRSA.
Collapse
Affiliation(s)
- Guanghua Lu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Gang Zhao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Shen Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Hanqing Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Qiang Yu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Qi Sun
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Bo Wang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Li Wei
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Zi Fu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Zhenyu Zhao
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Linshan Yang
- Taikang Bybo Dental, Shanghai, 200001, P. R. China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Xianyou Zheng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Ming Cai
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| |
Collapse
|
5
|
Recent Advancements in Metallic Drug-Eluting Implants. Pharmaceutics 2023; 15:pharmaceutics15010223. [PMID: 36678852 PMCID: PMC9862589 DOI: 10.3390/pharmaceutics15010223] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Over the past decade, metallic drug-eluting implants have gained significance in orthopedic and dental applications for controlled drug release, specifically for preventing infection associated with implants. Recent studies showed that metallic implants loaded with drugs were substituted for conventional bare metal implants to achieve sustained and controlled drug release, resulting in a desired local therapeutic concentration. A number of secondary features can be provided by the incorporated active molecules, including the promotion of osteoconduction and angiogenesis, the inhibition of bacterial invasion, and the modulation of host body reaction. This paper reviews recent trends in the development of the metallic drug-eluting implants with various drug delivery systems in the past three years. There are various types of drug-eluting implants that have been developed to meet this purpose, depending on the drug or agents that have been loaded on them. These include anti-inflammatory drugs, antibiotics agents, growth factors, and anti-resorptive drugs.
Collapse
|
6
|
Polymer–Metal Composite Healthcare Materials: From Nano to Device Scale. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6080218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Metals have been investigated as biomaterials for a wide range of medical applications. At nanoscale, some metals, such as gold nanoparticles, exhibit plasmonics, which have motivated researchers’ focus on biosensor development. At the device level, some metals, such as titanium, exhibit good physical properties, which could allow them to act as biomedical implants for physical support. Despite these attractive features, the non-specific delivery of metallic nanoparticles and poor tissue–device compatibility have greatly limited their performance. This review aims to illustrate the interplay between polymers and metals, and to highlight the pivotal role of polymer–metal composite/nanocomposite healthcare materials in different biomedical applications. Here, we revisit the recent plasmonic engineered platforms for biomolecules detection in cell-free samples and highlight updated nanocomposite design for (1) intracellular RNA detection, (2) photothermal therapy, and (3) nanomedicine for neurodegenerative diseases, as selected significant live cell–interactive biomedical applications. At the device scale, the rational design of polymer–metallic medical devices is of importance for dental and cardiovascular implantation to overcome the poor physical load transfer between tissues and devices, as well as implant compatibility under a dynamic fluidic environment, respectively. Finally, we conclude the treatment of these innovative polymer–metal biomedical composite designs and provide a future perspective on the aforementioned research areas.
Collapse
|
7
|
Sandhu AK, Yang Y, Li WW. In Vivo Antibacterial Efficacy of Antimicrobial Peptides Modified Metallic Implants─Systematic Review and Meta-Analysis. ACS Biomater Sci Eng 2022; 8:1749-1762. [PMID: 35412810 PMCID: PMC9171719 DOI: 10.1021/acsbiomaterials.1c01307] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Biomaterial-associated infection is difficult to detect and brings consequences that can lead to morbidity and mortality. Bacteria can adhere to the implant surface, grow, and form biofilms. Antimicrobial peptides (AMPs) can target and kill bacterial cells using a plethora of mechanisms of action such as rupturing the cell membrane by creating pores via depolarization with their cationic and amphipathic nature. AMPs can thus be coated onto metal implants to prevent microbial cell adhesion and growth. The aim of this systematic review was to determine the potential clinical applications of AMP-modified implants through in vivo induced infection models. Following a database search recently up to 22 January 2022 using PubMed, Web of Science and Cochrane databases, and abstract/title screening using the PRISMA framework, 24 studies remained, of which 18 were used in the random effects meta-analysis of standardized mean differences (SMD) to get effect sizes. Quality of studies was assessed using SYRCLE's risk of bias tool. The data from these 18 studies showed that AMPs carry antibacterial effects, and the meta-analysis confirmed the favorited antibacterial efficacy of AMP-coated groups over controls (SMD -1.74, 95%CI [-2.26, -1.26], p < 0.00001). Subgroup analysis showed that the differences in effect size are random, and high heterogeneity values suggested the same. HHC36 and vancomycin were the most common AMPs for surface modification and Staphylococcus aureus, the most tested bacterium in vivo. Covalent binding with polymer brush coating and physical layer-by-layer incorporation of AMPs were recognized as key methods of incorporation to achieve desired densities. The use of fusion peptides seemed admirable to incorporate additional benefits such as osteointegration and wound healing and possibly targeting more microbe strains. Further investigation into the incorporation methods, AMP activity against different bacterial strains, and the number of AMPs used for metal implant surface modification is needed to progress toward potential clinical application.
Collapse
Affiliation(s)
- Amrit Kaur Sandhu
- School of Pharmacy and Bioengineering, Keele University, Thornburrow Drive, Stoke-on-Trent, ST4 7QB, United Kingdom
| | - Ying Yang
- School of Pharmacy and Bioengineering, Keele University, Thornburrow Drive, Stoke-on-Trent, ST4 7QB, United Kingdom
| | - Wen-Wu Li
- School of Pharmacy and Bioengineering, Keele University, Thornburrow Drive, Stoke-on-Trent, ST4 7QB, United Kingdom
| |
Collapse
|
8
|
Wei H, Song X, Liu P, Liu X, Yan X, Yu L. Antimicrobial coating strategy to prevent orthopaedic device-related infections: recent advances and future perspectives. BIOMATERIALS ADVANCES 2022; 135:212739. [PMID: 35929213 DOI: 10.1016/j.bioadv.2022.212739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 06/15/2023]
Abstract
The rapid development of multidrug-resistant (MDR) bacteria and biofilm-related infections (BRIs) has urgently called for new strategies to combat severe orthopaedic device-related infections (ODRIs). Antimicrobial coating has emerged as a promising strategy in halting the incidence of ODRIs and treating ODRIs in long term. With the advancement of material science and biotechnology, numerous antimicrobial coatings have been reported in literature, showing superior antimicrobial and osteogenic functions. This review has specifically discussed the currently developed antimicrobial coatings in the perspective of drug release from the coating system, focusing on their realization of controlled and on demand antimicrobial agents release, as well as multi-functionality. Acknowledging the multidisciplinary nature of antimicrobial coating, the conceptual design, the deposition method and the therapeutic effect of the antimicrobial coatings have been described in detail and discussed critically. Particularly, the challenges and opportunities on the way toward the clinical translation of antimicrobial coatings have been highlighted.
Collapse
Affiliation(s)
- Huichao Wei
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xinyu Song
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Pengyan Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaohu Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xuefeng Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
9
|
Bellotto O, Semeraro S, Bandiera A, Tramer F, Pavan N, Marchesan S. Polymer Conjugates of Antimicrobial Peptides (AMPs) with d-Amino Acids (d-aa): State of the Art and Future Opportunities. Pharmaceutics 2022; 14:pharmaceutics14020446. [PMID: 35214178 PMCID: PMC8879212 DOI: 10.3390/pharmaceutics14020446] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022] Open
Abstract
In recent years, antimicrobial peptides (AMPs) have enjoyed a renaissance, as the world is currently facing an emergency in terms of severe infections that evade antibiotics’ treatment. This is due to the increasing emergence and spread of resistance mechanisms. Covalent conjugation with polymers is an interesting strategy to modulate the pharmacokinetic profile of AMPs and enhance their biocompatibility profile. It can also be an effective approach to develop active coatings for medical implants and devices, and to avoid biofilm formation on their surface. In this concise review, we focus on the last 5 years’ progress in this area, pertaining in particular to AMPs that contain d-amino acids, as well as their role, and the advantages that may arise from their introduction into AMPs.
Collapse
Affiliation(s)
- Ottavia Bellotto
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (O.B.); (S.S.)
| | - Sabrina Semeraro
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (O.B.); (S.S.)
| | - Antonella Bandiera
- Life Sciences Department, University of Trieste, 34127 Trieste, Italy; (A.B.); (F.T.)
| | - Federica Tramer
- Life Sciences Department, University of Trieste, 34127 Trieste, Italy; (A.B.); (F.T.)
| | - Nicola Pavan
- Medical, Surgical and Health Sciences Department, University of Trieste, 34127 Trieste, Italy;
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (O.B.); (S.S.)
- Correspondence:
| |
Collapse
|
10
|
Esteban J, Vallet-Regí M, Aguilera-Correa JJ. Antibiotics- and Heavy Metals-Based Titanium Alloy Surface Modifications for Local Prosthetic Joint Infections. Antibiotics (Basel) 2021; 10:1270. [PMID: 34680850 PMCID: PMC8532710 DOI: 10.3390/antibiotics10101270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 01/04/2023] Open
Abstract
Prosthetic joint infection (PJI) is the second most common cause of arthroplasty failure. Though infrequent, it is one of the most devastating complications since it is associated with great personal cost for the patient and a high economic burden for health systems. Due to the high number of patients that will eventually receive a prosthesis, PJI incidence is increasing exponentially. As these infections are provoked by microorganisms, mainly bacteria, and as such can develop a biofilm, which is in turn resistant to both antibiotics and the immune system, prevention is the ideal approach. However, conventional preventative strategies seem to have reached their limit. Novel prevention strategies fall within two broad categories: (1) antibiotic- and (2) heavy metal-based surface modifications of titanium alloy prostheses. This review examines research on the most relevant titanium alloy surface modifications that use antibiotics to locally prevent primary PJI.
Collapse
Affiliation(s)
- Jaime Esteban
- Clinical Microbiology Department, Jiménez Díaz Foundation Health Research Institute, Autonomous University of Madrid, Av. Reyes Católicos 2, 28040 Madrid, Spain
- Networking Research Centre on Infectious Diseases (CIBER-ID), 28029 Madrid, Spain
| | - María Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences, Research Institute Hospital 12 de Octubre (i+12), School of Pharmacy, Complutense University of Madrid, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - John J Aguilera-Correa
- Networking Research Centre on Infectious Diseases (CIBER-ID), 28029 Madrid, Spain
- Department of Chemistry in Pharmaceutical Sciences, Research Institute Hospital 12 de Octubre (i+12), School of Pharmacy, Complutense University of Madrid, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
11
|
van Belkum A, Almeida C, Bardiaux B, Barrass SV, Butcher SJ, Çaykara T, Chowdhury S, Datar R, Eastwood I, Goldman A, Goyal M, Happonen L, Izadi-Pruneyre N, Jacobsen T, Johnson PH, Kempf VAJ, Kiessling A, Bueno JL, Malik A, Malmström J, Meuskens I, Milner PA, Nilges M, Pamme N, Peyman SA, Rodrigues LR, Rodriguez-Mateos P, Sande MG, Silva CJ, Stasiak AC, Stehle T, Thibau A, Vaca DJ, Linke D. Host-Pathogen Adhesion as the Basis of Innovative Diagnostics for Emerging Pathogens. Diagnostics (Basel) 2021; 11:diagnostics11071259. [PMID: 34359341 PMCID: PMC8305138 DOI: 10.3390/diagnostics11071259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/18/2022] Open
Abstract
Infectious diseases are an existential health threat, potentiated by emerging and re-emerging viruses and increasing bacterial antibiotic resistance. Targeted treatment of infectious diseases requires precision diagnostics, especially in cases where broad-range therapeutics such as antibiotics fail. There is thus an increasing need for new approaches to develop sensitive and specific in vitro diagnostic (IVD) tests. Basic science and translational research are needed to identify key microbial molecules as diagnostic targets, to identify relevant host counterparts, and to use this knowledge in developing or improving IVD. In this regard, an overlooked feature is the capacity of pathogens to adhere specifically to host cells and tissues. The molecular entities relevant for pathogen–surface interaction are the so-called adhesins. Adhesins vary from protein compounds to (poly-)saccharides or lipid structures that interact with eukaryotic host cell matrix molecules and receptors. Such interactions co-define the specificity and sensitivity of a diagnostic test. Currently, adhesin-receptor binding is typically used in the pre-analytical phase of IVD tests, focusing on pathogen enrichment. Further exploration of adhesin–ligand interaction, supported by present high-throughput “omics” technologies, might stimulate a new generation of broadly applicable pathogen detection and characterization tools. This review describes recent results of novel structure-defining technologies allowing for detailed molecular analysis of adhesins, their receptors and complexes. Since the host ligands evolve slowly, the corresponding adhesin interaction is under selective pressure to maintain a constant receptor binding domain. IVD should exploit such conserved binding sites and, in particular, use the human ligand to enrich the pathogen. We provide an inventory of methods based on adhesion factors and pathogen attachment mechanisms, which can also be of relevance to currently emerging pathogens, including SARS-CoV-2, the causative agent of COVID-19.
Collapse
Affiliation(s)
- Alex van Belkum
- BioMérieux, Open Innovation & Partnerships, 38390 La Balme Les Grottes, France;
- Correspondence: (A.v.B.); (D.L.)
| | | | - Benjamin Bardiaux
- Institut Pasteur, Structural Biology and Chemistry, 75724 Paris, France; (B.B.); (N.I.-P.); (T.J.); (M.N.)
| | - Sarah V. Barrass
- Department of Biological Sciences, University of Helsinki, 00014 Helsinki, Finland; (S.V.B.); (S.J.B.); (A.G.)
| | - Sarah J. Butcher
- Department of Biological Sciences, University of Helsinki, 00014 Helsinki, Finland; (S.V.B.); (S.J.B.); (A.G.)
| | - Tuğçe Çaykara
- Centre for Nanotechnology and Smart Materials, 4760-034 Vila Nova de Famalicão, Portugal; (T.Ç.); (C.J.S.)
| | - Sounak Chowdhury
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 22242 Lund, Sweden; (S.C.); (L.H.); (J.M.)
| | - Rucha Datar
- BioMérieux, Microbiology R&D, 38390 La Balme Les Grottes, France;
| | | | - Adrian Goldman
- Department of Biological Sciences, University of Helsinki, 00014 Helsinki, Finland; (S.V.B.); (S.J.B.); (A.G.)
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Manisha Goyal
- BioMérieux, Open Innovation & Partnerships, 38390 La Balme Les Grottes, France;
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 22242 Lund, Sweden; (S.C.); (L.H.); (J.M.)
| | - Nadia Izadi-Pruneyre
- Institut Pasteur, Structural Biology and Chemistry, 75724 Paris, France; (B.B.); (N.I.-P.); (T.J.); (M.N.)
| | - Theis Jacobsen
- Institut Pasteur, Structural Biology and Chemistry, 75724 Paris, France; (B.B.); (N.I.-P.); (T.J.); (M.N.)
| | - Pirjo H. Johnson
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Volkhard A. J. Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, 60596 Frankfurt am Main, Germany; (V.A.J.K.); (A.T.); (D.J.V.)
| | - Andreas Kiessling
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Juan Leva Bueno
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Anchal Malik
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 22242 Lund, Sweden; (S.C.); (L.H.); (J.M.)
| | - Ina Meuskens
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway;
| | - Paul A. Milner
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Michael Nilges
- Institut Pasteur, Structural Biology and Chemistry, 75724 Paris, France; (B.B.); (N.I.-P.); (T.J.); (M.N.)
| | - Nicole Pamme
- School of Mathematics and Physical Sciences, University of Hull, Hull HU6 7RX, UK; (N.P.); (P.R.-M.)
| | - Sally A. Peyman
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Ligia R. Rodrigues
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (L.R.R.); (M.G.S.)
| | - Pablo Rodriguez-Mateos
- School of Mathematics and Physical Sciences, University of Hull, Hull HU6 7RX, UK; (N.P.); (P.R.-M.)
| | - Maria G. Sande
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (L.R.R.); (M.G.S.)
| | - Carla Joana Silva
- Centre for Nanotechnology and Smart Materials, 4760-034 Vila Nova de Famalicão, Portugal; (T.Ç.); (C.J.S.)
| | - Aleksandra Cecylia Stasiak
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany; (A.C.S.); (T.S.)
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany; (A.C.S.); (T.S.)
| | - Arno Thibau
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, 60596 Frankfurt am Main, Germany; (V.A.J.K.); (A.T.); (D.J.V.)
| | - Diana J. Vaca
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, 60596 Frankfurt am Main, Germany; (V.A.J.K.); (A.T.); (D.J.V.)
| | - Dirk Linke
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway;
- Correspondence: (A.v.B.); (D.L.)
| |
Collapse
|
12
|
Peng J, Liu P, Peng W, Sun J, Dong X, Ma Z, Gan D, Liu P, Shen J. Poly(hexamethylene biguanide) (PHMB) as high-efficiency antibacterial coating for titanium substrates. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125110. [PMID: 33858091 DOI: 10.1016/j.jhazmat.2021.125110] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Bacterial associated infection is a remaining urgent challenge in clinic application of metallic implants and devices. Here, we developed a new strategy to combat the bacterial associated infection of titanium alloy (TC4). Novel phosphonate/active ester block polymers (pDEMMP-b-pNHSMA) with identical phosphonate segments (DP = 29) as the metal anchorable ligand but varied active ester segments (DPs = 7, 29, and 64) as the conjugation site for poly(hexamethylene biguanide) (PHMB) were precisely prepared. Through a facile two-step process, the polymeric coating were successfully constructed on TC4 substrates as evidenced by water contact angle and XPS measurements. Through systematical in vitro antibacterial evaluations, robust relationship between the chemical structure of coating polymer and the antibacterial property endowed to the TC4 substrates has been established. Results showed that the block polymer, bearing an active ester segment of 64 repeat units, enabled dense packing of PHMB coating on the TC4 surface, which is able to kill 100% of both S. aureus and E. coli. that seeded without compromising the cytocompatibility of TC4 substrates. Furthermore, PHMB coating could significantly inhibit the colony of the bacteria and consequently reduce the bacterial associated inflammatory reaction as verified by a subcutaneous infection model on rat.
Collapse
Affiliation(s)
- Jiangmei Peng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Peiming Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Wan Peng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Jin Sun
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Xiaohan Dong
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Zhuangzhuang Ma
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Donglin Gan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Pingsheng Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China; Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
13
|
Antibacterial Optimization of Highly Deformed Titanium Alloys for Spinal Implants. Molecules 2021; 26:molecules26113145. [PMID: 34074062 PMCID: PMC8197332 DOI: 10.3390/molecules26113145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/31/2022] Open
Abstract
The goal of the work was to develop materials dedicated to spine surgery that minimized the potential for infection originating from the transfer of bacteria during long surgeries. The bacteria form biofilms, causing implant loosening, pain and finally, a risk of paralysis for patients. Our strategy focused both on improvement of antibacterial properties against bacteria adhesion and on wear and corrosion resistance of tools for spine surgery. Further, a ~35% decrease in implant and tool dimensions was expected by introducing ultrahigh-strength titanium alloys for less-invasive surgeries. The tested materials, in the form of thin, multi-layered coatings, showed nanocrystalline microstructures. Performed direct-cytotoxicity studies (including lactate dehydrogenase activity measurement) showed that there was a low probability of adverse effects on surrounding SAOS-2 (Homo sapiens bone osteosarcoma) cells. The microbiological studies (e.g., ISO 22196 contact tests) showed that implanting Ag nanoparticles into Ti/TixN coatings inhibited the growth of E. coli and S. aureus cells and reduced their adhesion to the material surface. These findings suggest that Ag-nanoparticles present in implant coatings may potentially minimize infection risk and lower inherent stress.
Collapse
|
14
|
Scialla S, Martuscelli G, Nappi F, Singh SSA, Iervolino A, Larobina D, Ambrosio L, Raucci MG. Trends in Managing Cardiac and Orthopaedic Device-Associated Infections by Using Therapeutic Biomaterials. Polymers (Basel) 2021; 13:1556. [PMID: 34066192 PMCID: PMC8151391 DOI: 10.3390/polym13101556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/23/2022] Open
Abstract
Over the years, there has been an increasing number of cardiac and orthopaedic implanted medical devices, which has caused an increased incidence of device-associated infections. The surfaces of these indwelling devices are preferred sites for the development of biofilms that are potentially lethal for patients. Device-related infections form a large proportion of hospital-acquired infections and have a bearing on both morbidity and mortality. Treatment of these infections is limited to the use of systemic antibiotics with invasive revision surgeries, which had implications on healthcare burdens. The purpose of this review is to describe the main causes that lead to the onset of infection, highlighting both the biological and clinical pathophysiology. Both passive and active surface treatments have been used in the field of biomaterials to reduce the impact of these infections. This includes the use of antimicrobial peptides and ionic liquids in the preventive treatment of antibiotic-resistant biofilms. Thus far, multiple in vivo studies have shown efficacious effects against the antibiotic-resistant biofilm. However, this has yet to materialize in clinical medicine.
Collapse
Affiliation(s)
- Stefania Scialla
- Institute of Polymers, Composites and Biomaterials of National Research Council (IPCB-CNR), 80125 Naples, Italy; (S.S.); (D.L.)
| | - Giorgia Martuscelli
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 81100 Naples, Italy;
| | - Francesco Nappi
- Centre Cardiologie du Nord de Saint-Denis, Department of Cardiac Surgery, 93200 Paris, France; (F.N.); (A.I.)
| | | | - Adelaide Iervolino
- Centre Cardiologie du Nord de Saint-Denis, Department of Cardiac Surgery, 93200 Paris, France; (F.N.); (A.I.)
| | - Domenico Larobina
- Institute of Polymers, Composites and Biomaterials of National Research Council (IPCB-CNR), 80125 Naples, Italy; (S.S.); (D.L.)
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials of National Research Council (IPCB-CNR), 80125 Naples, Italy; (S.S.); (D.L.)
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials of National Research Council (IPCB-CNR), 80125 Naples, Italy; (S.S.); (D.L.)
| |
Collapse
|
15
|
Ghimire A, Song J. Anti-Periprosthetic Infection Strategies: From Implant Surface Topographical Engineering to Smart Drug-Releasing Coatings. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20921-20937. [PMID: 33914499 PMCID: PMC8130912 DOI: 10.1021/acsami.1c01389] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Despite advanced implant sterilization and aseptic surgical techniques, periprosthetic bacterial infection remains a major challenge for orthopedic and dental implants. Bacterial colonization/biofilm formation around implants and their invasion into the dense skeletal tissue matrices are difficult to treat and could lead to implant failure and osteomyelitis. These complications require major revision surgeries and extended antibiotic therapies that are associated with high treatment cost, morbidity, and even mortality. Effective preventative measures mitigating risks for implant-related infections are thus in dire need. This review focuses on recent developments of anti-periprosthetic infection strategies aimed at either reducing bacterial adhesion, colonization, and biofilm formation or killing bacteria directly in contact with and/or in the vicinity of implants. These goals are accomplished through antifouling, quorum-sensing interfering, or bactericidal implant surface topographical engineering or surface coatings through chemical modifications. Surface topographical engineering of lotus leaf mimicking super-hydrophobic antifouling features and cicada wing-mimicking, bacterium-piercing nanopillars are both presented. Conventional physical coating/passive release of bactericidal agents is contrasted with their covalent tethering to implant surfaces through either stable linkages or linkages labile to bacterial enzyme cleavage or environmental perturbations. Pros and cons of these emerging anti-periprosthetic infection approaches are discussed in terms of their safety, efficacy, and translational potentials.
Collapse
Affiliation(s)
- Ananta Ghimire
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jie Song
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
16
|
Souza JGS, Bertolini MM, Costa RC, Nagay BE, Dongari-Bagtzoglou A, Barão VAR. Targeting implant-associated infections: titanium surface loaded with antimicrobial. iScience 2021; 24:102008. [PMID: 33490916 PMCID: PMC7811145 DOI: 10.1016/j.isci.2020.102008] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Implant devices have = proven a successful treatment modality in reconstructive surgeries. However, increasing rates of peri-implant diseases demand further examination of their pathogenesis. Polymicrobial biofilm formation on titanium surfaces has been considered the main risk factor for inflammatory processes on tissues surrounding implant devices, which often lead to implant failure. To overcome microbial accumulation on titanium surfaces biofilm targeting strategies have been developed to modify the surface and incorporate antimicrobial coatings. Because antibiotics are widely used to treat polymicrobial infections, these agents have recently started to be incorporated on titanium surface. This review discusses the biofilm formation on titanium dental implants and key factors to be considered in therapeutic and preventative strategies. Moreover, a systematic review was conducted on coatings developed for titanium surfaces using different antibiotics. This review will also shed light on potential alternative strategies aiming to reduce microbial loads and control polymicrobial infection on implanted devices.
Collapse
Affiliation(s)
- João Gabriel Silva Souza
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
- Dental Research Division, Guarulhos University, Guarulhos, SP 07023-070, Brazil
- Dentistry Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais, 39401-303, Brazil
| | - Martinna Mendonça Bertolini
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Raphael Cavalcante Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Bruna Egumi Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Anna Dongari-Bagtzoglou
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Valentim Adelino Ricardo Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| |
Collapse
|
17
|
Zhang J, Liu L, Wang L, Zhu W, Wang H. pH responsive zwitterionic-to-cationic transition for safe self-defensive antibacterial application. J Mater Chem B 2020; 8:8908-8913. [PMID: 33026400 DOI: 10.1039/d0tb01717e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Bacteria-induced infections have always been associated with various medical devices. The construction of an intelligent antimicrobial surface is an important challenge. In this study, we report the construction of a zwitterionic surface with good biocompatibility under physiological conditions and which shows an anti-adhesion effect on the original bacteria. Once the bacteria multiply, the acidic environment initiated by the bacteria will cause the amide bond on the surface to break, and the zwitterionic surface can be rapidly converted to a cationic bactericidal surface. Confocal laser scanning (CLSM) and scanning electron microscopy (SEM) show that the zwitterionic surface has efficient antibacterial activity with an anti-adhesion property while the pH-responsive transition to quaternary ammonium compounds with a germicidal surface in the acidic environment of bacterial metabolism aids the activity. Thus, the pH-responsive zwitterionic-to-cationic transition antibacterial design opens up new ideas for the efficient and safe application of cationic bactericides in clinical medical antibacterial materials.
Collapse
Affiliation(s)
- Jing Zhang
- Jilin Medical University, Jilin 132013, P. R. China.
| | - Lei Liu
- Jilin Medical University, Jilin 132013, P. R. China.
| | - Lu Wang
- Jilin Medical University, Jilin 132013, P. R. China.
| | - Wenhe Zhu
- Jilin Medical University, Jilin 132013, P. R. China.
| | - Huiyan Wang
- Jilin Medical University, Jilin 132013, P. R. China.
| |
Collapse
|
18
|
Zhang B, Skelly JD, Braun BM, Ayers DC, Song J. Surface-grafted zwitterionic polymers improve the efficacy of a single antibiotic injection in suppressing S. aureus periprosthetic infections. ACS APPLIED BIO MATERIALS 2020; 3:5896-5904. [PMID: 34368642 DOI: 10.1021/acsabm.0c00600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Implant-associated bacterial infections are difficult to treat due to the tendency of biofilm formation on implant surfaces, which protects embedded pathogens from host defense and impedes antibiotic penetration, rendering systemic antibiotic injections ineffective. Here, we test the hypothesis that implant coatings that reduce bacterial colonization would make planktonic bacteria within the periprosthetic environment more susceptible to conventional systemic antibiotic treatment. We covalently grafted zwitterionic polymer brushes poly(sulfobetaine methacryate) from Ti6Al4V surface to increase the substrate surface hydrophilicity and reduce staphylococcus aureus (S. aureus) adhesion. Using a mouse femoral intramedullary (IM) canal infection model, we showed that the anti-fouling coating applied to Ti6Al4V IM implants, when combined with a single vancomycin systemic injection, significantly suppressed both bacterial colonization on implant surfaces and the periprosthetic infections, outperforming either treatment alone. This work supports the hypothesis that grafting anti-fouling polymers to implant surfaces improves the efficacy of systemic antibiotic injections to combat periprosthetic infections.
Collapse
Affiliation(s)
- Ben Zhang
- Department of Orthopedics & Physical Rehabilitation, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jordan D Skelly
- Department of Orthopedics & Physical Rehabilitation, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Benjamin M Braun
- Department of Orthopedics & Physical Rehabilitation, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - David C Ayers
- Department of Orthopedics & Physical Rehabilitation, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jie Song
- Department of Orthopedics & Physical Rehabilitation, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
19
|
Kong L, Zhang M, Zhang Y, Zhang W, Zhou X, Zhang L, Wang X. Influence of the interfacial molecular structures of quaternary ammonium-type poly(ionic liquid) brushes on their antibacterial properties. Polym Chem 2020. [DOI: 10.1039/d0py01153c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alkyl chains of C4 are more active in killing bacteria than C16 due to their orderly extension toward PBS solution.
Collapse
Affiliation(s)
- Lingli Kong
- Department of Chemistry
- School of Science
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Ming Zhang
- Department of Chemistry
- School of Science
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Yan Zhang
- Department of Chemistry
- School of Science
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Wei Zhang
- Department of Chemistry
- School of Science
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Xianjing Zhou
- Department of Chemistry
- School of Science
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Li Zhang
- Department of Chemistry
- School of Science
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Xinping Wang
- Department of Chemistry
- School of Science
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| |
Collapse
|
20
|
Dhar Y, Han Y. Current developments in biofilm treatments: Wound and implant infections. ENGINEERED REGENERATION 2020. [DOI: 10.1016/j.engreg.2020.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
21
|
Ghimire A, Skelly JD, Song J. Micrococcal-Nuclease-Triggered On-Demand Release of Vancomycin from Intramedullary Implant Coating Eradicates Staphylococcus aureus Infection in Mouse Femoral Canals. ACS CENTRAL SCIENCE 2019; 5:1929-1936. [PMID: 31893222 PMCID: PMC6935889 DOI: 10.1021/acscentsci.9b00870] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Indexed: 05/25/2023]
Abstract
Preventing orthopedic implant-associated bacterial infections remains a critical challenge. Current practices of physically blending high-dose antibiotics with bone cements is known for cytotoxicity while covalently tethering antibiotics to implant surfaces is ineffective in eradicating bacteria from the periprosthetic tissue environment due to the short-range bactericidal actions, which are limited to the implant surface. Here, we covalently functionalize poly(ethylene glycol) dimethacrylate hydrogel coatings with vancomycin via an oligonucleotide linker sensitive to Staphylococcus aureus (S. aureus) micrococcal nuclease (MN) (PEGDMA-Oligo-Vanco). This design enables the timely release of vancomycin in the presence of S. aureus to kill the bacteria both on the implant surface and within the periprosthetic tissue environment. Ti6Al4V intramedullary (IM) pins surface-tethered with dopamine methacrylamide (DopaMA) and uniformly coated with PEGDMA-Oligo-Vanco effectively prevented periprosthetic infections in mouse femoral canals inoculated with bioluminescent S. aureus. Longitudinal bioluminescence monitoring, μCT quantification of femoral bone changes, end point quantification of implant surface bacteria, and histological detection of S. aureus in the periprosthetic tissue environment confirmed rapid and sustained bacterial clearance by the PEGDMA-Oligo-Vanco coating. The observed eradication of bacteria was in stark contrast with the significant bacterial colonization on implants and osteomyelitis development found in the absence of the MN-sensitive bactericidal coating. The effective vancomycin tethering dose presented in this on-demand release strategy was >200 times lower than the typical prophylactic antibiotic contents used in bone cements and may be applied to medical implants and bone/dental cements to prevent periprosthetic infections in high-risk clinical scenarios. This study also supports the timely bactericidal action by MN-triggered release of antibiotics as an effective prophylactic method to bypass the notoriously harder to treat periprosthetic biofilms and osteomyelitis.
Collapse
Affiliation(s)
- Ananta Ghimire
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - Jordan D. Skelly
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - Jie Song
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| |
Collapse
|