1
|
Li M, Mao A, Guan Q, Saiz E. Nature-inspired adhesive systems. Chem Soc Rev 2024; 53:8240-8305. [PMID: 38982929 DOI: 10.1039/d3cs00764b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Many organisms in nature thrive in intricate habitats through their unique bio-adhesive surfaces, facilitating tasks such as capturing prey and reproduction. It's important to note that the remarkable adhesion properties found in these natural biological surfaces primarily arise from their distinct micro- and nanostructures and/or chemical compositions. To create artificial surfaces with superior adhesion capabilities, researchers delve deeper into the underlying mechanisms of these captivating adhesion phenomena to draw inspiration. This article provides a systematic overview of various biological surfaces with different adhesion mechanisms, focusing on surface micro- and nanostructures and/or chemistry, offering design principles for their artificial counterparts. Here, the basic interactions and adhesion models of natural biological surfaces are introduced first. This will be followed by an exploration of research advancements in natural and artificial adhesive surfaces including both dry adhesive surfaces and wet/underwater adhesive surfaces, along with relevant adhesion characterization techniques. Special attention is paid to stimulus-responsive smart artificial adhesive surfaces with tunable adhesive properties. The goal is to spotlight recent advancements, identify common themes, and explore fundamental distinctions to pinpoint the present challenges and prospects in this field.
Collapse
Affiliation(s)
- Ming Li
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| | - Anran Mao
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| | - Qingwen Guan
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Eduardo Saiz
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
2
|
Kim J, Yeom J, Ro YG, Na G, Jung W, Ko H. Plasmonic Hydrogel Actuators for Octopus-Inspired Photo/Thermoresponsive Smart Adhesive Patch. ACS NANO 2024. [PMID: 39087614 DOI: 10.1021/acsnano.4c05788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Octopuses are notable creatures that can dynamically adhere to a variety of substrates owing to the efficient pressure control within their suction cups. An octopus' suckers are sealed at the rim and function by reducing the pressure inside the cavity, thereby creating a pressure difference between the ambient environment and the inner cavity. Inspired by this mechanism, we developed a plasmonic smart adhesive patch (Plasmonic AdPatch) with switchable adhesion in response to both temperature changes and near-infrared (NIR) light. The AdPatch incorporates an elastic, nanohole-patterned elastomer that mimics the structure of octopus suckers. Additionally, a monolayer of gold nanostars (GNSs) is coated on the patch, facilitating a NIR light-responsive photothermal effect. A musclelike, thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) hydrogel functions as a volumetric actuator to regulate cavity pressure. When exposed to heat or light, the PNIPAM hydrogel shrinks, enabling the AdPatch to achieve strong suction adhesion (134 kPa at 45 °C, 71 kPa at 85 mW cm-2). Owing to its capability to achieve light-triggered remote adhesion without the need for external pressure, the Plasmonic AdPatch can be employed to transfer ultrathin films and biosensors to fragile organs without causing damage.
Collapse
Affiliation(s)
- Jeeyoon Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Jeonghee Yeom
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Yun Goo Ro
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Geoseong Na
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Woonggyu Jung
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
3
|
Zhu B, Tan D, Xiao K, Shi Z, Li G, Lei Y, Chen D, Liu S, Xue L. Micropillar with Radial Gradient Modulus Enables Robust Adhesion and Friction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310887. [PMID: 38409520 DOI: 10.1002/smll.202310887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/08/2024] [Indexed: 02/28/2024]
Abstract
The gradient modulus in beetle setae plays a critical role in allowing it to stand and walk on natural surfaces. Mimicking beetle setae to create a modulus gradient in microscale, especially in the direction of setae radius, can achieve reliable contact and thus strong adhesion. However, it remains highly challenging to achieve modulus gradient along radial directions in setae-like structures. Here, polydimethylsiloxane (PDMS) micropillar with radial gradient modulus, (termed GM), is successfully constructed by making use of the polymerization inhibitor in the photosensitive resin template. GM gains adhesion up to 84 kPa, which is 2.3 and 4.7 times of soft homogeneous micropillars (SH) and hard homogeneous micropillars (HH), respectively. The radial gradient modulus facilitates contact formation on various surfaces and shifts stress concentration from contact perimeter to the center, resulting in adhesion enhancement. Meanwhile, GM achieves strong friction of 8.1 mN, which is 1.2 and 2.6 times of SH and HH, respectively. Moreover, GM possesses high robustness, maintaining strong adhesion and friction after 400 cycles of tests. The work here not only provides a robust structure for strong adhesion and friction, but also establishes a strategy to create modulus gradient at micron-scale.
Collapse
Affiliation(s)
- Bo Zhu
- The Institute of Technological Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Di Tan
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Kangjian Xiao
- The Institute of Technological Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Zhekun Shi
- The Institute of Technological Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Gang Li
- The Institute of Technological Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Yifeng Lei
- The Institute of Technological Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Daobing Chen
- The Institute of Technological Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Sheng Liu
- The Institute of Technological Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Longjian Xue
- The Institute of Technological Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
4
|
Ahn J, Han H, Ha JH, Jeong Y, Jung Y, Choi J, Cho S, Jeon S, Jeong JH, Park I. Micro-/Nanohierarchical Structures Physically Engineered on Surfaces: Analysis and Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300871. [PMID: 37083149 DOI: 10.1002/adma.202300871] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/06/2023] [Indexed: 05/03/2023]
Abstract
The high demand for micro-/nanohierarchical structures as components of functional substrates, bioinspired devices, energy-related electronics, and chemical/physical transducers has inspired their in-depth studies and active development of the related fabrication techniques. In particular, significant progress has been achieved in hierarchical structures physically engineered on surfaces, which offer the advantages of wide-range material compatibility, design diversity, and mechanical stability, and numerous unique structures with important niche applications have been developed. This review categorizes the basic components of hierarchical structures physically engineered on surfaces according to function/shape and comprehensively summarizes the related advances, focusing on the fabrication strategies, ways of combining basic components, potential applications, and future research directions. Moreover, the physicochemical properties of hierarchical structures physically engineered on surfaces are compared based on the function of their basic components, which may help to avoid the bottlenecks of conventional single-scale functional substrates. Thus, the present work is expected to provide a useful reference for scientists working on multicomponent functional substrates and inspire further research in this field.
Collapse
Affiliation(s)
- Junseong Ahn
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), Daejeon, 34103, Republic of Korea
| | - Hyeonseok Han
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Ji-Hwan Ha
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), Daejeon, 34103, Republic of Korea
| | - Yongrok Jeong
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), Daejeon, 34103, Republic of Korea
| | - Young Jung
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jungrak Choi
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seokjoo Cho
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sohee Jeon
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), Daejeon, 34103, Republic of Korea
| | - Jun-Ho Jeong
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), Daejeon, 34103, Republic of Korea
| | - Inkyu Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
5
|
Song TE, Oh SA, Ahn CW, Oh IK, Jeon HJ. Effective Approach for Fabricating Highly Precise High-Curvature Structural Patterns via Air-Bubble Induction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15785-15791. [PMID: 37880817 DOI: 10.1021/acs.langmuir.3c02454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Developing a new master mold-based patterning technology that can be used to accurately, precisely, and uniformly create large-area micropatterns while controlling the micropatterns of curved structures is essential for promoting innovative developments in various application fields. This study develops a new top-down lithographic process that can effectively produce structural patterns with high curvatures by growing isolated microbubbles in the master pattern holes. The isolated air-pocket lithography (IAL) we developed is based on the controlled behavior of micrometer-sized air pockets trapped between the grooves of the master pattern and the curable polymer. We successfully fabricated a concave array polydimethylsiloxane (PDMS) film and a convex array polymer film. In addition, the IAL mechanism was proven by confirming the expansion process of micrometer-sized air pockets trapped between the deep groove of the silicon master pattern and the PDMS coating film by using optical microscopy images. We successfully obtained complex three-dimensional structural patterns containing both 3D hollow spherical concave and ring-shaped two-dimensional convex patterns. This simple, fast, and effective high-curvature patterning technique is expected to provide innovative solutions for future applications such as nanoelectronics, optical devices, displays, and photovoltaics.
Collapse
Affiliation(s)
- Tae-Eun Song
- National Creative Research Initiative Center for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sang-Ah Oh
- Department of Chemical Engineering and Biotechnology, Tech University of Korea, 237, Sangidaehak-ro, Si-heung-si, Gyeonggi-do 15073, Republic of Korea
| | - Chi Won Ahn
- National Nano Fab Center (NNFC), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Il-Kwon Oh
- National Creative Research Initiative Center for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hwan-Jin Jeon
- Department of Chemical Engineering and Biotechnology, Tech University of Korea, 237, Sangidaehak-ro, Si-heung-si, Gyeonggi-do 15073, Republic of Korea
| |
Collapse
|
6
|
Li S, Tian H, Fan Y, Wang C, Li X, Chen X, Shao J. Micropatterned Fluororubber-Based Dry Adhesive for Pan-Semiconductor Production Line with Complicated Operating Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14474-14486. [PMID: 37774416 DOI: 10.1021/acs.langmuir.3c02443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The efficient and safe manipulation of precision materials (such as thin and fragile wafers and glass substrates for flat panel displays) under complicated operating conditions with vacuum, high temperature, and low preload stress is an essential task for pan-semiconductor production lines. However, current manipulation approaches such as suction-based gripping (invalid under vacuum conditions) and mechanical clamping (stress concentration at the contact interfaces) are challenged to satisfy such complex requirements. Herein, fluororubber (FKM) is employed as an adhesive material to overcome such challenges due to its outstanding thermostability, availability under vacuum environments, and high adhesion at low contacting preloads. However, the adhesion of the FKM film decreases significantly with increasing temperature (decrease by 84.83% at 245 °C). Consequently, a micropatterned FKM-based dry adhesive (MFA) fabricated by laser etching is developed. The experimental results reveal that MFAs are efficient in restraining adhesion attenuation at high temperatures (minimum 15% decrease at 245 °C). The numerical analysis and in situ observations reveal the mechanism of the MFAs in restraining adhesion attenuation. The contamination-free and high adhesion at low contacting preload of MFAs can be of great interest in pan-semiconductor production lines that require complicated operating conditions on temperature, vacuum, and interface stress.
Collapse
Affiliation(s)
- Shuai Li
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hongmiao Tian
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yu Fan
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Chunhui Wang
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiangming Li
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaoliang Chen
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jinyou Shao
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
7
|
Li S, Tian H, Wang C, Li X, Chen X, Chen X, Shao J. Smart Manipulation of Complex Optical Elements via Contact-adaptive Dry Adhesives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303874. [PMID: 37688358 PMCID: PMC10602548 DOI: 10.1002/advs.202303874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/31/2023] [Indexed: 09/10/2023]
Abstract
The implementation of complex, high-precision optical devices or systems, which have vital applications in the aerospace, medical, and military fields, requires the ability to reliably manipulate and assemble optical elements. However, this is a challenging task as these optical elements require contamination-free and damage-free manipulation and come in a variety of sizes and shapes. Here, a smart, contact-adaptive adhesive based on magnetic actuation is developed to address this challenge. Specifically, the surface bio-inspired adhesives made of fluororubber facilitate contamination-free and damage-free adhesion. The stiffness modulation of packaged magnetorheological grease based on the magnetorheological effect endows the smart adhesive with a high conformability to the optical elements in the soft state, a high grip force in the stiff state, and the ability to quickly release the optical elements in the recovered soft state. The smart adhesive provides a versatile solution for reliably and quickly manipulating and assembling multiscale optical elements with planar or complex 3D shapes without causing surface contamination or damage. These extraordinary capabilities are demonstrated by the manipulation and assembly of various optical elements, such as convex/concave/ball lenses and extremely complex-shaped light guide plates. The proposed smart adhesive is a promising candidate for conventional optical element manipulation technologies.
Collapse
Affiliation(s)
- Shuai Li
- Micro‐ and Nano‐technology Research CenterState Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Hongmiao Tian
- Micro‐ and Nano‐technology Research CenterState Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Chunhui Wang
- Micro‐ and Nano‐technology Research CenterState Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Xiangming Li
- Micro‐ and Nano‐technology Research CenterState Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049China
- Frontier Institute of Science and Technology (FIST)Xi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Xiaoliang Chen
- Micro‐ and Nano‐technology Research CenterState Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049China
- Frontier Institute of Science and Technology (FIST)Xi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Xiaoming Chen
- Micro‐ and Nano‐technology Research CenterState Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Jinyou Shao
- Micro‐ and Nano‐technology Research CenterState Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049China
- Frontier Institute of Science and Technology (FIST)Xi'an Jiaotong UniversityXi'anShaanxi710049China
| |
Collapse
|
8
|
Zhang Y, Kong D, Shi Y, Cai M, Yu Q, Li S, Wang K, Liu C. Recent progress on underwater soft robots: adhesion, grabbing, actuating, and sensing. Front Bioeng Biotechnol 2023; 11:1196922. [PMID: 37614630 PMCID: PMC10442648 DOI: 10.3389/fbioe.2023.1196922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/20/2023] [Indexed: 08/25/2023] Open
Abstract
The research on biomimetic robots, especially soft robots with flexible materials as the main structure, is constantly being explored. It integrates multi-disciplinary content, such as bionics, material science, mechatronics engineering, and control theory, and belongs to the cross-disciplinary field related to mechanical bionics and biological manufacturing. With the continuous development of various related disciplines, this area has become a hot research field. Particularly with the development of practical technologies such as 3D printing technology, shape memory alloy, piezoelectric materials, and hydrogels at the present stage, the functions and forms of soft robots are constantly being further developed, and a variety of new soft robots keep emerging. Soft robots, combined with their own materials or structural characteristics of large deformation, have almost unlimited degrees of freedom (DoF) compared with rigid robots, which also provide a more reliable structural basis for soft robots to adapt to the natural environment. Therefore, soft robots will have extremely strong adaptability in some special conditions. As a type of robot made of flexible materials, the changeable pose structure of soft robots is especially suitable for the large application environment of the ocean. Soft robots working underwater can better mimic the movement characteristics of marine life in the hope of achieving more complex underwater tasks. The main focus of this paper is to classify different types of underwater organisms according to their common motion modes, focusing on the achievements of some bionic mechanisms in different functional fields that have imitated various motion modes underwater in recent years (e.g., the underwater sucking glove, the underwater Gripper, and the self-powered soft robot). The development of various task types (e.g., grasping, adhesive, driving or swimming, and sensing functions) and mechanism realization forms of the underwater soft robot are described based on this article.
Collapse
Affiliation(s)
- Yeming Zhang
- School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, China
| | - Demin Kong
- School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, China
| | - Yan Shi
- School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
| | - Maolin Cai
- School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
| | - Qihui Yu
- School of Mechanical Engineering, Inner Mongolia University of Science and Technology, Baotou, China
| | - Shuping Li
- School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, China
| | - Kai Wang
- School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, China
| | - Chuangchuang Liu
- School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, China
| |
Collapse
|
9
|
Fan H. Getting glued in the sea. Polym J 2023; 55:653-664. [PMID: 37284729 PMCID: PMC9982171 DOI: 10.1038/s41428-023-00769-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 03/06/2023]
Abstract
Inspired by ocean organisms, scientists have been developing adhesives for application in the marine environment. However, water and high salinity, which not only weaken the interfacial bonding by the hydration layer but also induce the deterioration of adhesives by erosion, swelling, hydrolysis, or plasticization, are detrimental to adhesion, resulting in specific challenges in the development of under-seawater adhesives. In this focus review, current adhesives that are capable of macroscopic adhesion in seawater were summarized. The design strategies and performance of these adhesives were reviewed based on their bonding methods. Finally, some future research directions and perspectives for under-seawater adhesives were discussed.
Collapse
Affiliation(s)
- Hailong Fan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| |
Collapse
|
10
|
Sandoval JA, Ishida M, Jadhav S, Huen S, Tolley MT. Tuning the Morphology of Suction Discs to Enable Directional Adhesion for Locomotion in Wet Environments. Soft Robot 2022; 9:1083-1097. [PMID: 35285735 DOI: 10.1089/soro.2021.0096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Reversible adhesion provides robotic systems with unique capabilities, including wall climbing and walking underwater, and yet the control of adhesion continues to pose a challenge. Directional adhesives have begun to address this limitation by providing adhesion when loaded in one direction and releasing easily when loaded in the opposite direction. However, previous work has focused on directional adhesives for dry environments. In this work, we sought to address this need for directional adhesives for use in a wet environment by tuning the morphology of suction discs to achieve anisotropic adhesion. We developed a suction disc that exhibited significant directional preference in attachment and detachment without requiring active control. The suction discs exhibited morphological computation-that is, they were programmed based on their geometry and material properties to detach under specific angles of loading. We investigated two design parameters-disc symmetry and slits within the disc margin-as mechanisms to yield anisotropic adhesion, and through experimental characterizations, we determined that an asymmetric suction disc most consistently provided directional adhesion. We performed a parametric sweep of material stiffness to optimize for directional adhesion and found that the material composition of the suction disc demonstrated the ability to override the effect of body asymmetry on achieving anisotropic adhesion. We modeled the stress distributions within the different suction disc symmetries using finite element analysis, yielding insights into the differences in contact pressures between the variants. We experimentally demonstrated the utility of the suction discs in a simulated walking gait using linear actuators as one potential application of the directional suction disc.
Collapse
Affiliation(s)
- Jessica A Sandoval
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA
| | - Michael Ishida
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA
| | - Saurabh Jadhav
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA
| | - Sidney Huen
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA
| | - Michael T Tolley
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
11
|
Zhang X, Wang Y, Tian Z, Samri M, Moh K, McMeeking RM, Hensel R, Arzt E. A bioinspired snap-through metastructure for manipulating micro-objects. SCIENCE ADVANCES 2022; 8:eadd4768. [PMID: 36399572 PMCID: PMC9674295 DOI: 10.1126/sciadv.add4768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Micro-objects stick tenaciously to each other-a well-known show-stopper in microtechnology and in handling micro-objects. Inspired by the trigger plant, we explore a mechanical metastructure for overcoming adhesion involving a snap-action mechanism. We analyze the nonlinear mechanical response of curved beam architectures clamped by a tunable spring, incorporating mono- and bistable states. As a result, reversible miniaturized snap-through devices are successfully realized by micron-scale direct printing, and successful pick-and-place handling of a micro-object is demonstrated. The technique is applicable to universal scenarios, including dry and wet environment, or smooth and rough counter surfaces. With an unprecedented switching ratio (between high and low adhesion) exceeding 104, this concept proposes an efficient paradigm for handling and placing superlight objects.
Collapse
Affiliation(s)
- Xuan Zhang
- INM–Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Yue Wang
- INM–Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Zhihao Tian
- INM–Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Department of Materials Science and Engineering, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany
| | - Manar Samri
- INM–Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Department of Materials Science and Engineering, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany
| | - Karsten Moh
- INM–Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Hydac International GmbH, 66280 Sulzbach, Germany
| | - Robert M. McMeeking
- INM–Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Departments of Materials and Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - René Hensel
- INM–Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Eduard Arzt
- INM–Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Department of Materials Science and Engineering, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany
| |
Collapse
|
12
|
Abstract
Anchoring soft millirobots on surfaces, such as biological tissues, is essential to perform long-duration medical functions robustly on a target position. For robust anchoring, we propose a wireless mechanism that can be precisely controlled by remote heating to achieve on-demand needle release and mechanical interlocking. Such a mechanism can be easily integrated on existing untethered soft robots, allowing them to anchor robustly to soft surfaces while retaining their locomotion capabilities. Furthermore, we demonstrate advanced functionalities of such robots, such as controlled surface detachment and subsurface drug delivery into three-dimensional cancer spheroids. Given these capabilities, the proposed mechanism can serve as a platform for the development of soft robots with a new suite of biomedical capabilities. Untethered soft miniature robots capable of accessing hard-to-reach regions can enable new, disruptive, and minimally invasive medical procedures. However, once the control input is removed, these robots easily move from their target location because of the dynamic motion of body tissues or fluids, thereby restricting their use in many long-term medical applications. To overcome this, we propose a wireless spring-preloaded barbed needle release mechanism, which can provide up to 1.6 N of force to drive a barbed needle into soft tissues to allow robust on-demand anchoring on three-dimensional (3D) surfaces. The mechanism is wirelessly triggered using radio-frequency remote heating and can be easily integrated into existing untethered soft robotic platforms without sacrificing their mobility. Design guidelines aimed at maximizing anchoring over the range of the most biological tissues (kPa range) and extending the operating depth of the device inside the body (up to 75%) are also presented. Enabled by these advances, we achieve robust anchoring on a variety of ex vivo tissues and demonstrate the usage of such a device when integrated with existing soft robotic platforms and medical imaging. Moreover, by simply changing the needle, we demonstrate additional functionalities such as controlled detachment and subsurface drug delivery into 3D cancer spheroids. Given these capabilities, our proposed mechanism could enable the development of a new class of biomedical-related functionalities, such as local drug delivery, disease monitoring, and hyperthermia for future untethered soft medical robots.
Collapse
|
13
|
Wu J, Pan Z, Zhao ZY, Wang MH, Dong L, Gao HL, Liu CY, Zhou P, Chen L, Shi CJ, Zhang ZY, Yang C, Yu SH, Zou DH. Anti-Swelling, Robust, and Adhesive Extracellular Matrix-Mimicking Hydrogel Used as Intraoral Dressing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200115. [PMID: 35128734 DOI: 10.1002/adma.202200115] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Due to the wet and dynamic environment of the oral cavity, the healing of intraoral wounds, such as tooth extraction wounds, requires stable and firm wound dressings. In clinical practice, cotton balls and gauzes, sponge plugs, or sutures are used to treat extraction wounds, but none of these means can continuously isolate the wound from the intraoral environment and facilitate ideal healing conditions. Herein, inspired by the natural extracellular matrix, a family of wound dressings is developed for intraoral wound repair. Infiltrating a ductile long-chain hydrogel network into a prefabricated, sturdy macromolecular meshwork and in situ crosslinking endowed the composite hydrogel with controllable swelling behaviors and robust mechanical properties. The macromolecular meshwork functioned as the backbone to support the composite and restricts the swelling of the long-chain hydrogel network. In vitro tests verified that this wound dressing can provide durable protection for intraoral wounds against complex irritations. Furthermore, accelerated wound healing occurred when the wound dressing is applied in vivo on a canine tooth extraction model, due to the effective reduction of acute inflammation. These results suggest that this family of bioinspired hydrogels has great potential for application as intraoral wound dressing.
Collapse
Affiliation(s)
- Jing Wu
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhao Pan
- Department of Chemistry, Institute of Biomimetic Materials, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Zheng-Yi Zhao
- Department of Dental Implant Center, Stomatology Hospital & College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Mo-Han Wang
- Department of Dental Implant Center, Stomatology Hospital & College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Liang Dong
- Department of Chemistry, Institute of Biomimetic Materials, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Huai-Ling Gao
- Department of Chemistry, Institute of Biomimetic Materials, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Chong-Yuan Liu
- Department of Dental Implant Center, Stomatology Hospital & College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Pu Zhou
- Department of Dental Implant Center, Stomatology Hospital & College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Lu Chen
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chao-Ji Shi
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhi-Yuan Zhang
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chi Yang
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Duo-Hong Zou
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Department of Dental Implant Center, Stomatology Hospital & College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
14
|
|
15
|
Sandoval JA, Xu T, Adibnazari I, Deheyn DD, Tolley MT. Combining Suction and Friction to Stabilize a Soft Gripper to Shear and Normal Forces, for Manipulation of Soft Objects in Wet Environments. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3149306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Khan MN, Huo T, Zhang Q, Hu Z, Zhao J, Chen J, Wang Z, Ji K. Synergetic adhesion in highly adaptable bio-inspired adhesive. Colloids Surf B Biointerfaces 2022; 212:112335. [PMID: 35078054 DOI: 10.1016/j.colsurfb.2022.112335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
Abstract
Biologically inspired adhesives microstructure requires enough flexibility to make a conformal attachment to the surface as well as high rigidity to maintain the mechanical stability of structure against buckling. To tackle these conflicting factors for the synthetic adhesives is a challenge towards large-scale production and utilizing in practical applications. Addressing this problem, we have fabricated a honeycomb structure with a soft elastic film, partially covering the cavity of the honeycomb pattern. Honeycomb structure provides enough support to maintain the structural stability of the microstructure and soft PDMS film over the pattern provides sufficient flexibility to form a strong attachment with the target surface. Meanwhile, the resemblance of the designed structure to the octopi's sucker generates a negative pressure resulting in suction forces. To justify this suction effect, we compared our results with other controlled honeycomb microstructures (1) without any elastic film (2) with elastic film covering the whole cavity of the honeycomb pattern. Experimental results and theoretical prediction demonstrate the synergistic role of van der Waals and suction forces in the proposed partial-film honeycomb microstructure. The synergistic role of adhesive forces makes this structure a stronger, durable, and surface adaptable adhesive. We also investigated the critical role of the viscous forces for our proposed microstructure in water and silicon oil wetting conditions which signify the contribution of capillary forces.
Collapse
Affiliation(s)
- Muhammad Niaz Khan
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Tingwei Huo
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Qian Zhang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhuoyang Hu
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jiahui Zhao
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jian Chen
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhouyi Wang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Keju Ji
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| |
Collapse
|
17
|
Wang Y, Hensel R, Arzt E. Attachment of bioinspired microfibrils in fluids: transition from a hydrodynamic to hydrostatic mechanism. J R Soc Interface 2022; 19:20220050. [PMID: 35382580 PMCID: PMC8984370 DOI: 10.1098/rsif.2022.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/10/2022] [Indexed: 11/12/2022] Open
Abstract
Reversible and switchable adhesion of elastomeric microstructures has attracted significant interest in the development of grippers for object manipulation. Their applications, however, have often been limited to dry conditions and adhesion of such deformable microfibrils in the fluid environment is less understood. In the present study, we performed adhesion tests in silicone oil using single cylindrical microfibrils of a flat-punch shape with a radius of 80 µm. Stiff fibrils were created using three-dimensional printing of an elastomeric resin with an elastic modulus of 500 MPa, and soft fibrils, with a modulus of 3.3 MPa, were moulded in polyurethane. Our results suggest that adhesion is dominated by hydrodynamic forces, which can be maximized by stiff materials and high retraction velocities, in line with theoretical predictions. The maximum pull-off stress of stiff cylindrical fibrils is 0.6 MPa, limited by cavitation and viscous fingering, occurring at retraction velocities greater than 2 µm s-1. Next, we add a mushroom cap to the microfibrils, which, in the case of the softer material, deforms upon retraction and leads to a transition to a hydrostatic suction regime with higher pull-off stresses ranging from 0.7 to 0.9 MPa. The effects of elastic modulus, fibril size and viscosity for underwater applications are illustrated in a mechanism map to provide guidance for design optimization.
Collapse
Affiliation(s)
- Yue Wang
- INM – Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - René Hensel
- INM – Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Eduard Arzt
- INM – Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Department of Materials Science and Engineering, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany
| |
Collapse
|
18
|
Wang Y, Li Z, Elhebeary M, Hensel R, Arzt E, Saif MTA. Water as a "glue": Elasticity-enhanced wet attachment of biomimetic microcup structures. SCIENCE ADVANCES 2022; 8:eabm9341. [PMID: 35319998 PMCID: PMC8942358 DOI: 10.1126/sciadv.abm9341] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Octopus, clingfish, and larva use soft cups to attach to surfaces under water. Recently, various bioinspired cups have been engineered. However, the mechanisms of their attachment and detachment remain elusive. Using a novel microcup, fabricated by two-photon lithography, coupled with in situ pressure sensor and observation cameras, we reveal the detailed nature of its attachment/detachment under water. It involves elasticity-enhanced hydrodynamics generating "self-sealing" and high suction at the cup-substrate interface, converting water into "glue." Detachment is mediated by seal breaking. Three distinct mechanisms of breaking are identified, including elastic buckling of the cup rim. A mathematical model describes the interplay between the attachment/detachment process, geometry, elasto-hydrodynamics, and cup retraction speed. If the speed is too slow, then the octopus cannot attach; if the tide is too gentle for the larva, then water cannot serve as a glue. The concept of "water glue" can innovate underwater transport and manufacturing strategies.
Collapse
Affiliation(s)
- Yue Wang
- INM-Leibniz Institute for New Materials, Saarbrücken, Germany
| | - Zhengwei Li
- Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61822, USA
| | - Mohamed Elhebeary
- Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61822, USA
| | - René Hensel
- INM-Leibniz Institute for New Materials, Saarbrücken, Germany
| | - Eduard Arzt
- INM-Leibniz Institute for New Materials, Saarbrücken, Germany
- Saarland University, Materials Science and Engineering, Saarbrücken, Germany
| | - M. Taher A. Saif
- Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61822, USA
| |
Collapse
|
19
|
Kang V, White RT, Chen S, Federle W. Extreme suction attachment performance from specialised insects living in mountain streams (Diptera: Blephariceridae). eLife 2021; 10:e63250. [PMID: 34731079 PMCID: PMC8565926 DOI: 10.7554/elife.63250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 09/24/2021] [Indexed: 01/05/2023] Open
Abstract
Suction is widely used by animals for strong controllable underwater adhesion but is less well understood than adhesion of terrestrial climbing animals. Here we investigate the attachment of aquatic insect larvae (Blephariceridae), which cling to rocks in torrential streams using the only known muscle-actuated suction organs in insects. We measured their attachment forces on well-defined rough substrates and found that their adhesion was less reduced by micro-roughness than that of terrestrial climbing insects. In vivo visualisation of the suction organs in contact with microstructured substrates revealed that they can mould around large asperities to form a seal. We have shown that the ventral surface of the suction disc is covered by dense arrays of microtrichia, which are stiff spine-like cuticular structures that only make tip contact. Our results demonstrate the impressive performance and versatility of blepharicerid suction organs and highlight their potential as a study system to explore biological suction mechanisms.
Collapse
Affiliation(s)
- Victor Kang
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Robin T White
- Carl Zeiss Research Microscopy SolutionsPleasantonUnited Kingdom
| | - Simon Chen
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Walter Federle
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
20
|
Fan H, Gong JP. Bioinspired Underwater Adhesives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102983. [PMID: 34532910 DOI: 10.1002/adma.202102983] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Underwater adhesives are in high demand in both commercial and industrial sectors. Compared with adhesives used in dry (air) environments, adhesives used for wet or submerged surfaces in aqueous environments have specific challenges in development and performance. In this review, focus is on adhesives demonstrating macroscopic adhesion to wet/underwater substrates. The current strategies are first introduced for different types of underwater adhesives, and then an overview is provided of the development and performance of underwater adhesives based on different mechanisms and strategies. Finally, the possible research directions and prospects of underwater adhesives are discussed.
Collapse
Affiliation(s)
- Hailong Fan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21W10, Kita-ku, Sapporo, 001-0021, Japan
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21W10, Kita-ku, Sapporo, 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo, 001-0021, Japan
| |
Collapse
|
21
|
Li S, Liu H, Tian H, Wang C, Wang D, Wu Y, Shao J. Dytiscus lapponicus-Inspired Structure with High Adhesion in Dry and Underwater Environments. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42287-42296. [PMID: 34455771 DOI: 10.1021/acsami.1c13604] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The epidermal adhesive structure of many animals generates reliable adhesion on their engaged surfaces. However, current bio-inspired adhesion structures are difficult to function well in dry and underwater environments simultaneously. Interestingly, the male Dytiscus lapponicus attaches firmly to the rough shell of the female D. lapponicus in both dry and underwater conditions owing to the adhesive setae of its forelegs, and to the best of our knowledge, designing adhesive structures on multienvironments has never been reported. Here, a D. lapponicus-inspired adhesion structure (DIAS) is proposed and fabricated using double-exposure-fill molding technology accompanied with the material curing shrinkage, in which different structural features could be achieved by varying curing shrinkage ratios, elastic moduli, and back exposure time. The DIAS offered high, reversible, and repeatable strength in dry and underwater conditions with values of 205 and 133 kPa, respectively. By comparing the adhesion properties of different shapes via testing experiments and numerical analysis, a structural feature with an inclination of 15° was found to be optimal. Finally, the potential application of the DIAS in flexible electronic smart skin-attachable devices was demonstrated on a pig skin, paving the way for further bio-inspired adhesive designs for both dry and wet scenarios.
Collapse
Affiliation(s)
- Shuai Li
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Haoran Liu
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hongmiao Tian
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Chunhui Wang
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Duorui Wang
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yihang Wu
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jinyou Shao
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
22
|
Kang V, Isermann H, Sharma S, Wilson DI, Federle W. How a sticky fluid facilitates prey retention in a carnivorous pitcher plant (Nepenthes rafflesiana). Acta Biomater 2021; 128:357-369. [PMID: 33862281 DOI: 10.1016/j.actbio.2021.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 11/29/2022]
Abstract
Nepenthes pitcher plants grow in nutrient-poor soils and produce large pitfall traps to obtain additional nutrients from animal prey. Previous research has shown that the digestive secretion in N. rafflesiana is a sticky viscoelastic fluid that retains insects much more effectively than water, even after significant dilution. Although the retention of prey is known to depend on the fluid's physical properties, the details of how the fluid interacts with insect cuticle and how its sticky nature affects struggling insects are unclear. In this study, we investigated the mechanisms behind the efficient prey retention in N. rafflesiana pitcher fluid. By measuring the attractive forces on insect body parts moved in and out of test fluids, we show that it costs insects more energy to free themselves from pitcher fluid than from water. Moreover, both the maximum force and the energy required for retraction increased after the first contact with the pitcher fluid. We found that insects sink more easily into pitcher fluid than water and, accordingly, the surface tension of N. rafflesiana pitcher fluid was lower than that of water (60.2 vs. 72.3 mN/m). By analysing the pitcher fluid's wetting behaviour, we demonstrate that it strongly resists dewetting from all surfaces tested, leaving behind residual films and filaments that can facilitate re-wetting. This inhibition of dewetting may be a further consequence of the fluid's viscoelastic nature and likely represents a key mechanism underlying prey retention in Nepenthes pitcher plants. STATEMENT OF SIGNIFICANCE: Carnivorous Nepenthes pitcher plants secrete sticky viscoelastic fluids that prevent insects from escaping after falling into the pitcher. What physical mechanisms are responsible for the fluid's retentive function? First, insects sink and drown more readily in N. rafflesiana pitcher fluid due to its reduced surface tension. Second, once within the fluid, our force measurements show that it costs more energy to separate insects from pitcher fluid than from water. Third, the fluid strongly resists dewetting, making it harder for insects to extract themselves and covering their cuticle with residues that facilitate re-wetting. Such striking inhibition of dewetting may represent a previously unrecognised mechanism of prey retention by Nepenthes. Pitcher fluid fulfils a well-defined biological function and may serve as a model for studying the mechanics of complex fluids.
Collapse
Affiliation(s)
- Victor Kang
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom.
| | - Hannah Isermann
- City University of Applied Sciences Bremen, Neustadtswall 30, 28199 Bremen, Germany
| | - Saksham Sharma
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - D Ian Wilson
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Walter Federle
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| |
Collapse
|
23
|
Sun Z, Li Z, Qu K, Zhang Z, Niu Y, Xu W, Ren C. A review on recent advances in gel adhesion and their potential applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115254] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Liu J, Wang S, Shen Q, Kong L, Huang G, Wu J. Tough Underwater Super-tape Composed of Semi-interpenetrating Polymer Networks with a Water-Repelling Liquid Surface. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1535-1544. [PMID: 33379861 DOI: 10.1021/acsami.0c18916] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Despite recent advances in bioinspired underwater adhesives, achieving tough, fast, and stable adhesion in aqueous environments is still challenging. Here, an underwater super-tape with semi-interpenetrating polymer networks (SIPNs) and a water-repelling liquid surface is synthesized. In the SIPN, the linear chains easily diffuse to adapt to the adherends, and the cross-linked chains provide the super-tape with high dimensional stability. Meanwhile, both the linear and cross-linked chains bear many catechol groups, which can not only vigorously interact with the adherends but also form numerous hydrogen bonds serving as sacrificial bonds in the SIPN. Thus, the super-tape shows both high interfacial adhesion and cohesive energy. Moreover, the super-tape is covered with a water-repelling liquid surface by spraying it with traces of a hydrophobic solvent. It is demonstrated that the hydrophobic solvent absorbed on the surface of the super-tape can remove water between the tape and adherends, enabling their intimate contact to form a strong interaction. As such, the super-tape shows excellent instant adhesion property under water, and the adhesive strength and toughness increase with time and reach their maximum values at around 5 h. The maximum debonding energy of the super-tape reaches 3933 J m-2, which is much higher than those of existing double-sided tapes.
Collapse
Affiliation(s)
- Jiayi Liu
- College of Polymer Science and Engineering, Stute Key Laboratory of Polymer Material Engineering, Sichuan University, Chengdu 610065, China
| | - Shixiang Wang
- College of Polymer Science and Engineering, Stute Key Laboratory of Polymer Material Engineering, Sichuan University, Chengdu 610065, China
| | - Qiaoqiao Shen
- College of Polymer Science and Engineering, Stute Key Laboratory of Polymer Material Engineering, Sichuan University, Chengdu 610065, China
| | - Lingmin Kong
- College of Polymer Science and Engineering, Stute Key Laboratory of Polymer Material Engineering, Sichuan University, Chengdu 610065, China
| | - Guangsu Huang
- College of Polymer Science and Engineering, Stute Key Laboratory of Polymer Material Engineering, Sichuan University, Chengdu 610065, China
| | - Jinrong Wu
- College of Polymer Science and Engineering, Stute Key Laboratory of Polymer Material Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
25
|
Chudak M, Chopra V, Hensel R, Darhuber AA. Elastohydrodynamic Dewetting of Thin Liquid Films: Elucidating Underwater Adhesion of Topographically Patterned Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11929-11937. [PMID: 32903008 PMCID: PMC7558345 DOI: 10.1021/acs.langmuir.0c02005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/14/2020] [Indexed: 06/11/2023]
Abstract
In underwater adhesion of a topographically patterned surface with a very soft material such as human skin, the elastic deformation can be large enough to achieve solid-on-solid contact not only on top of the hills but also in the valleys of the substrate topography. In this context, we have studied the dynamics of dewetting of a thin liquid film confined between a rigid, periodic micropillar array and a soft, elastic sphere. In our experiments, we observed two very distinct dewetting morphologies. For large ratios of array period to micropillar height and width, the dewetted areas tend to have a diamond-like shape and expand with a rate similar to a flat, unpatterned substrate. When the array period is reduced, the morphology of the dry spot becomes irregular and its expansion rate is significantly reduced. We developed a fully coupled numerical model of the dewetting process that reproduces the key features observed in experiments. Moreover, we performed contact mechanics simulations to characterize the deformation of the elastomer and the shape of the dewetted area in a unit cell of the micropillar array.
Collapse
Affiliation(s)
- Maciej Chudak
- Department
of Applied Physics, Eindhoven University
of Technology, 5600MB Eindhoven, The Netherlands
| | - Vaishali Chopra
- INM
- Leibniz Institute for New Materials, Saarbrücken 66123, Germany
| | - René Hensel
- INM
- Leibniz Institute for New Materials, Saarbrücken 66123, Germany
| | - Anton A. Darhuber
- Department
of Applied Physics, Eindhoven University
of Technology, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
26
|
Sandoval JA, Sommers J, Peddireddy KR, Robertson-Anderson RM, Tolley MT, Deheyn DD. Toward Bioinspired Wet Adhesives: Lessons from Assessing Surface Structures of the Suction Disc of Intertidal Clingfish. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45460-45475. [PMID: 32910638 DOI: 10.1021/acsami.0c10749] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The clingfish attaches to rough surfaces with considerable strength using an intricate suction disc, which displays complex surface geometries from structures called papillae. However, the exact role of these structures in adhesion is poorly understood. To investigate the relationship between papillae geometry and adhesive performance, we developed an image processing tool that analyzed the surface and structural complexity of papillae, which we then used to model hydrodynamic adhesion. Our tool allowed for the automated analysis of thousands of papillae in specimens across a range of body sizes. The results led us to identify spatial trends in papillae across the complex geometry of the suction disc and to establish fundamental structure-function relationships used in hydrodynamic adhesion. We found that the surface area of papillae changed within a suction disc and with fish size, but that the aspect ratios and channel width between papillae did not. Using a mathematical model, we found that the surface structures can adhere considerably when subjected to disturbances of moderate to high velocities. We concluded that a predominant role of the papillae is to leverage hydrodynamic adhesion and wet friction to reinforce the seal of the suction disc. Overall, the trends in papillae characteristics provided insights into bioinspired designs of surface microstructures for future applications in which adhesion is necessary to attach to diverse surfaces (in terrestrial or aquatic environments), even when subjected to disturbance forces of randomized directionality.
Collapse
Affiliation(s)
- Jessica A Sandoval
- Materials Science and Engineering Program, Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jade Sommers
- Department of Mechanical Engineering, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, United States
| | - Karthik R Peddireddy
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| | - Rae M Robertson-Anderson
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| | - Michael T Tolley
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Dimitri D Deheyn
- Marine Biology Research Division, Scripps Institution of Oceanography, UC San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|