1
|
Hannebauer A, Krysiak Y, Schaate A. A Method for Determining Incorporation Depth in Core-Shell UiO-66 Nanoparticles Synthesized Via Postsynthetic Exchange. Inorg Chem 2024; 63:11897-11906. [PMID: 38867142 PMCID: PMC11200254 DOI: 10.1021/acs.inorgchem.4c01787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Postsynthetic exchange (PSE) is a key technique for integrating sensitive linkers into metal-organic frameworks (MOFs). Despite its importance, investigations into linker distributions have primarily focused on micrometer-sized crystals due to the analytical limitations, leaving nanoparticles less explored, although they are commonly synthesized and used in applications. In particular, the emergence of core-shell nanostructures via PSE has shown potential for applications in CO2 adsorption and selective catalysis. This study addresses this gap by investigating the formation of core-shell structures on nanoparticles under diffusion-controlled PSE conditions. By analyzing volume-to-surface ratios and conducting time-dependent experiments, we confirmed that these conditions facilitate the development of core-shell architectures. We also developed a straightforward method to calculate the minimum incorporation depth using basic parameters such as particle size and the total amount of incorporated linker. The accuracy of our approach was validated against data obtained from transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy. These findings enhance the understanding of PSE in MOF nanoparticles and open up promising avenues for developing advanced MOF core-shell structures for various applications.
Collapse
Affiliation(s)
- Adrian Hannebauer
- Institute
of Inorganic Chemistry, Leibniz University
Hannover, Callinstraße 9, 30167 Hannover, Germany
| | - Yaşar Krysiak
- Institute
of Inorganic Chemistry, Leibniz University
Hannover, Callinstraße 9, 30167 Hannover, Germany
- Laboratory
of Nano and Quantum Engineering, Leibniz
University Hannover, Schneiderberg 39, 30167 Hannover, Germany
| | - Andreas Schaate
- Institute
of Inorganic Chemistry, Leibniz University
Hannover, Callinstraße 9, 30167 Hannover, Germany
- Cluster
of Excellence PhoenixD (Photonics, Optics and Engineering—Innovation
Across Disciplines), Leibniz University
Hannover, Welfengarten 1A, 30167 Hannover, Germany
| |
Collapse
|
2
|
Mao L, Qian J. Interfacial Engineering of Heterogeneous Reactions for MOF-on-MOF Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308732. [PMID: 38072778 DOI: 10.1002/smll.202308732] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/16/2023] [Indexed: 05/18/2024]
Abstract
Metal-organic frameworks (MOFs), as a subclass of porous crystalline materials with unique structures and multifunctional properties, play a pivotal role in various research domains. In recent years, significant attention has been directed toward composite materials based on MOFs, particularly MOF-on-MOF heterostructures. Compared to individual MOF materials, MOF-on-MOF structures harness the distinctive attributes of two or more different MOFs, enabling synergistic effects and allowing for the tailored design of diverse multilayered architectures to expand their application scope. However, the rational design and facile synthesis of MOF-on-MOF composite materials are in principle challenging due to the structural diversity and the intricate interfaces. Hence, this review primarily focuses on elucidating the factors that influence their interfacial growth, with a specific emphasis on the interfacial engineering of heterogeneous reactions, in which MOF-on-MOF hybrids can be conveniently obtained by using pre-fabricated MOF precursors. These factors are categorized as internal and external elements, encompassing inorganic metals, organic ligands, lattice matching, nucleation kinetics, thermodynamics, etc. Meanwhile, these intriguing MOF-on-MOF materials offer a wide range of advantages in various application fields, such as adsorption, separation, catalysis, and energy-related applications. Finally, this review highlights current complexities and challenges while providing a forward-looking perspective on future research directions.
Collapse
Affiliation(s)
- Lujiao Mao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| |
Collapse
|
3
|
Ko S, Ryu U, Park H, Fracaroli AM, Moon W, Choi KM. Effect of Spatial Heterogeneity on the Unusual Uptake Behavior of Multivariate-Metal-Organic Frameworks. J Am Chem Soc 2023; 145:3101-3107. [PMID: 36710507 DOI: 10.1021/jacs.2c12207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The uniqueness of multivariate metal-organic frameworks (MTV-MOFs) has been widely explored to discover their unknown opportunities. While mesoscopic apportionments have been studied, macroscopic heterogeneity and its spatial effects remain unexplored in MTV-MOFs. In this study, we investigated the effect of macroscopic heterogeneity on MTV-MOFs on their uptake behaviors by comparing three types of MTV-MOFs having the functional groups in inner, outer, or entire parts of crystals. Their adsorption behavior for carbon dioxide (CO2) and water (H2O) brought out that functional groups located in the outer part of the crystals dominantly influence the sorption behavior of MTV-MOFs. These results are also visualized by observing iodine adsorption in the three types of MTV-MOFs using scanning transmission electron microscopy-electron energy loss spectroscopy. We believe that this finding provides new ways to decipher and design MTV-MOFs for their unusual properties.
Collapse
Affiliation(s)
- Soyeon Ko
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - UnJin Ryu
- Industry Collaboration Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Hyunjin Park
- National Institute for Nanomaterials Technology, Pohang University of Science & Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Alejandro M Fracaroli
- Instituto de Investigaciones en Físico-química de Córdoba, INFIQC-CONICET, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - WooYeon Moon
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Kyung Min Choi
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul 04310, Republic of Korea.,Muscle Physiome Research Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
4
|
Boone P, He Y, Lieber AR, Steckel JA, Rosi NL, Hornbostel KM, Wilmer CE. Designing optimal core-shell MOFs for direct air capture. NANOSCALE 2022; 14:16085-16096. [PMID: 36082903 DOI: 10.1039/d2nr03177a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs), along with other novel adsorbents, are frequently proposed as candidate materials to selectively adsorb CO2 for carbon capture processes. However, adsorbents designed to strongly bind CO2 nearly always bind H2O strongly (sometimes even more so). Given that water is present in significant quantities in the inlet streams of most carbon capture processes, a method that avoids H2O competition for the CO2 binding sites would be technologically valuable. In this paper, we consider a novel core-shell MOF design strategy, where a high-CO2-capacity MOF "core" is protected from competitive H2O-binding via a MOF "shell" that has very slow water diffusion. We consider a high-frequency adsorption/desorption cycle that regenerates the adsorbents before water can pass through the shell and enter the core. To identify optimal core-shell MOF pairs, we use a combination of experimental measurements, computational modeling, and multiphysics modeling. Our library of MOFs is created from two starting MOFs-UiO-66 and UiO-67-augmented with 30 possible functional group variations, yielding 1740 possible core-shell MOF pairs. After defining a performance score to rank these pairs, we identified 10 core-shell MOF candidates that significantly outperform any of the MOFs functioning alone.
Collapse
Affiliation(s)
- Paul Boone
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
| | - Yiwen He
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Austin R Lieber
- Department of Mechanical Engineering & Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Janice A Steckel
- United States Department of Energy, National Energy Technology Laboratory, Pittsburgh, PA 15236, USA
| | - Nathaniel L Rosi
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Katherine M Hornbostel
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
- Department of Mechanical Engineering & Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Christopher E Wilmer
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
5
|
Roohollahi H, Zeinalzadeh H, Kazemian H. Recent Advances in Adsorption and Separation of Methane and Carbon Dioxide Greenhouse Gases Using Metal–Organic Framework-Based Composites. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hossein Roohollahi
- Department of Chemical Engineering, Faculty of Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, 7718897111, Iran
| | - Hossein Zeinalzadeh
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
| | - Hossein Kazemian
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
- Northern Analytical Lab Services, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
- Department of Chemistry, Faculty of Science and Engineering, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9, Canada
| |
Collapse
|
6
|
Moreton JC, Low JX, Penticoff KC, Cohen SM, Benz L. An X-ray Photoelectron Spectroscopy Study of Postsynthetic Exchange in UiO-66. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1589-1599. [PMID: 35029998 DOI: 10.1021/acs.langmuir.1c03015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Postsynthetic exchange (PSE) is a method that is widely used to change the composition of metal-organic frameworks (MOFs) by replacing connecting linkers or metal nodes after the framework has been synthesized. However, few techniques can probe the nature and distribution of exchanged species following PSE. Herein, we show that X-ray photoelectron spectroscopy can be used to compare the relative concentrations of exchanged ligands at the surface and interior regions of MOF particles. Specifically, PSE of iodobenzene dicarboxylate ligands results in a gradient distribution from surface to bulk in UiO-66 nanoparticles that depends on PSE time. X-ray photoelectron spectroscopy also reveals differences between the surface chemistry of the PSE product and that of the direct synthesis product.
Collapse
Affiliation(s)
- Jessica C Moreton
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Jin Xiang Low
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, California 92110, United States
| | - Katrina C Penticoff
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, California 92110, United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Lauren Benz
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, California 92110, United States
| |
Collapse
|
7
|
Hong DH, Shim HS, Ha J, Moon HR. MOF‐on‐MOF
Architectures: Applications in Separation, Catalysis, and Sensing. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12335] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Doo Hwan Hong
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Hui Su Shim
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Junsu Ha
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Hoi Ri Moon
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| |
Collapse
|
8
|
Inter-MOF hybrid (IMOFH): A concise analysis on emerging core–shell based hierarchical and multifunctional nanoporous materials. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213786] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Ha J, Moon HR. Synthesis of MOF-on-MOF architectures in the context of interfacial lattice matching. CrystEngComm 2021. [DOI: 10.1039/d0ce01883j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This highlight summarises the previously reported MOF-on-MOF systems, with a focus on the presented crystallographic information and classification of the systems according to lattice parameter matching.
Collapse
Affiliation(s)
- Junsu Ha
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| | - Hoi Ri Moon
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| |
Collapse
|
10
|
Dodson RA, Kalenak AP, Matzger AJ. Solvent Choice in Metal-Organic Framework Linker Exchange Permits Microstructural Control. J Am Chem Soc 2020; 142:20806-20813. [PMID: 33237750 DOI: 10.1021/jacs.0c10224] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Linker exchange is a widely applied, robust technique for elaboration of metal-organic frameworks (MOFs) post-synthesis. The observation of core-shell microstructures under certain conditions was hypothesized to arise from diffusion rates into the MOF that are slower than linker exchange. Here the relative contributions of these processes are manipulated through solvent choice in order to modulate shell thickness and exchange extent. The findings allow tailoring MOF microstructure to application.
Collapse
|