1
|
Ahmadi R, Abnavi A, Hasani A, Ghanbari H, Mohammadzadeh MR, Fawzy M, Kabir F, Adachi MM. Pseudocapacitance-Induced Synaptic Plasticity of Tribo-Phototronic Effect Between Ionic Liquid and 2D MoS 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304988. [PMID: 37939305 DOI: 10.1002/smll.202304988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Contact-induced electrification, commonly referred to as triboelectrification, is the subject of extensive investigation at liquid-solid interfaces due to its wide range of applications in electrochemistry, energy harvesting, and sensors. This study examines the triboelectric between an ionic liquid and 2D MoS2 under light illumination. Notably, when a liquid droplet slides across the MoS2 surface, an increase in the generated current and voltage is observed in the forward direction, while a decrease is observed in the reverse direction. This suggests a memory-like tribo-phototronic effect between ionic liquid and 2D MoS2 . The underlying mechanism behind this tribo-phototronic synaptic plasticity is proposed to be ion adsorption/desorption processes resulting from pseudocapacitive deionization/ionization at the liquid-MoS2 interface. This explanation is supported by the equivalent electrical circuit modeling, contact angle measurements, and electronic band diagrams. Furthermore, the influence of various factors such as velocity, step size, light wavelength and intensity, ion concentration, and bias voltage is thoroughly investigated. The artificial synaptic plasticity arising from this phenomenon exhibits significant synaptic features, including potentiation/inhibition, paired-pulse facilitation/depression, and short-term memory (STM) to long-term memory (LTM) transition. This research opens up promising avenues for the development of synaptic memory systems and intelligent sensing applications based on liquid-solid interfaces.
Collapse
Affiliation(s)
- Ribwar Ahmadi
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Amin Abnavi
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Amirhossein Hasani
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Hamidreza Ghanbari
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Mohammad Reza Mohammadzadeh
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Mirette Fawzy
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Fahmid Kabir
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Michael M Adachi
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
2
|
Ganesan K, Hayagreevan C, Rahul R, Jeevagan AJ, Adinaveen T, Bhuvaneshwari DS, Muthukumar P, Amalraj M. Catalytic hydrolysis of sodium borohydride for hydrogen production using phosphorylated silica particles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21199-21212. [PMID: 36261635 DOI: 10.1007/s11356-022-23672-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Hydrolysis of sodium borohydride (NaBH4) offers substantial applications in the production of hydrogen but requires an inexpensive catalyst. Herein, silica (SP) and phosphorylated silica (SP-PA) are used as a catalyst for the generation of hydrogen from NaBH4 hydrolysis. The catalyst is prepared by sol-gel route synthesis by taking tetraethyl orthosilicate as the precursor of silica whereas phosphoric acid served as the gelation and phosphorylating agent. The prepared catalyst is characterized by FT-IR spectroscopy, XRD, SEM, and EDAX. The hydrogen generation rate at SP-PA particles (762.4 mL min-1 g-1) is higher than that of silica particles (133 mL min-1 g-1 of catalyst). The higher catalytic activity of SP-PA particles might be due to the acidic functionalities that enhance the hydrogen production rate. The kinetic parameters (activation energy and pre-exponential factor) are calculated from the Arrhenius plot and the thermodynamic parameters (enthalpy, entropy, and free energy change) are evaluated using the Erying plot. The calculated activation energy for NaBH4 hydrolysis at SP-PA catalyst is 29.92 kJ.mol-1 suggesting the high catalytic activity of SP-PA particles. The obtained entropy of activation (ΔS‡ = - 97.75 JK-1) suggested the Langmuir-Hinshelwood type associative mechanism for the hydrolysis of NaBH4 at SP-PA particles.
Collapse
Affiliation(s)
- Kottaikalai Ganesan
- Department of Chemistry, Thiagarajar College, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Chelvam Hayagreevan
- Department of Chemistry, Arul Anandar College (Autonomous), Madurai Kamaraj University, Karumathur, Madurai, 625514, Tamil Nadu, India
| | - Ramkumar Rahul
- Department of Chemistry, Arul Anandar College (Autonomous), Madurai Kamaraj University, Karumathur, Madurai, 625514, Tamil Nadu, India
| | - Arockiam John Jeevagan
- Department of Chemistry, Arul Anandar College (Autonomous), Madurai Kamaraj University, Karumathur, Madurai, 625514, Tamil Nadu, India
| | - Thambidurai Adinaveen
- Department of Chemistry, Loyola College (Autonomous), University of Madras, Nungambakkam, Chennai, 600034, Tamil Nadu, India
| | | | - Palanisamy Muthukumar
- Department of Chemistry, Bannari Amman Institute of Technology (Autonomous), Sathyamangalam, 638401, Tamil Nadu, India
| | - Murugan Amalraj
- Department of Chemistry, Arul Anandar College (Autonomous), Madurai Kamaraj University, Karumathur, Madurai, 625514, Tamil Nadu, India.
| |
Collapse
|
3
|
Hasani A, Mohammadzadeh MR, Ghanbari H, Fawzy M, Silva TD, Abnavi A, Ahmadi R, Askar AM, Kabir F, Rajapakse RKND, Adachi MM. Self-Powered, Broadband Photodetector Based on Two-Dimensional Tellurium-Silicon Heterojunction. ACS OMEGA 2022; 7:48383-48390. [PMID: 36591213 PMCID: PMC9798498 DOI: 10.1021/acsomega.2c06589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/01/2022] [Indexed: 06/06/2023]
Abstract
As a new class of two-dimensional (2D) materials and a group-VI chalcogen, tellurium (Te) has emerged as a p-type semiconductor with high carrier mobility. Potential applications include high-speed opto-electronic devices for communication. One method to enhance the performance of 2D material-based photodetectors is by integration with a IV group of semiconductors such as silicon (Si). In this work, we demonstrate a self-powered, high-speed, broadband photodetector based on the 2D Te/n-type Si heterojunction. The fabricated Te/n-type Si heterojunction exhibits high performance in the UV-vis-NIR light with a high responsivity of up to ∼250 mA/W and a photocurrent-to-dark current ratio (I on/I off) of ∼106, fast response time of 8.6 μs, and superior repeatability and stability. The results show that the fabricated Te/n-type Si heterojunction photodetector has a strong potential to be utilized in ultrafast, broadband, and efficient photodetection applications.
Collapse
Affiliation(s)
- Amirhossein Hasani
- School
of Engineering Science, Simon Fraser University, BurnabyV5A 1S6, British Columbia, Canada
| | | | - Hamidreza Ghanbari
- School
of Engineering Science, Simon Fraser University, BurnabyV5A 1S6, British Columbia, Canada
| | - Mirette Fawzy
- Department
of Physics, Simon Fraser University, BurnabyV5A 1S6, British Columbia, Canada
| | - Thushani De Silva
- School
of Engineering Science, Simon Fraser University, BurnabyV5A 1S6, British Columbia, Canada
| | - Amin Abnavi
- School
of Engineering Science, Simon Fraser University, BurnabyV5A 1S6, British Columbia, Canada
| | - Ribwar Ahmadi
- School
of Engineering Science, Simon Fraser University, BurnabyV5A 1S6, British Columbia, Canada
| | - Abdelrahman M. Askar
- School
of Engineering Science, Simon Fraser University, BurnabyV5A 1S6, British Columbia, Canada
| | - Fahmid Kabir
- School
of Engineering Science, Simon Fraser University, BurnabyV5A 1S6, British Columbia, Canada
| | - R. K. N. D. Rajapakse
- School
of Engineering Science, Simon Fraser University, BurnabyV5A 1S6, British Columbia, Canada
| | - Michael M. Adachi
- School
of Engineering Science, Simon Fraser University, BurnabyV5A 1S6, British Columbia, Canada
| |
Collapse
|
4
|
Abd-Alrahman AS, A.Ismail R, Mohammed MA. Preparation of Nanostructured HgI2 Nanotubes/Si Photodetector by Laser Ablation in Liquid. SILICON 2022; 14:8397-8407. [DOI: 10.1007/s12633-021-01609-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/10/2021] [Indexed: 09/02/2023]
|
5
|
Wang B, Chen M, Lv J, Xu G, Shu X, Wu YC. Improved hydrogen evolution with SnS 2 quantum dot-incorporated black Si photocathode. Dalton Trans 2021; 50:13329-13336. [PMID: 34608916 DOI: 10.1039/d1dt02048j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Black silicon (bSi), possessing appealing light-trapping properties and large specific surface area, ranks high among many other photocathode materials. However, the insufficient dynamics towards HER seriously bother black Si. Herein, a novel photoelectrode with ultrasmall size tin sulfide quantum dot (SnS2 QD) incorporated black silicon was employed. Nanosized SnS2 possesses numerous active sites for electrochemical reactions. Impressively, benefiting from SnS2 QDs, the downward band bending of the Si Fermi level at the interface of electrolyte becomes higher, which remarkably suppresses the recombination of photo-generated carriers, thereby facilitating the participation of photo-generated electrons in PEC-HER. As a result, the thus-designed SnS2/bSi reveals an exceptional PEC-HER activity with a positive onset potential of 0.235 V vs. reversible hydrogen electrode (RHE), a high photocurrent of 1.23 mA cm-2 at 0 V vs. RHE, and long-term stability. Besides, the saturated photocurrent of ∼41 mA cm-2 is achieved at about -0.51 V vs. RHE.
Collapse
Affiliation(s)
- Bo Wang
- School of Materials Science and Engineering, Hefei University of Technology, No. 193, Tunxi Road, Baohe District, Hefei, 230009, PR China.
| | - Ming Chen
- School of Materials Science and Engineering, Hefei University of Technology, No. 193, Tunxi Road, Baohe District, Hefei, 230009, PR China.
| | - Jun Lv
- School of Materials Science and Engineering, Hefei University of Technology, No. 193, Tunxi Road, Baohe District, Hefei, 230009, PR China. .,Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, No. 193, Tunxi Road, Baohe District, Hefei, 230009, PR China
| | - Guangqing Xu
- School of Materials Science and Engineering, Hefei University of Technology, No. 193, Tunxi Road, Baohe District, Hefei, 230009, PR China. .,Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, No. 193, Tunxi Road, Baohe District, Hefei, 230009, PR China
| | - Xia Shu
- School of Materials Science and Engineering, Hefei University of Technology, No. 193, Tunxi Road, Baohe District, Hefei, 230009, PR China. .,Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, No. 193, Tunxi Road, Baohe District, Hefei, 230009, PR China
| | - Yu-Cheng Wu
- School of Materials Science and Engineering, Hefei University of Technology, No. 193, Tunxi Road, Baohe District, Hefei, 230009, PR China. .,Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, No. 193, Tunxi Road, Baohe District, Hefei, 230009, PR China
| |
Collapse
|
6
|
Abnavi A, Ahmadi R, Hasani A, Fawzy M, Mohammadzadeh MR, De Silva T, Yu N, Adachi MM. Free-Standing Multilayer Molybdenum Disulfide Memristor for Brain-Inspired Neuromorphic Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45843-45853. [PMID: 34542262 DOI: 10.1021/acsami.1c11359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, atomically thin two-dimensional (2D) transition-metal dichalcogenides (TMDs) have attracted great interest in electronic and opto-electronic devices for high-integration-density applications such as data storage due to their small vertical dimension and high data storage capability. Here, we report a memristor based on free-standing multilayer molybdenum disulfide (MoS2) with a high current on/off ratio of ∼103 and a stable retention for at least 3000 s. Through light modulation of the carrier density in the suspended MoS2 channel, the on/off ratio can be further increased to ∼105. Moreover, the essential photosynaptic functions with short- and long-term memory (STM and LTM) behaviors are successfully mimicked by such devices. These results also indicate that STM can be transferred to LTM by increasing the light stimuli power, pulse duration, and number of pulses. The electrical measurements performed under vacuum and ambient air conditions propose that the observed resistive switching is due to adsorbed oxygen and water molecules on both sides of the MoS2 channel. Thus, our free-standing 2D multilayer MoS2-based memristors propose a simple approach for fabrication of a low-power-consumption and reliable resistive switching device for neuromorphic applications.
Collapse
Affiliation(s)
- Amin Abnavi
- School of Engineering Science, Simon Fraser University, Burnaby V5A 1S6, British Columbia, Canada
| | - Ribwar Ahmadi
- School of Engineering Science, Simon Fraser University, Burnaby V5A 1S6, British Columbia, Canada
| | - Amirhossein Hasani
- School of Engineering Science, Simon Fraser University, Burnaby V5A 1S6, British Columbia, Canada
| | - Mirette Fawzy
- Department of Physics, Simon Fraser University, Burnaby V5A 1S6, British Columbia, Canada
| | | | - Thushani De Silva
- School of Engineering Science, Simon Fraser University, Burnaby V5A 1S6, British Columbia, Canada
| | - Niannian Yu
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Michael M Adachi
- School of Engineering Science, Simon Fraser University, Burnaby V5A 1S6, British Columbia, Canada
| |
Collapse
|
7
|
Li F, Yuan Y, Feng X, Liu J, Chen S, Lin Y, Sun Y, Chen H, Zhao L, Song X, Zhang P, Gao L. Coating of Phosphide Catalysts on p-Silicon by a Necking Strategy for Improved Photoelectrochemical Characteristics in Alkaline Media. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20185-20193. [PMID: 33878873 DOI: 10.1021/acsami.1c03620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The methodology of coating electrocatalysts on semiconductor substrates is critical for the catalytic performance of photoelectrochemical electrodes. A weakly bound coating leads to orders of magnitude lower efficiency and reliability compared to those required to meet the commercial demand. Herein, a facile strategy based on the hydrolysis of TiCl4 is developed to solve the coating issue. Mesoporous tungsten phosphide (WP) particles were spin-coated and affixed onto TiO2-protected planar p-Si by the formation of a TiO2 necking layer between the catalyst particles and the substrates. Under 1 sun illumination, the as-prepared WP/TiO2/Si photocathode yields a saturated current density of -35 mA cm-2 and a durability of over 110 h with a current density over -15 mA cm-2 at 0 V versus a reversible hydrogen electrode in a 1.0 M KOH solution, which is among the state-of-the-art performances of commercial planar Si-based photocathodes. The Kelvin probe force microscopy results suggest the successive transfer of photoelectrons from Si to TiO2 and WP. The as-formed TiO2 necking layer plays the key role in ensuring the surface catalytic activity and durability. This necking strategy is also applicable for coating other transition-metal phosphides, for example, MoP and FeP, thus offering a practical approach to meet the commercial requirement of low-cost, highly efficient, and durable photoelectrodes.
Collapse
Affiliation(s)
- Feng Li
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanqi Yuan
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaoqian Feng
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou, Liaoning 121001, China
| | - Jing Liu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Sheng Chen
- Shanghai Huali Intergrated Circuit Corporation, No. 6 Liang Teng Road, Pudong New District, Shanghai 201314, China
| | - Yue Lin
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Yanting Sun
- Department of Applied Physics, KTH-Royal Institute of Technology, Hannes Alfvéns väg 12, 11419 Stockholm, Sweden
| | - Han Chen
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Liping Zhao
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xuefeng Song
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Peng Zhang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lian Gao
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
8
|
|
9
|
Nguyen TP, Tran QB, Ly QV, Thanh Hai L, Le DT, Tran MB, Ho TTT, Nguyen XC, Shokouhimehr M, Vo DVN, Lam SS, Do HT, Kim SY, Van Tung T, Van Le Q. Enhanced visible photocatalytic degradation of diclofen over N-doped TiO2 assisted with H2O2: A kinetic and pathway study. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.05.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
10
|
Pichaimuthu K, Chen CJ, Chen CH, Chen YT, Su C, Wei DH, Liu RS. Boosting Solar Hydrogen Production of Molybdenum Tungsten Sulfide-Modified Si Micropyramids by Introducing Phosphate. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41515-41526. [PMID: 32799525 DOI: 10.1021/acsami.0c11538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Si is regarded as a promising photocathode material for solar hydrogen evolution reaction (HER) because of its small band gap and highly negative conduction band edge. However, bare Si electrodes have high overpotential because of sluggish HER kinetics on the surface. In this study, molybdenum tungsten sulfide (MoS2-WS2) was decorated on Si photocathodes as the co-catalyst to accelerate HER kinetics. The catalytic performance of MoS2-WS2 was further enhanced by introducing phosphate materials. Phosphate-modified molybdenum tungsten sulfide (PO-MoWS) was deposited on Si photoabsorbers to provide an optimal current of -15.0 mA cm-2 at 0 V. Joint characterizations of X-ray photoelectron and X-ray absorption spectroscopies demonstrated that the phosphate material dominantly coordinated with the WS2 component in PO-MoWS. Moreover, this phosphate material induced a large number of sulfur vacancies in the PO-MoWS/Si electrodes that contributed to the ideal catalytic activity. Herein, TiO2 thin films were prepared as the protective layer to improve the stability of photocathodes. The PO-MoWS/2 nm TiO2/Si electrode maintained 83.8% of the initial photocurrent after chronoamperometric measurement was performed for 8000 s.
Collapse
Affiliation(s)
- Karthika Pichaimuthu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Organic and Polymeric Materials, Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Chih-Jung Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chia-Hsien Chen
- Department of Mechanical Engineering and Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Yung-Tao Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chaochin Su
- Institute of Organic and Polymeric Materials, Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Da-Hua Wei
- Department of Mechanical Engineering and Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
11
|
Ghosh D, Roy K, Sarkar K, Devi P, Kumar P. Surface Plasmon-Enhanced Carbon Dot-Embellished Multifaceted Si(111) Nanoheterostructure for Photoelectrochemical Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28792-28800. [PMID: 32441503 DOI: 10.1021/acsami.0c05591] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Because of the excellent electronic properties, Si is a well-established semiconducting material for PV technology. However, slow kinetics and a fast corroding nature make Si inefficient for the hydrogen evolution reaction (HER) in photoelectrochemical (PEC) applications. Herein, we demonstrate a multifacet Si nanowire (SiNW) decorated with surface plasmon-enhanced carbon quantum dots (AuCQDs) as efficient, stable, economical, and scalable photocathodes (PCs) for HER. The PEC performance of SiNW_AuCQDs has more than a fourfold efficiency enhancement than the pristine SiNW, which we have attributed to the combined effect of enhanced solar absorption and efficient carrier transport. The optimized PC SiNW_AuCQDs results in the highest photocurrent ∼1.7 mA/cm2, an applied bias photon-to-current conversion efficiency of ∼0.8%, and H2 gas evolution rate of ∼182.93 μmol·h-1. Furthermore, these SiNW_AuCQDs PCs provide extraordinary stability under continuous operating conditions with 1 sun illumination (100 mW/cm2). The process-line compatible fabrication process of these PCs will open a new direction at the wafer-level designing of a heterostructure for large-scale solar-fuel conversion.
Collapse
Affiliation(s)
- Dibyendu Ghosh
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Krishnendu Roy
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - K Sarkar
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Pooja Devi
- Central Scientific Instruments Organization, Sector-30C, Chandigarh 160030, India
| | - Praveen Kumar
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
12
|
Nguyen TP, Tuan Nguyen DM, Tran DL, Le HK, Vo DVN, Lam SS, Varma RS, Shokouhimehr M, Nguyen CC, Le QV. MXenes: Applications in electrocatalytic, photocatalytic hydrogen evolution reaction and CO2 reduction. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110850] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Nguyen VH, Nguyen BS, Hu C, Nguyen CC, Nguyen DLT, Nguyen Dinh MT, Vo DVN, Trinh QT, Shokouhimehr M, Hasani A, Kim SY, Le QV. Novel Architecture Titanium Carbide (Ti 3C 2T x) MXene Cocatalysts toward Photocatalytic Hydrogen Production: A Mini-Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E602. [PMID: 32218204 PMCID: PMC7221605 DOI: 10.3390/nano10040602] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022]
Abstract
Low dimensional transition metal carbide and nitride (MXenes) have been emerging as frontier materials for energy storage and conversion. Ti3C2Tx was the first MXenes that discovered and soon become the most widely investigated among the MXenes family. Interestingly, Ti3C2Tx exhibits ultrahigh catalytic activity towards the hydrogen evolution reaction. In addition, Ti3C2Tx is electronically conductive, and its optical bandgap is tunable in the visible region, making it become one of the most promising candidates for the photocatalytic hydrogen evolution reaction (HER). In this review, we provide comprehensive strategies for the utilization of Ti3C2Tx as a catalyst for improving solar-driven HER, including surface functional groups engineering, structural modification, and cocatalyst coupling. In addition, the reaming obstacle for using these materials in a practical system is evaluated. Finally, the direction for the future development of these materials featuring high photocatalytic activity toward HER is discussed.
Collapse
Affiliation(s)
- Van-Huy Nguyen
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Ba-Son Nguyen
- Key Laboratory of Advanced Materials for Energy and Environmental Applications, Lac Hong University, Bien Hoa 810000, Vietnam;
| | - Chechia Hu
- Department of Chemical Engineering, R&D center for Membrane Technology and Research Center for Circular Economy, Chung Yuan Christian University, Chungli Dist., Taoyuan City 32023, Taiwan;
| | - Chinh Chien Nguyen
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam; (C.C.N.); (D.L.T.N.)
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
| | - Dang Le Tri Nguyen
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam; (C.C.N.); (D.L.T.N.)
| | - Minh Tuan Nguyen Dinh
- Faculty of Chemical Engineering, University of Science and Technology, The University of Da Nang, 54 Nguyen Luong Bang, Da Nang 550000, Vietnam;
| | - Dai-Viet N. Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam;
| | - Quang Thang Trinh
- Cambridge Centre for Advanced Research and Education in Singapore (CARES), Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore;
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea;
| | - Amirhossein Hasani
- School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul 06974, Korea;
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam; (C.C.N.); (D.L.T.N.)
| |
Collapse
|