1
|
Rana MM, De la Hoz Siegler H. Evolution of Hybrid Hydrogels: Next-Generation Biomaterials for Drug Delivery and Tissue Engineering. Gels 2024; 10:216. [PMID: 38667635 PMCID: PMC11049329 DOI: 10.3390/gels10040216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Hydrogels, being hydrophilic polymer networks capable of absorbing and retaining aqueous fluids, hold significant promise in biomedical applications owing to their high water content, permeability, and structural similarity to the extracellular matrix. Recent chemical advancements have bolstered their versatility, facilitating the integration of the molecules guiding cellular activities and enabling their controlled activation under time constraints. However, conventional synthetic hydrogels suffer from inherent weaknesses such as heterogeneity and network imperfections, which adversely affect their mechanical properties, diffusion rates, and biological activity. In response to these challenges, hybrid hydrogels have emerged, aiming to enhance their strength, drug release efficiency, and therapeutic effectiveness. These hybrid hydrogels, featuring improved formulations, are tailored for controlled drug release and tissue regeneration across both soft and hard tissues. The scientific community has increasingly recognized the versatile characteristics of hybrid hydrogels, particularly in the biomedical sector. This comprehensive review delves into recent advancements in hybrid hydrogel systems, covering the diverse types, modification strategies, and the integration of nano/microstructures. The discussion includes innovative fabrication techniques such as click reactions, 3D printing, and photopatterning alongside the elucidation of the release mechanisms of bioactive molecules. By addressing challenges, the review underscores diverse biomedical applications and envisages a promising future for hybrid hydrogels across various domains in the biomedical field.
Collapse
Affiliation(s)
- Md Mohosin Rana
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada;
- Centre for Blood Research, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hector De la Hoz Siegler
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
2
|
Deng W, Li X, Li Y, Huang Z, Wang Y, Mu N, Wang J, Chen T, Pu X, Yin G, Feng H. Graphene oxide-doped chiral dextro-hydrogel promotes peripheral nerve repair through M2 polarization of macrophages. Colloids Surf B Biointerfaces 2024; 233:113632. [PMID: 37979485 DOI: 10.1016/j.colsurfb.2023.113632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/25/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023]
Abstract
Dextro-chirality is reported to specifically promote the proliferation and survival of neural cells. However, applying this unique performance to nerve repair remains a great challenge. Graphite oxide (GO)-phenylalanine derivative hydrogel system was constructed through doping 5% GO into self-assembly dextro- or levo-hydrogels (named as dextro and levo group, respectively), which exhibited identical physical and chemical properties, cyto-compatibility, and mirror-symmetrical chirality. In vivo experiments using rat sciatic nerve repair models showed that the functional recovery and histological restoration of regenerating nerves in the dextro group were significantly improved, approaching that of autograft implantation. The doped GO promoted M2 polarization of macrophages, increasing the expression of platelet-derived growth factor BB chain and vascular endothelial growth factor, thereby improving angiogenesis in regenerating nerves. A mechanism is proposed for the facilitated nerve repair through the synergistic effect of GO and dextro-hydrogel, involving dextro-chirality selection of neural cells and GO-induced M2 polarization, which promotes microvascular regeneration and myelination. This study showcases the immense potential of chirality in addressing neurological issues by providing a compelling demonstration of the development of effective therapies that leverage the unique matrix chirality selection of nerve cells to promote peripheral nerve regeneration.
Collapse
Affiliation(s)
- Weiping Deng
- College of Biomedical Engineering, Sichuan University, No. 24, South 1st Section, 1st Ring Road, Chengdu 610065, China
| | - Xiaohui Li
- College of Biomedical Engineering, Sichuan University, No. 24, South 1st Section, 1st Ring Road, Chengdu 610065, China
| | - Ya Li
- College of Biomedical Engineering, Sichuan University, No. 24, South 1st Section, 1st Ring Road, Chengdu 610065, China
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, No. 24, South 1st Section, 1st Ring Road, Chengdu 610065, China.
| | - Yulin Wang
- College of Biomedical Engineering, Sichuan University, No. 24, South 1st Section, 1st Ring Road, Chengdu 610065, China
| | - Ning Mu
- College of Biomedical Engineering, Sichuan University, No. 24, South 1st Section, 1st Ring Road, Chengdu 610065, China; Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), No. 29, Gaotanyanzheng Street, Shapingba District, Chongqing 400038, China
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, No. 24, South 1st Section, 1st Ring Road, Chengdu 610065, China
| | - Tunan Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), No. 29, Gaotanyanzheng Street, Shapingba District, Chongqing 400038, China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, No. 24, South 1st Section, 1st Ring Road, Chengdu 610065, China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, No. 24, South 1st Section, 1st Ring Road, Chengdu 610065, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), No. 29, Gaotanyanzheng Street, Shapingba District, Chongqing 400038, China
| |
Collapse
|
3
|
Wang X, Feng C. Chiral fiber supramolecular hydrogels for tissue engineering. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1847. [PMID: 36003042 DOI: 10.1002/wnan.1847] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/29/2022] [Accepted: 07/28/2022] [Indexed: 11/11/2022]
Abstract
Tissue engineering (TE), as a new interdisciplinary discipline, aims to develop biological substitutes for repairing damaged tissues and organs. For the success of tissue regeneration, such biomaterials need to support the physiological activities of cells and allow the growth and maturation of tissues. Naturally, this regulation is achieved through the dynamic remodeling of the extracellular matrix (ECM) of cells. In recent years, chiral supramolecular hydrogels have shown higher application potential in the TE field than traditional polymer hydrogels due to their dynamic noncovalent interactions, adjustable self-assembly structure, and good biocompatibility. These advantages make it possible to construct hydrogels under physiological conditions with structure and function similar to those of the natural ECM. Meanwhile, the chiral characteristics of hydrogels play an important role in regulating cellular activities such as differentiation, adhesion, and proliferation, which is beneficial for tissue formation. In this review, a brief introduction is presented to highlight the importance of chiral fiber supramolecular hydrogels for TE at first. Afterward, the considerations for chiral supramolecular hydrogel design, as well as the influence of external stimuli on chiral hydrogel construction, are discussed. Finally, the potential application prospects of these materials in TE and the significant contribution made by our group in this field are summarized. This review not only helps to reveal the importance of chiral properties in TE but also provides new strategies for TE research based on chiral bionic microenvironments. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Biology-Inspired Nanomaterials > Peptide-Based Structures Nanotechnology Approaches to Biology > Cells at the Nanoscale Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Xueqian Wang
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Baddi S, Dang-i AY, Huang T, Xing C, Lin S, Feng CL. Chirality-influenced antibacterial activity of methylthiazole- and thiadiazole-based supramolecular biocompatible hydrogels. Acta Biomater 2022; 141:59-69. [PMID: 35063710 DOI: 10.1016/j.actbio.2022.01.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/30/2021] [Accepted: 01/14/2022] [Indexed: 12/14/2022]
Abstract
Chiral stereochemistry is a unique and fundamental strategy that determines the interaction of bacteria cells with chiral biomolecules and stereochemical surfaces. The interaction between bacteria and material surface (molecular chirality or supramolecular chirality) plays a significant role in modulating antibacterial performance. Herein, we developed inherent chiral antibacterial hydrogels by modifying the carboxyl groups of our previously reported supramolecular gelator (LPF-left handed phenylalanine gelator and DPF- right handed phenylalanine gelator) with 2-amino-5-methylthiazole (MTZ) and 5-amino-1,3,4-thiadiazole-2- thiol (TDZ). The new L/D-gelator molecules initiate self-assembly to form hydrogels through non-covalent interactions (Hydrogen bonding and π-π interactions) verified by FTIR and CD spectroscopy. Morphological studies of the xerogels revealed left and right-handed chiral nanofibers for the gelators' L-form and D-form, respectively. The resulting hydrogels exhibited inherent antibacterial activity against Gram-positive (Bacillus subtilis, Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria, with TDZ hydrogels showing more significant antibacterial activity than MTZ hydrogels. Interestingly, the D-form (having right-handed nanofibers) of both hydrogels (MTZ and TDZ) exhibited higher antibacterial activities compared with the left-handed nanofibrous hydrogels (L-form) attributed to the stereoselective interaction of the chiral helical nanofiber. Moreover, the amplification of chirality moving from a molecular to a supramolecular level essentially improved the antibacterial action. Our results provide deep insight into the development of unique supramolecular chiral antimicrobial agents and hint at the potentiality of right-handed nanofibers (D-form) having enhanced antibacterial activity. STATEMENT OF SIGNIFICANCE: Chiral stereochemistry plays a significant role in many biological processes, which determines the interaction of bacteria cells with chiral biomolecules. The interaction between bacteria and material surface (molecular chirality or supramolecular chirality) plays a significant role in modulating antibacterial performance. Here, we deigned and synthesized unique inherent biocompatible supramolecular chiral hydrogel. From this study we concluded that the D-form (having right-handed nanofibers) of hydrogels exhibited higher antibacterial activities compared with the left-handed nanofibrous hydrogels (L-form) attributed to the stereoselective interaction of the chiral helical nanofiber. Additionally, this study also explored the amplification of chirality moving from a molecular to a supramolecular level essentially improved the antibacterial action.
Collapse
|
5
|
Hafezi M, Nouri Khorasani S, Zare M, Esmaeely Neisiany R, Davoodi P. Advanced Hydrogels for Cartilage Tissue Engineering: Recent Progress and Future Directions. Polymers (Basel) 2021; 13:4199. [PMID: 34883702 PMCID: PMC8659862 DOI: 10.3390/polym13234199] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
Cartilage is a tension- and load-bearing tissue and has a limited capacity for intrinsic self-healing. While microfracture and arthroplasty are the conventional methods for cartilage repair, these methods are unable to completely heal the damaged tissue. The need to overcome the restrictions of these therapies for cartilage regeneration has expanded the field of cartilage tissue engineering (CTE), in which novel engineering and biological approaches are introduced to accelerate the development of new biomimetic cartilage to replace the injured tissue. Until now, a wide range of hydrogels and cell sources have been employed for CTE to either recapitulate microenvironmental cues during a new tissue growth or to compel the recovery of cartilaginous structures via manipulating biochemical and biomechanical properties of the original tissue. Towards modifying current cartilage treatments, advanced hydrogels have been designed and synthesized in recent years to improve network crosslinking and self-recovery of implanted scaffolds after damage in vivo. This review focused on the recent advances in CTE, especially self-healing hydrogels. The article firstly presents the cartilage tissue, its defects, and treatments. Subsequently, introduces CTE and summarizes the polymeric hydrogels and their advances. Furthermore, characterizations, the advantages, and disadvantages of advanced hydrogels such as multi-materials, IPNs, nanomaterials, and supramolecular are discussed. Afterward, the self-healing hydrogels in CTE, mechanisms, and the physical and chemical methods for the synthesis of such hydrogels for improving the reformation of CTE are introduced. The article then briefly describes the fabrication methods in CTE. Finally, this review presents a conclusion of prevalent challenges and future outlooks for self-healing hydrogels in CTE applications.
Collapse
Affiliation(s)
- Mahshid Hafezi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Saied Nouri Khorasani
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Mohadeseh Zare
- School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, UK;
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar 96179-76487, Iran;
| | - Pooya Davoodi
- School of Pharmacy and Bioengineering, Hornbeam Building, Keele University, Staffordshire ST5 5BG, UK
- Guy Hilton Research Centre, Institute of Science and Technology in Medicine, Keele University, Staffordshire ST4 7QB, UK
| |
Collapse
|
6
|
Ng JY, Zhu X, Mukherjee D, Zhang C, Hong S, Kumar Y, Gokhale R, Ee PLR. Pristine Gellan Gum-Collagen Interpenetrating Network Hydrogels as Mechanically Enhanced Anti-inflammatory Biologic Wound Dressings for Burn Wound Therapy. ACS APPLIED BIO MATERIALS 2021; 4:1470-1482. [PMID: 35014496 DOI: 10.1021/acsabm.0c01363] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gellan gum is a biologically inert natural polymer that is increasingly favored as a material-of-choice to form biorelevant hydrogels. However, as a burn wound dressing, native gellan gum hydrogels do not drive host's biology toward regeneration and are mechanically inadequate wound barriers. To overcome these issues, we fabricateda gellan gum-collagen full interpenetrating network (full-IPN) hydrogel that can house adipose-derived mesenchymal stem cells (ADSCs) and employ their multilineage differentiation potential and produce wound-healing paracrine factors to reduce inflammation and promote burn wound regeneration. Herein, a robust temperature-dependent simultaneous IPN (SIN) hydrogel fabrication process was demonstrated using applied rheology for the first time. Subsequently after fabrication, mechanical characterization assays showed that the IPN hydrogels were easy to handle without deforming and retained sufficient mass to effect ADSCs' anti-inflammation property in a simulated wound environment. The IPN hydrogels' increased stiffness proved conducive for mechanotransduced cell adhesion. Scanning electron microscopy revealed theIPN's porous network, which enabled encapsulated ADSCs to spread and proliferate, for up to 3 weeks of culture, further shown by cells' dynamic filopodia extension observed in 3D confocal images. Successful incorporation of ADSCs accorded the IPN hydrogels with biologic wound-dressing properties, which possess the ability to promote human dermal fibroblast migration and secrete an anti-inflammatory paracrine factor, TSG-6 protein, as demonstrated in the 2D scratch wound assay and ELISA, respectively. More importantly, upon application onto murine full thickness burn wounds, our biologic wound dressing enhanced early wound closure, reduced inflammation, and promoted complete skin regeneration. Altogether, our results highlight the successful mechanical and biological enhancement of the inert matrix of gellan gum. Through completely natural procedures, a highly applicable biologic wound dressing is introduced for cell-based full thickness burn wound therapy.
Collapse
Affiliation(s)
- Jian Yao Ng
- Department of Pharmacy, Faculty of Science, National University of Singapore, 5 Science Drive 2, 117545, Singapore
| | - Xiao Zhu
- Department of Pharmacy, Faculty of Science, National University of Singapore, 5 Science Drive 2, 117545, Singapore
| | - Devika Mukherjee
- Department of Pharmacy, Faculty of Science, National University of Singapore, 5 Science Drive 2, 117545, Singapore
| | - Chi Zhang
- Roquette Singapore Innovation Center, Helios, 11 Biopolis Way, #05-06, 138667, Singapore
| | - Shiqi Hong
- Roquette Singapore Innovation Center, Helios, 11 Biopolis Way, #05-06, 138667, Singapore
| | - Yogesh Kumar
- Roquette Singapore Innovation Center, Helios, 11 Biopolis Way, #05-06, 138667, Singapore
| | - Rajeev Gokhale
- Roquette Singapore Innovation Center, Helios, 11 Biopolis Way, #05-06, 138667, Singapore
| | - Pui Lai Rachel Ee
- Department of Pharmacy, Faculty of Science, National University of Singapore, 5 Science Drive 2, 117545, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, 21 Lower Kent Ridge Road, 119077, Singapore
| |
Collapse
|
7
|
Lyu Y, Azevedo HS. Supramolecular Hydrogels for Protein Delivery in Tissue Engineering. Molecules 2021; 26:873. [PMID: 33562215 PMCID: PMC7914635 DOI: 10.3390/molecules26040873] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/20/2022] Open
Abstract
Therapeutic proteins, such as growth factors (GFs), have been used in tissue engineering (TE) approaches for their ability to provide signals to cells and orchestrate the formation of functional tissue. However, to be effective and minimize off-target effects, GFs should be delivered at the target site with temporal control. In addition, protein drugs are typically sensitive water soluble macromolecules with delicate structure. As such, hydrogels, containing large amounts of water, provide a compatible environment for the direct incorporation of proteins within the hydrogel network, while their release rate can be tuned by engineering the network chemistry and density. Being formed by transient crosslinks, afforded by non-covalent interactions, supramolecular hydrogels offer important advantages for protein delivery applications. This review describes various types of supramolecular hydrogels using a repertoire of diverse building blocks, their use for protein delivery and their further application in TE contexts. By reviewing the recent literature on this topic, the merits of supramolecular hydrogels are highlighted as well as their limitations, with high expectations for new advances they will provide for TE in the near future.
Collapse
Affiliation(s)
| | - Helena S. Azevedo
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, Mile End Road, London E1 4NS, UK;
| |
Collapse
|
8
|
He X, Zhu B, Xie W, He Y, Song J, Zhang Y, Sun C, Li H, Tang Q, Sun X, Tan Y, Liu Y. Amelioration of imiquimod-induced psoriasis-like dermatitis in mice by DSW therapy inspired hydrogel. Bioact Mater 2021; 6:299-311. [PMID: 32954049 PMCID: PMC7471623 DOI: 10.1016/j.bioactmat.2020.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/13/2020] [Accepted: 08/11/2020] [Indexed: 12/31/2022] Open
Abstract
Psoriasis is a long-lasting and recurrent autoimmune disease which is incurable so far. Dead Sea water (DSW) therapy is an effective approach to help control the symptoms of psoriasis due to the abundant mineral ions in DSW, which inspired the material formulation in this study. Rubidium-Sodium alginate/Polyacrylamide hydrogels (Rb-SA/PAAm gels) composed of sodium alginate and polyacrylamide interpenetrating network structure with different concentrations of rubidium and certain magnesium and zinc content were prepared for the treatment of psoriasis. The obtained results suggest the good mechanical properties of the Rb-SA/PAAm gels including toughness and swelling performance. In terms of in vitro tests, the Rb-SA/PAAm gels not only show nontoxicity to human keratinocyte cell line (Hacats) but also inhibits the activity against inflammatory NF-κβ signaling pathway. Meanwhile, they can release Rb+ which enable the Rb-SA/PAAm gels have better antibacterial ability to Streptococcus and Escherichia coli. The results obtained from in vivo tests indicate that these hydrogels could alleviate the symptoms of psoriasis caused by Imiquimod (IMQ) in mice by reducing the inflammatory factor in STAT3 pathway and therefore reduce the immune stimulation of the spleen. In conclusion, the 100Rb-SA/PAAm gel has demonstrated great potential to be a topical wettable dressing for psoriasis treatment.
Collapse
Affiliation(s)
- Xiang He
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Bing Zhu
- School of Materials Science and Engineering, Central South University, Changsha, 410083, China
| | - WeiJia Xie
- Xiangya School of Medicine, Central South University, Changsha, 410083, China
| | - Yu He
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Jian Song
- Department of Mechanical Engineering, Munich School of Bioengineering, Technical University of Munich, 85748, Garching, Germany
| | - Yi Zhang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Chi Sun
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Hao Li
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - QiYu Tang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410083, China
| | - XinXin Sun
- A. James Clark School of Engineering, University of Maryland, College Park, 20742, MD, United States
| | - Yanni Tan
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Yong Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| |
Collapse
|
9
|
Xiong Y, Zhang X, Ma X, Wang W, Yan F, Zhao X, Chu X, Xu W, Sun C. A review of the properties and applications of bioadhesive hydrogels. Polym Chem 2021. [DOI: 10.1039/d1py00282a] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Due to their outstanding properties, bioadhesive hydrogels have been extensively studied by researchers in recent years.
Collapse
Affiliation(s)
- Yingshuo Xiong
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xiaoran Zhang
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xintao Ma
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Wenqi Wang
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Feiyan Yan
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xiaohan Zhao
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xiaoxiao Chu
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Wenlong Xu
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Changmei Sun
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| |
Collapse
|
10
|
Yang B, Song J, Jiang Y, Li M, Wei J, Qin J, Peng W, López Lasaosa F, He Y, Mao H, Yang J, Gu Z. Injectable Adhesive Self-Healing Multicross-Linked Double-Network Hydrogel Facilitates Full-Thickness Skin Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57782-57797. [PMID: 33336572 DOI: 10.1021/acsami.0c18948] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of natural polymer-based hydrogels, combining outstanding injectability, self-healing, and tissue adhesion, with mechanical performance, able to facilitate full-thickness skin wound healing, remains challenging. We have developed an injectable micellar hydrogel (AF127/HA-ADH/OHA-Dop) with outstanding adhesive and self-healing properties able to accelerate full-thickness skin wound healing. Dopamine-functionalized oxidized hyaluronic acid (OHA-Dop), adipic acid dihydrazide-modified HA (HA-ADH), and aldehyde-terminated Pluronic F127 (AF127) were employed as polymer backbones. They were cross-linked in situ using Schiff base dynamic covalent bonds (AF127 micelle/HA-ADH network and HA-ADH/OHA-Dop network), hydrogen bonding, and π-π stacking interactions. The resulting multicross-linked double-network design forms a micellar hydrogel. The unique multicross-linked double-network structure endows the hydrogel with both improved injection abilities and mechanical performance while self-healing faster than single-network hydrogels. Inspired by mussel foot adhesive protein, OHA-Dop mimics the catechol groups seen in mussel proteins, endowing hydrogels with robust adhesion properties. We also demonstrate the potential of our hydrogels to accelerate full-thickness cutaneous wound closure and improve skin regeneration with reduced scarring. We anticipate that our hydrogel platform based on a novel multicross-linked double-network design will transform the future development of multifunctional wound dressings.
Collapse
Affiliation(s)
- Bo Yang
- Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Jiliang Song
- Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Yuhang Jiang
- Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Ming Li
- Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Jingjing Wei
- Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Jiajun Qin
- Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Wanjia Peng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Fernando López Lasaosa
- Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Yiyan He
- Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Hongli Mao
- Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Jun Yang
- The Key Laboratory of Bioactive Materials Ministry of Education College of Life Science, Nankai University, Tianjin 300071, P. R. China
| | - Zhongwei Gu
- Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 210009, P. R. China
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
11
|
Dang-I AY, Huang T, Mehwish N, Dou XQ, Yang L, Mukwaya V, Xing C, Lin S, Feng CL. Antimicrobial Activity with Enhanced Mechanical Properties in Phenylalanine-Based Chiral Coassembled Hydrogels: The Influence of Pyridine Hydrazide Derivatives. ACS APPLIED BIO MATERIALS 2020; 3:2295-2304. [PMID: 35025281 DOI: 10.1021/acsabm.0c00075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydrazide derivatives are known to display a wide range of biological properties including antimicrobial activities, hence making them desirable candidates for soft biomaterials. Herein, we report chiral supramolecular coassembled hydrogels obtained from two phenylalanine gelators (L/DPF and B2L/D) and two dicarbohydrazide molecules (pyridine-2,6-dicarbohydrazide (PDH) and (2,2'-bipyridine)-5,5'-dicarbohydrazide (BDH)) that exhibited enhanced mechanical properties, chirality modulation, and antimicrobial activity. Four lines of coassembled hydrogels were obtained (i.e., L/DPF-PDH, L/DPF-BDH, B2L/D-PDH, and B2L/D-BDH) through hydrogen bonding and π-π stacking with some level of an interpenetrating network, as revealed by the structural characterization analysis. Mechanical properties were significantly improved, especially in the case of hybrid gels involving BDH, with improved average elastic modulus (G') values of 3430 and 3167 Pa for DPF-BDH and B2D-BDH (1:3, molar concentration) over 140 and 1680 Pa for DPF and B2D gelators, respectively. This was attributed to the improved π-π stacking and interpenetrating network due to the bipyridine group and its ease to form fibrous precipitates in the process of heating and cooling to room temperature. PDH, on the other hand, was able to modulate chirality in the L/DPF gelator due to its more planar and less bulky nature and showed antimicrobial activity against Pseudomonas aeruginosa (Gram-negative). Interestingly, when PDH was coassembled with the B2L/D gelator, the hybrid gels exhibited antimicrobial activity against Staphylococcus aureus (Gram-positive) and P. aeruginosa (Gram-negative) by virtue of a synergistic effect of the gelator and the azomethine group of PHD. Hence, by moving from bipyridine (BDH) to pyridine (PDH) as a core structure in the hydrazide molecules, the resulting hybrid hydrogels exhibited desirable properties of antimicrobial activity and improved mechanical attributes.
Collapse
Affiliation(s)
- Auphedeous Y Dang-I
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, 200240 Shanghai, China
| | - Tingting Huang
- School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Dongchuan Road 800, 200240 Shanghai, China
| | - Nabila Mehwish
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, 200240 Shanghai, China
| | - Xiao-Qiu Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, 200240 Shanghai, China
| | - Li Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, 200240 Shanghai, China
| | - Vincent Mukwaya
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, 200240 Shanghai, China
| | - Chao Xing
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, 200240 Shanghai, China
| | - Shuangjun Lin
- School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Dongchuan Road 800, 200240 Shanghai, China
| | - Chuan-Liang Feng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, 200240 Shanghai, China
| |
Collapse
|