1
|
Chava P, Kateel V, Watanabe K, Taniguchi T, Helm M, Mikolajick T, Erbe A. Electrical characterization of multi-gated WSe 2/MoS 2 van der Waals heterojunctions. Sci Rep 2024; 14:5813. [PMID: 38461196 PMCID: PMC10925069 DOI: 10.1038/s41598-024-56455-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
Vertical stacking of different two-dimensional (2D) materials into van der Waals heterostructures exploits the properties of individual materials as well as their interlayer coupling, thereby exhibiting unique electrical and optical properties. Here, we study and investigate a system consisting entirely of different 2D materials for the implementation of electronic devices that are based on quantum mechanical band-to-band tunneling transport such as tunnel diodes and tunnel field-effect transistors. We fabricated and characterized van der Waals heterojunctions based on semiconducting layers of WSe2 and MoS2 by employing different gate configurations to analyze the transport properties of the junction. We found that the device dielectric environment is crucial for achieving tunneling transport across the heterojunction by replacing thick oxide dielectrics with thin layers of hexagonal-boronnitride. With the help of additional top gates implemented in different regions of our heterojunction device, it was seen that the tunneling properties as well as the Schottky barriers at the contact interfaces could be tuned efficiently by using layers of graphene as an intermediate contact material.
Collapse
Affiliation(s)
- Phanish Chava
- Institute of Ion Beam Physics and Materials Research, Helmholtz Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01062, Dresden, Germany.
| | - Vaishnavi Kateel
- Institute of Ion Beam Physics and Materials Research, Helmholtz Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Manfred Helm
- Institute of Ion Beam Physics and Materials Research, Helmholtz Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Thomas Mikolajick
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01062, Dresden, Germany
- NaMLab gGmbH, 01187, Dresden, Germany
| | - Artur Erbe
- Institute of Ion Beam Physics and Materials Research, Helmholtz Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
2
|
Fukui T, Nishimura T, Miyata Y, Ueno K, Taniguchi T, Watanabe K, Nagashio K. Single-Gate MoS 2 Tunnel FET with a Thickness-Modulated Homojunction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8993-9001. [PMID: 38324211 DOI: 10.1021/acsami.3c15535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Two-dimensional (2D) materials stand as a promising platform for tunnel field-effect transistors (TFETs) in the pursuit of low-power electronics for the Internet of Things era. This promise arises from their dangling bond-free van der Waals heterointerface. Nevertheless, the attainment of high device performance is markedly impeded by the requirement of precise control over the 2D assembly with multiple stacks of different layers. In this study, we addressed a thickness-modulated n/p+-homojunction prepared from Nb-doped p+-MoS2 crystal, where the issue on interface traps can be neglected without any external interface control due to the homojunction. Notably, our observations reveal the existence of a negative differential resistance, even at room temperature (RT). This signifies the successful realization of TFET operation under type III band alignment conditions by a single gate at RT, suggesting that the dominant current mechanism is band-to-band tunneling due to the ideal interface.
Collapse
Affiliation(s)
- Tomohiro Fukui
- Department of Materials Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Tomonori Nishimura
- Department of Materials Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yasumitsu Miyata
- Department of Physics, Tokyo Metropolitan University, Hachioji 192-0397, Japan
| | - Keiji Ueno
- Department of Chemistry, Saitama University, Saitama 338-8570, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Ibaraki 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, Ibaraki 305-0044, Japan
| | - Kosuke Nagashio
- Department of Materials Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
3
|
Lu G, Wei Y, Li X, Zhang G, Wang G, Liang L, Li Q, Fan S, Zhang Y. Reconfigurable Tunneling Transistors Heterostructured by an Individual Carbon Nanotube and MoS 2. NANO LETTERS 2021; 21:6843-6850. [PMID: 34347482 DOI: 10.1021/acs.nanolett.1c01833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Low-dimensional semiconductors have shown great potential in switches for their atomically thin geometries and unique properties. It is significant to achieve new tunneling transistors by the efficient stacking methodology with low-dimensional building blocks. Here, we report a one-dimensional (1D)-two-dimensional (2D) mixed-dimensional van der Waals (vdW) heterostructure, which was efficiently fabricated by stacking an individual semiconducting carbon nanotube (CNT) and 2D MoS2. The CNT-MoS2 heterostructure shows specific reconfigurable electrical transport behaviors and can be set as a nn junction, pn diode, and band-to-band tunneling (BTBT) transistor by gate voltage. The transport properties, especially BTBT, could be attributed to the electron transfer from MoS2 to CNT through the ideal vdW interface and the 1D nature of the CNT. The progress suggests a new solution for tunneling transistors by making 1D-2D heterostructures from the rich library of low-dimensional nanomaterials. Furthermore, the reconfigurable functions and nanoscaled junction show that it is prospective to apply CNT-MoS2 heterostructures in future nanoelectronics and nano-optoelectronics.
Collapse
Affiliation(s)
- Gaotian Lu
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yang Wei
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xuanzhang Li
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People's Republic of China
| | - Guangqi Zhang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People's Republic of China
| | - Guang Wang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People's Republic of China
| | - Liang Liang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People's Republic of China
| | - Qunqing Li
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People's Republic of China
| | - Shoushan Fan
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yuegang Zhang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People's Republic of China
- Beijing Innovation Center for Future Chips, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
4
|
Yan Y, Li S, Du J, Yang H, Wang X, Song X, Li L, Li X, Xia C, Liu Y, Li J, Wei Z. Reversible Half Wave Rectifier Based on 2D InSe/GeSe Heterostructure with Near-Broken Band Alignment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:1903252. [PMID: 33643781 PMCID: PMC7887575 DOI: 10.1002/advs.201903252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 09/27/2020] [Indexed: 05/19/2023]
Abstract
2D van der Waals heterostructures (vdWHs) offer tremendous opportunities in designing multifunctional electronic devices. Due to the ultrathin nature of 2D materials, the gate-induced change in charge density makes amplitude control possible, creating a new programmable unilateral rectifier. The study of 2D vdWHs-based reversible unilateral rectifier is lacking, although it can give rise to a new degree of freedom for modulating the output state. Here, a InSe/GeSe vdWH-FET is constructed as a gate-controllable half wave rectifier. The device exhibits stepless adjustment from forward to backward rectifying performance, leading to multiple operation states of output level. Near-broken band alignment in the InSe/GeSe vdWH-FET is a crucial feature for high-performance reversible rectifier, which is shown to have backward and forward rectification ratio of 1:38 and 963:1, respectively. Being further explored as a new bridge rectifier, the InSe/GeSe device has great potential in future gate-controllable alternating current/direct current convertor. These results indicate that 2D vdWHs with near-broken band alignment can offer a pathway to simplify the commutating circuit and regulating speed circuit.
Collapse
Affiliation(s)
- Yong Yan
- Henan Key Laboratory of Photovoltaic Materials, School of PhysicsHenan Normal UniversityXinxiang453007China
| | - Shasha Li
- Henan Key Laboratory of Photovoltaic Materials, School of PhysicsHenan Normal UniversityXinxiang453007China
| | - Juan Du
- Henan Key Laboratory of Photovoltaic Materials, School of PhysicsHenan Normal UniversityXinxiang453007China
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of PhysicsPeking UniversityBeijing100871China
| | - Huai Yang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100083China
| | - Xiaoting Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100083China
| | - Xiaohui Song
- Henan Key Laboratory of Photovoltaic Materials, School of PhysicsHenan Normal UniversityXinxiang453007China
| | - Lixia Li
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and ApplicationsHenan Normal UniversityXinxiang453007China
| | - Xueping Li
- Henan Key Laboratory of Photovoltaic Materials, School of PhysicsHenan Normal UniversityXinxiang453007China
| | - Congxin Xia
- Henan Key Laboratory of Photovoltaic Materials, School of PhysicsHenan Normal UniversityXinxiang453007China
| | - Yufang Liu
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and ApplicationsHenan Normal UniversityXinxiang453007China
| | - Jingbo Li
- Institute of SemiconductorsSouth China Normal UniversityGuangzhou510631China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100083China
| |
Collapse
|
5
|
Beck ME, Hersam MC. Emerging Opportunities for Electrostatic Control in Atomically Thin Devices. ACS NANO 2020; 14:6498-6518. [PMID: 32463222 DOI: 10.1021/acsnano.0c03299] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Electrostatic control of charge carrier concentration underlies the field-effect transistor (FET), which is among the most ubiquitous devices in the modern world. As transistors and related electronic devices have been miniaturized to the nanometer scale, electrostatics have become increasingly important, leading to progressively sophisticated device geometries such as the finFET. With the advent of atomically thin materials in which dielectric screening lengths are greater than device physical dimensions, qualitatively different opportunities emerge for electrostatic control. In this Review, recent demonstrations of unconventional electrostatic modulation in atomically thin materials and devices are discussed. By combining low dielectric screening with the other characteristics of atomically thin materials such as relaxed requirements for lattice matching, quantum confinement of charge carriers, and mechanical flexibility, high degrees of electrostatic spatial inhomogeneity can be achieved, which enables a diverse range of gate-tunable properties that are useful in logic, memory, neuromorphic, and optoelectronic technologies.
Collapse
Affiliation(s)
- Megan E Beck
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|