1
|
Han Y, Fan G, Han Y, Huang X, Wang W, Luo X, Zhang Y, Han L. Suppression of coffee rings by controllable nanoparticle enrichment through superhydrophobicity-enabled dynamic evaporation. J Colloid Interface Sci 2024; 673:735-745. [PMID: 38901363 DOI: 10.1016/j.jcis.2024.06.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/13/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
Coffee rings formed by evaporation of analyte-containing droplets are widely observed in micropatterning, bio-arrays, and trace detection. The coffee-ring effect caused by contact line pinning significantly affects the detection uniformity and sensitivity. Here, we propose a simple and operable method to effectively suppress coffee rings through controllable nanoparticles aggregation by superhydrophobicity-enabled dynamic evaporation. The gold nanoparticles (AuNPs) deposition footprint formed after dynamic evaporation on an integrated superhydrophobic surface was reduced by ∼3 orders of magnitude compared to that of non-interventional evaporation. Detailed experiments, numerical simulations, and theoretical studies have revealed that substrate wettability, temperature and droplet motion behaviors play significant roles in suppressing coffee-ring effect. More critically, based on the force mechanism of AuNPs at the interface/contact line, universal mathematical models and regime maps were established to classify the different deposition modes for AuNPs under different evaporation conditions by introducing dimensionless parameter G, revealing the enrichment mechanism of AuNPs in droplets under superhydrophobicity-enabled dynamic evaporation. The accuracy of the theoretical model and enrichment mechanism was demonstrated through the single-molecule detection of rhodamine 6G with excellent sensitivity (10-17 M, enhancement factor ∼1013) and perfect uniformity (relative standard deviation ∼5.57 %), which provides a valuable guide for research and applications of nanoparticle aggregation.
Collapse
Affiliation(s)
- Yunrui Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Guangpeng Fan
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Yingkuan Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xin Huang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Weifeng Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Xiaoming Luo
- College of Pipeline and Civil Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao Shandong 266580, China
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
2
|
Wang X, Li X, Pu A, Shun HB, Chen C, Ai L, Tan Z, Zhang J, Liu K, Gao J, Ban K, Yao X. On-chip droplet analysis and cell spheroid screening by capillary wrapping enabled shape-adaptive ferrofluid transporters. LAB ON A CHIP 2024; 24:1782-1793. [PMID: 38358122 DOI: 10.1039/d3lc00906h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Non-invasive droplet manipulation with no physical damage to the sample is important for the practical value of manipulation tools in multidisciplinary applications from biochemical analysis and diagnostics to cell engineering. It is a challenge to achieve this for most existing photothermal, electric stimuli, and magnetic field-based technologies. Herein, we present a droplet handling toolbox, the ferrofluid transporter, for non-invasive droplet manipulation in an oil environment. It involves the transport of droplets with high robustness and efficiency owing to low interfacial friction. This capability caters to various scenarios including droplets with varying components and solid cargo. Moreover, we fabricated a droplet array by transporter positioning and achieved droplet gating and sorting for complex manipulation in the droplet array. Benefiting from the ease of scale-up and high biocompatibility, the transporter-based droplet array can serve as a digital microfluidic platform for on-chip droplet-based bioanalysis, cell spheroid culture, and downstream drug screening tests.
Collapse
Affiliation(s)
- Xuejiao Wang
- Department of Biomedical Sciences, Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
| | - Xin Li
- Department of Biomedical Sciences, Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
| | - Aoyang Pu
- Department of Biomedical Sciences, Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
| | - Ho Bak Shun
- Department of Biomedical Sciences, Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
| | - Cien Chen
- Department of Biomedical Sciences, Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
| | - Liqing Ai
- Department of Biomedical Sciences, Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
| | - Zhaoling Tan
- Department of Biomedical Sciences, Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
| | - Jilin Zhang
- Department of Biomedical Sciences, Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
| | - Kai Liu
- Department of Biomedical Sciences, Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
| | - Jun Gao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong Province, P. R. China.
| | - Kiwon Ban
- Department of Biomedical Sciences, Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
| | - Xi Yao
- Department of Biomedical Sciences, Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518075, P. R. China
| |
Collapse
|
3
|
Pham TN, Guerrault S, Ayela C. Polymer Microtip-Based Fabry-Perot Interferometer for Water Content Determination in the Gas and Liquid Phase. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46368-46378. [PMID: 37729179 DOI: 10.1021/acsami.3c10064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
In this work, we present a Fabry-Perot interferometer (FPI) based on a polymer microtip for water content determination in both the gas and liquid phase. The polymer tip of pentaerythritol triacrylate (PETA) is fabricated at the end of an optical fiber by self-guiding photopolymerization, forming at the same time a low-fineness Fabry-Perot interferometer and a sensing layer for water thanks to hydroxyl groups present in PETA. The PETA tip shows a clear interferometric signal, which is highly sensitive to the change of the water content in the environment. The FPI signal shifts with a constant sensitivity of 90 pm/%RH, which corresponds to a relative sensitivity of 104 ppm/% RH, in the range of relative humidity from 30 to 80%. In liquid, the FPI sensor shows a nonlinear sensitivity, up to 158 pm/wt % as the water content is below 40 wt % in water/glycerol mixtures. The cross effect of the temperature on the PETA tip is demonstrated to be negligible as the FPI signal is insensitive to temperature changes from 23 to 70 °C. More importantly, the interaction between the tip and the environment affecting the FPI signal is demonstrated experimentally. The proposed FPI sensor is therefore promising for the direct, sensitive, and reliable determination of the water content of products.
Collapse
Affiliation(s)
- Thi-Nhung Pham
- Univ. Bordeaux, IMS, CNRS, Bordeaux INP, UMR 5218, F-33607 Pessac, France
| | | | - Cédric Ayela
- Univ. Bordeaux, IMS, CNRS, Bordeaux INP, UMR 5218, F-33607 Pessac, France
- SensWay SAS, F-33607 Pessac, France
| |
Collapse
|
4
|
Xu D, Zhang W, Li H, Li N, Lin JM. Advances in droplet digital polymerase chain reaction on microfluidic chips. LAB ON A CHIP 2023; 23:1258-1278. [PMID: 36752545 DOI: 10.1039/d2lc00814a] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The PCR technique has been known to the general public since the pandemic outbreak of COVID-19. This technique has progressed through three stages: from simple PCR to real-time fluorescence PCR to digital PCR. Among them, the microfluidic-based droplet digital PCR technique has attracted much attention and has been widely applied due to its advantages of high throughput, high sensitivity, low reagent consumption, low cross-contamination, and absolute quantification ability. In this review, we introduce various designs of microfluidic-based ddPCR developed within the last decade. The microfluidic-based droplet generation methods, thermal cycle strategies, and signal counting approaches are described, and the applications in the fields of single-cell analysis, disease diagnosis, and pathogen detection are introduced. Further, the challenges and prospects of microfluidic-based ddPCR are discussed. We hope that this review can contribute to the further development of the microfluidic-based ddPCR technique.
Collapse
Affiliation(s)
- Danfeng Xu
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China.
| | - Weifei Zhang
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China.
| | - Hongmei Li
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China.
| | - Nan Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), China.
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), China.
| |
Collapse
|
5
|
Arnaboldi S, Salinas G, Bonetti G, Garrigue P, Cirilli R, Benincori T, Kuhn A. Autonomous Chiral Microswimmers with Self‐mixing Capabilities for Highly Efficient Enantioselective Synthesis. Angew Chem Int Ed Engl 2022; 61:e202209098. [DOI: 10.1002/anie.202209098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Serena Arnaboldi
- Univ. Bordeaux CNRS, Bordeaux INP, ISM UMR 5255 33607 Pessac France
- Dip. Di Chimica Univ. degli Studi di Milano 20133 Milan Italy
| | - Gerardo Salinas
- Univ. Bordeaux CNRS, Bordeaux INP, ISM UMR 5255 33607 Pessac France
| | - Giorgia Bonetti
- Dip. di Scienza e Alta Tecnologia Univ. degli Studi dell'Insubria 22100 Como Italy
| | - Patrick Garrigue
- Univ. Bordeaux CNRS, Bordeaux INP, ISM UMR 5255 33607 Pessac France
| | - Roberto Cirilli
- Istituto Superiore di Sanità Centro Nazionale per il Controllo e la Valutazione dei Farmaci 00161 Rome Italy
| | - Tiziana Benincori
- Dip. di Scienza e Alta Tecnologia Univ. degli Studi dell'Insubria 22100 Como Italy
| | - Alexander Kuhn
- Univ. Bordeaux CNRS, Bordeaux INP, ISM UMR 5255 33607 Pessac France
| |
Collapse
|
6
|
Arnaboldi S, Salinas G, Bonetti G, Garrigue P, Cirilli R, Benincori T, Kuhn A. Autonomous Chiral Microswimmers with Self‐mixing Capabilities for Highly Efficient Enantioselective Synthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Serena Arnaboldi
- University of Milan–Bicocca: Universita degli Studi di Milano-Bicocca Di Chimica ITALY
| | - Gerardo Salinas
- University of Bordeaux: Universite de Bordeaux Institute of Molecular Science FRANCE
| | - Giorgia Bonetti
- Insubria University - Como Campus: Universita degli Studi dell'Insubria - Sede di Como di Scienza e Alta Tecnologia ITALY
| | - Patrick Garrigue
- University of Bordeaux: Universite de Bordeaux Institute of Molecular Science FRANCE
| | - Roberto Cirilli
- Instituto superiore di santa Centro nazionale per il controlo e la valutazione dei Farmaci ITALY
| | - Tiziana Benincori
- Insubria University - Como Campus: Universita degli Studi dell'Insubria - Sede di Como di chimica ITALY
| | - Alexander Kuhn
- Bordeaux INP Chemistry ENSCBP 16 avenue Pey Berland 33607 Pessac FRANCE
| |
Collapse
|
7
|
Liu K, Pan Y, Wang X, Ma T, Li B, Chu J. A low-cost self-dispersing method of droplet array generation enabled by a simple reusable mask for bioanalysis and bioassays. Anal Bioanal Chem 2021; 414:1141-1149. [PMID: 34779901 DOI: 10.1007/s00216-021-03739-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 11/27/2022]
Abstract
Discontinuous dewetting is an attractive technique that can produce droplet array of specific volume, geometry and at predefined location on a substrate. Droplet array has great potential in bioanalysis such as high-throughput live cell screening, digital PCR, and drug candidates. Here, we propose a self-dispersing droplet array generation method, which has advantages of low cost, simple operation, and easy large-area production ability. Droplet array of specific volumes was generated on a polymethyl methacrylate (PMMA) substrate using a simple reusable polyimide (PI) adhesive mask. Experiment shows that the generated droplet array can be used to successfully capture single particles which obeys Poisson distribution in a high-throughput manner. Furthermore, a droplet-array sandwiching chip was created based on the self-dispersion method for rapid detection of human serum albumin (HSA) at wide range of 183-11,712 μg/mL with low reagent consumption of 2.2 μL, demonstrating its potential applications in convenient high-throughput bioanalysis and bioassays.
Collapse
Affiliation(s)
- Kai Liu
- Department of Precision Machinery & Precision Instrumentation, University of Science & Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Yang Pan
- Department of Precision Machinery & Precision Instrumentation, University of Science & Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Xiaojie Wang
- Department of Precision Machinery & Precision Instrumentation, University of Science & Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Tuo Ma
- Department of Precision Machinery & Precision Instrumentation, University of Science & Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Baoqing Li
- Department of Precision Machinery & Precision Instrumentation, University of Science & Technology of China, Hefei, 230027, Anhui, China.
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| | - Jiaru Chu
- Department of Precision Machinery & Precision Instrumentation, University of Science & Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230027, Anhui, China
| |
Collapse
|
8
|
|
9
|
Kichatov B, Korshunov A, Sudakov V, Gubernov V, Golubkov A, Kiverin A. Superfast Active Droplets as Micromotors for Locomotion of Passive Droplets and Intensification of Mixing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38877-38885. [PMID: 34351762 DOI: 10.1021/acsami.1c09912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Micromotors are fascinating objects that are able to move autonomously and perform various complex tasks related to drug delivery, chemical processes, and environmental remediation. Among the types of micromotors, droplet-based micromotors are characterized by a wide range of functional properties related to the capability of encapsulation and deformation and the possibility of using them as microreactors. Relevant problems of micromotor utilization in the chemical processes include intensification of mixing and locomotion of passive objects. In this paper, the technique for preparation of superfast active droplets, which can be used as micromotors for effective locomotion of passive droplets in the oil-in-water emulsion, is demonstrated. The possibility of passive droplet locomotion in the emulsion is determined by a relation between the diameters of active and passive droplets. If the diameter of active droplets is larger than the diameter of passive droplets, the agglomerates form spontaneously in the emulsion and move in a straight line. In the case of the opposite relation between diameters, the agglomerates consisting of active and passive droplets rotate intensively. This makes it impossible to move the passive droplets to a given distance. Such micromotors can achieve unprecedentedly high velocities of motion and can be used to intensify mixing on the microscales.
Collapse
Affiliation(s)
- Boris Kichatov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Korshunov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir Sudakov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Vladimir Gubernov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexandr Golubkov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Kiverin
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
- Bauman Moscow State Technical University, 105005 Moscow, Russia
| |
Collapse
|
10
|
Liu X, Yang F, Guo J, Fu J, Guo Z. New insights into unusual droplets: from mediating the wettability to manipulating the locomotion modes. Chem Commun (Camb) 2020; 56:14757-14788. [PMID: 33125006 DOI: 10.1039/d0cc05801g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ability to manipulate droplets can be utilized to develop various smart sensors or actuators, endowing them with fascinating applications for drug delivery, detection of target analytes, environmental monitoring, intelligent control, and so on. However, the stimuli-responsive superhydrophobic/superhydrophilic materials for normal water droplets cannot satisfy the requirements from some certain circumstances, i.e., liquid lenses and biosensors (detection of various additives in water/blood droplets). Stimuli-responsive wetting/dewetting behaviors of exceptional droplets are open issues and are attracting much attention from across the world. In this perspective article, the unconventional droplets are divided into three categories: ionic or surfactant additives in water droplets, oil droplets, and bubble droplets. We first introduce several classical wettability models of droplets and some methods to achieve wettability transition. The unusual droplet motion is also introduced in detail. There are four main types of locomotion modes, which are vertical rebound motion, lateral motion, self-propulsion motion, and anisotropic wettability controlled sliding behavior. The driving mechanism for the droplet motion is briefly introduced as well. Some approaches to achieve this manipulation goal, such as light irradiation, electronic, magnetic, acid-base, thermal, and mechanical ways will be taken into consideration. Finally, the current researches on unconventional droplets extending to polymer droplets and liquid metal droplets on the surface of special wettability materials are summarized and the prospect of unconventional droplet research directions in the field of on-demand transport application will be proposed.
Collapse
Affiliation(s)
- Xianchen Liu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China.
| | - Fuchao Yang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China.
| | - Jie Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China.
| | - Jing Fu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China. and School of Chemistry and Environment Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China. and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
11
|
Ruvalcaba-Cardenas AD, Gomez RAR, Khoshmanesh K, Tovar-Lopez FJ. Magnetic actuation and deformation of a soft shuttle. BIOMICROFLUIDICS 2020; 14:034103. [PMID: 32477442 PMCID: PMC7237223 DOI: 10.1063/5.0008176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/05/2020] [Indexed: 05/12/2023]
Abstract
Here, we describe the magnetic actuation of soft shuttles for open-top microfluidic applications. The system is comprised of two immiscible liquids, including glycerol as the soft shuttle and a suspension of iron powder in sucrose solution as the magnetic drop. Permanent magnets assembled on 3D printed motorized actuators were used for the actuation of the magnetic drop, enabling the glycerol shuttle to be propelled along customized linear, circular, and sinusoidal paths. The dynamics of the hybrid shuttle-magnetic drop system was governed by the magnetic force, the friction at the interface of the shuttle and the substrate, and the surface tension at the interface of the shuttle and the magnetic drop. Increasing the magnetic force leads to the localized deformation of the shuttle and eventually the full extraction of the magnetic drop. The versatility of the system was demonstrated through the propelling of the shuttle across a rough surface patterned with microfabricated barriers as well as taking advantage of the optical properties of the shuttle for the magnification and translation of microscale characters patterned on a planar surface. The integration of the system with current electrowetting actuation mechanisms enables the highly controlled motion of the magnetic drop on the surface of a moving shuttle. The simplicity, versatility, and controllability of the system provide opportunities for various fluid manipulation, sample preparation, and analysis for a range of chemical, biochemical, and biological applications.
Collapse
Affiliation(s)
- Ana Daysi Ruvalcaba-Cardenas
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
- Authors to whom correspondence should be addressed:; ; and
| | | | - Khashayar Khoshmanesh
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
- Authors to whom correspondence should be addressed:; ; and
| | - Francisco J. Tovar-Lopez
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
- Authors to whom correspondence should be addressed:; ; and
| |
Collapse
|