1
|
Sim HR, Lee S, Lee J, Hassan SZ, Nam GH, So C, Sim KM, Chung DS. Liquid-Film Rupture for Web-like Ag Nanowires toward High-Performance Organic Schottky Barrier Transistors. ACS NANO 2023. [PMID: 38039187 DOI: 10.1021/acsnano.3c10663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Organic vertical transistors are promising device with benefits such as high operation speed, high saturation current density, and low-voltage operation owing to their short channel length. However, a short channel length leads to a high off-current, which is undesirable because it affects the on-off ratio and power consumption. This study presents a breakthrough in the development of high-performance organic Schottky barrier transistors (OSBTs) with a low off-current by utilizing a near-ideal source electrode with a web-like Ag nanowire (AgNW) morphology. This is achieved by employing a humidity- and surface-tension-mediated liquid-film rupture technique, which facilitates the formation of well-connected AgNW networks with large pores between them. Therefore, the gate electric field is effectively transmitted to the semiconductor layer. Also, the minimized surface area of the AgNWs causes complete suppression of the off-current and induces ideal saturation of the OSBT output characteristics. p- and n-type OSBTs exhibit off-currents in the picoampere range with on/off ratios exceeding 106 and 105, respectively. Furthermore, complementary inverters are prepared using an aryl azide cross-linker for patterning, with a gain of >16. This study represents a significant milestone in the development of high-performance organic vertical transistors and verifies their applicability in organic electronic circuitry.
Collapse
Affiliation(s)
- Hye Ryun Sim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Sangjun Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Juhyeok Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Syed Zahid Hassan
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Geon-Hee Nam
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Chan So
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Kyu Min Sim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dae Sung Chung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
2
|
Chang JF, Yu JM. High-Performance Vertical Light-Emitting Transistors Based on ZnO Transistor/Quantum-Dot Light-Emitting Diode Integration and Electron Injection Layer Modification. MICROMACHINES 2023; 14:1933. [PMID: 37893370 PMCID: PMC10609005 DOI: 10.3390/mi14101933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
Vertical light-emitting transistors (VLETs) consisting of vertically stacked unipolar transistors and organic light-emitting diodes (OLEDs) have been proposed as a prospective building block for display technologies. In addition to OLEDs, quantum-dot (QD) LEDs (QLEDs) with high brightness and high color purity have also become attractive light-emitting devices for display applications. However, few studies have attempted to integrate QLEDs into VLETs, as this not only involves technical issues such as compatible solution process of QDs and fine patterning of electrodes in multilayer stacked geometries but also requires a high driving current that is demanding on transistor design. Here we show that these integration issues of QLEDs can be addressed by using inorganic transistors with robust processability and high mobility, such as the studied ZnO transistor, which facilitates simple fabrication of QD VLETs (QVLETs) with efficient emission in the patterned channel area, suitable for high-resolution display applications. We perform a detailed optimization of QVLET by modifying ZnO:polyethylenimine nanocomposite as the electron injection layer (EIL) between the integrated ZnO transistor/QLED, and achieve the highest external quantum efficiency of ~3% and uniform emission in the patterned transistor channel. Furthermore, combined with a systematic study of corresponding QLEDs, electron-only diodes, and electroluminescence images, we provide a deeper understanding of the effect of EIL modification on current balance and distribution, and thus on QVLET performance.
Collapse
Affiliation(s)
- Jui-Fen Chang
- Department of Optics and Photonics, National Central University, Zhongli 320317, Taiwan;
| | | |
Collapse
|
3
|
Wu X, Gao C, Chen Q, Yan Y, Zhang G, Guo T, Chen H. High-performance vertical field-effect organic photovoltaics. Nat Commun 2023; 14:1579. [PMID: 36949063 PMCID: PMC10033512 DOI: 10.1038/s41467-023-37174-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
Limited by the inherent energy loss (Eloss) in carrier transport process, the device efficiency of organic solar cells shows inferior to traditional inorganic photovoltaic devices. Generally, molecular design, morphology optimization and interfacial engineering are usually required to alleviate Eloss. Here, vertical field-effect organic photovoltaic (VFEOPV) by integrating an bulk-heterojunction (BHJ) organic photovoltaic (OPV) with vertical field effect transistor (VFET) is invented, in which VFET generates a large, uneven, internal electric field, eliminating the requirement for driving force to dissociate excitons and prevents non-radiative recombination in OPV. In this way, the performance of solar cell can be well controlled by the gate voltage of VFET and the Eloss of VFEOPVs based on J71: ITIC system is dramatically reduced below 0.2 eV, significantly improving power conversion efficiency (PCE) from 10% to 18% under gate voltage of 0.9 V, which only causes negligible additional power consumption (~10-4mJ/cm2). Besides, the device also exhibits multi-functionality including transistor and phototransistors with excellent photodector performance. This work provides a new and general strategy to improve the OPV performance which is compatible with present optimization methods, and can be applied to improve PCE of other types of solar cells such as Perovskite and inorganic solar cells.
Collapse
Affiliation(s)
- Xiaomin Wu
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, China
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, 350007, China
| | - Changsong Gao
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, China
| | - Qizhen Chen
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, China
| | - Yujie Yan
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, China
| | - Guocheng Zhang
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China
- Research Center for Microelectronics Technology, Fujian University of Technology, Fuzhou, 350108, China
| | - Tailiang Guo
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, China
| | - Huipeng Chen
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, China.
| |
Collapse
|
4
|
Nawaz A, Merces L, Ferro LMM, Sonar P, Bufon CCB. Impact of Planar and Vertical Organic Field-Effect Transistors on Flexible Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204804. [PMID: 36124375 DOI: 10.1002/adma.202204804] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/13/2022] [Indexed: 06/15/2023]
Abstract
The development of flexible and conformable devices, whose performance can be maintained while being continuously deformed, provides a significant step toward the realization of next-generation wearable and e-textile applications. Organic field-effect transistors (OFETs) are particularly interesting for flexible and lightweight products, because of their low-temperature solution processability, and the mechanical flexibility of organic materials that endows OFETs the natural compatibility with plastic and biodegradable substrates. Here, an in-depth review of two competing flexible OFET technologies, planar and vertical OFETs (POFETs and VOFETs, respectively) is provided. The electrical, mechanical, and physical properties of POFETs and VOFETs are critically discussed, with a focus on four pivotal applications (integrated logic circuits, light-emitting devices, memories, and sensors). It is pointed out that the flexible function of the relatively newer VOFET technology, along with its perspective on advancing the applicability of flexible POFETs, has not been reviewed so far, and the direct comparison regarding the performance of POFET- and VOFET-based flexible applications is most likely absent. With discussions spanning printed and wearable electronics, materials science, biotechnology, and environmental monitoring, this contribution is a clear stimulus to researchers working in these fields to engage toward the plentiful possibilities that POFETs and VOFETs offer to flexible electronics.
Collapse
Affiliation(s)
- Ali Nawaz
- Center for Sensors and Devices, Bruno Kessler Foundation (FBK), Trento, 38123, Italy
| | - Leandro Merces
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-100, Brazil
| | - Letícia M M Ferro
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-100, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, 13083-970, Brazil
| | - Prashant Sonar
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Carlos C B Bufon
- MackGraphe - Graphene and Nanomaterials Research Center, Mackenzie Presbyterian Institute, São Paulo, 01302-907, Brazil
| |
Collapse
|
5
|
MXene based saturation organic vertical photoelectric transistors with low subthreshold swing. Nat Commun 2022; 13:2898. [PMID: 35610215 PMCID: PMC9130145 DOI: 10.1038/s41467-022-30527-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/02/2022] [Indexed: 12/21/2022] Open
Abstract
Vertical transistors have attracted enormous attention in the next-generation electronic devices due to their high working frequency, low operation voltage and large current density, while a major scientific and technological challenge for high performance vertical transistor is to find suitable source electrode. Herein, an MXene material, Ti3C2Tx, is introduced as source electrode of organic vertical transistors. The porous MXene films take the advantage of both partially shielding effect of graphene and the direct modulation of the Schottky barrier at the mesh electrode, which significantly enhances the ability of gate modulation and reduces the subthreshold swing to 73 mV/dec. More importantly, the saturation of output current which is essential for all transistor-based applications but remains a great challenge for vertical transistors, is easily achieved in our device due to the ultra-thin thickness and native oxidation of MXene, as verified by finite-element simulations. Finally, our device also possesses great potential for being used as wide-spectrum photodetector with fast response speed without complex material and structure design. This work demonstrates that MXene as source electrode offers plenty of opportunities for high performance vertical transistors and photoelectric devices. The modulation of Schottky barrier, which dominates the carrier injection in vertical organic field-effect transistors, strongly depends on the source electrode. Here, Chen et al. utilize MXene as a source electrode, achieving a subthreshold swing down to 73 mv/dec and a large gate control ability.
Collapse
|
6
|
Gao H, Miao Z, Qin Z, Yang J, Wang T, Gao C, Dong H, Hu W. Redistributed Current Density in Lateral Organic Light-Emitting Transistors Enabling Uniform Area Emission with Good Stability and Arbitrary Tunability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108795. [PMID: 34850999 DOI: 10.1002/adma.202108795] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Organic light-emitting transistors (OLETs), integrating the functions of an organic field-effect transistor (OFET) and organic light-emitting diode (OLED) in a single device, are promising for the next-generation display technology. However, the great challenge of achieving uniform area emission in OLETs with good stability and arbitrary tunability hinders their development in this field. Herein, an effective solution to obtain well-defined area emission in lateral OLETs by incorporating a charge-transport buffer (CTB) layer between the conducting channel and emitting layer is proposed. Comprehensive theoretical simulation and experimental results demonstrate redistributed potential beneath the drain electrode under the shielding effect of the CBT layer, resulting in a highly uniform current density. In this case, uniform recombination of balanced holes and electrons can be guaranteed, which is essential for the formation of area emission in the following OLETs. RGB OLETs with uniform area emission are constructed, which show good gate tunable ability (ON/OFF ratio 106 ), high loop stability (over 200 cycles) and high aperture ratio (over 80%) due to the arbitrary tunability of the device geometry. This work provides a new avenue for constructing area-emission lateral OLETs, which have great potential for display technology because of their good compatibility with conventional fabrication techniques.
Collapse
Affiliation(s)
- Haikuo Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Shandong Engineering Research Center of Aeronautical Materials and Devices, College of Aeronautical Engineering, Binzhou University, Binzhou, 251900, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhagen Miao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengsheng Qin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaxin Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianyu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Can Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wenping Hu
- Department of Chemistry, School of Science, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
7
|
Light-emitting field-effect transistors with EQE over 20% enabled by a dielectric-quantum dots-dielectric sandwich structure. Sci Bull (Beijing) 2021; 67:529-536. [DOI: 10.1016/j.scib.2021.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/17/2021] [Accepted: 12/07/2021] [Indexed: 11/19/2022]
|
8
|
Qiu X, Guo J, Chen PA, Chen K, Liu Y, Ma C, Chen H, Hu Y. Doped Vertical Organic Field-Effect Transistors Demonstrating Superior Bias-Stress Stability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101325. [PMID: 34212512 DOI: 10.1002/smll.202101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Bias-stress stability is essential to the practical applications of organic field-effect transistors (OFETs), yet it remains a challenge issue in conventional planar OFETs. Here, the feasibility of achieving high bias-stress stability in vertical structured OFETs (VOFETs) in combination with doping techniques is demonstrated. VOFETs with silver nanowires as source electrodes are fabricated and the device performance is optimized by understanding the influence of device parameters on performance. Then, the bias-stress stability of the optimized PDVT-10 VOFETs is investigated and found to be superior to the corresponding planar OFETs, which is attributed to reduced trapping effects of gate dielectrics in the VOFETs. Moreover, the bias-stress stability can be further improved by doping PDVT-10 to passivate bulk traps. Consequently, the characteristic time of doped PDVT-10 VOFETs extracted from stretched exponential equation is found to be over four times larger than that of the planar PDVT-10 OFETs under the same bias-stress conditions. These results present the promising applications of VOFETs as well as an effective strategy to achieve highly bias-stress stable OFETs.
Collapse
Affiliation(s)
- Xincan Qiu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Jing Guo
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Ping-An Chen
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Kaixuan Chen
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Yu Liu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Chao Ma
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Huajie Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Yuanyuan Hu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
| |
Collapse
|
9
|
Wu C, Wang K, Zhang Y, Zhou X, Guo T. Emerging Nanopixel Light-Emitting Displays: Significance, Challenges, and Prospects. J Phys Chem Lett 2021; 12:3522-3527. [PMID: 33797246 DOI: 10.1021/acs.jpclett.1c00248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The requirement for increased resolution has created the concept of displays with nanoscale pixels; that is, each subpixel consists of multiple or even a single nanolight source, which is considered the ultimate light source for light field, near-eye, and implantable displays. However, related research is still at an early stage, and further insights into this future display concept should be provided. In this Perspective, we provide our proposed term for this future display, namely, nanopixel light-emitting display (NLED). We present an overview of nanolight-emitting diodes, which are considered the core component of NLEDs. Then, a roadmap to realize NLEDs from the view of material design is provided. Finally, we introduce our proposed operation mode (nonelectrical contact and noncarrier injection mode) for NLEDs and recommend possible nanopixel-level drive approaches. We hope that this Perspective will be helpful in designing innovative display technologies.
Collapse
Affiliation(s)
- Chaoxing Wu
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Kun Wang
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yongai Zhang
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Xiongtu Zhou
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Tailiang Guo
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
10
|
Chen H, Huang W, Marks TJ, Facchetti A, Meng H. Recent Advances in Multi-Layer Light-Emitting Heterostructure Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007661. [PMID: 33660408 DOI: 10.1002/smll.202007661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Light-emitting transistors (LETs) have attracted tremendous academic and industrial interest due to their dual functions of electrical switching and light emission in a single device, which can considerably reduce system complexity and manufacturing costs, especially in the area of flat panel and flexible displays as well as lighting and lasers. In recent years, enhanced LET performance has been achieved by introducing multiple-layer heterostructures in the charge-carrying/light-emitting LET channel versus the best-reported performance in single active layer LETs, rendering multi-layer LETs promising candidates for next-generation display technologies. In this review, the fundamental structures and working principles of multi-layer heterostructure LETs are introduced. Next, developments in multi-layer LETs are discussed based on co-planar LETs, non-planar LETs, and vertical LETs including organic, quantum dot, and perovskite light emitters. Finally, this review concludes with a summary and a perspective on the future of this research field.
Collapse
Affiliation(s)
- Hongming Chen
- School of Advanced Materials, Peking University Shenzhen Graduate School, 2199 Lishui Road, Shenzhen, 518055, P. R. China
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Wei Huang
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Flexterra Corporation, 8025 Lamon Avenue, Skokie, IL, 60077, USA
| | - Hong Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, 2199 Lishui Road, Shenzhen, 518055, P. R. China
- School of Electronics and Information, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| |
Collapse
|
11
|
Gao H, Liu J, Qin Z, Wang T, Gao C, Dong H, Hu W. High-performance amorphous organic semiconductor-based vertical field-effect transistors and light-emitting transistors. NANOSCALE 2020; 12:18371-18378. [PMID: 32870223 DOI: 10.1039/d0nr03569f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, two kinds of vertical organic optoelectronic devices, vertical organic field-effect transistors (VOFETs) and light-emitting transistors (VOLETs), were constructed based on amorphous organic semiconductors of N,N'-di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (NPB) as hole injecting and transport layers and tris(8-hydroxy-quinolinato) aluminum (Alq3) as the emitting layer. High device performances with a large on/off ratio of ∼6 × 103, current density of ∼40 mA cm-2, and fast response of ∼5 ms at a frequency of 20 Hz and a brightness of 126 cd m-2 were demonstrated for these two vertical devices with good device stability and repeatability. These results suggest the potential applications of amorphous organic semiconductors with good film-forming characteristics and easy device fabrication ability in vertical optoelectronic circuits.
Collapse
Affiliation(s)
- Haikuo Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyu Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengsheng Qin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Can Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenping Hu
- Department of Chemistry, School of Science, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|