1
|
Del Olmo R, Dominguez-Alfaro A, Olmedo-Martínez JL, Sanz O, Pozo-Gonzalo C, Forsyth M, Casado N. Innovative Strategy for Developing PEDOT Composite Scaffold for Reversible Oxygen Reduction Reaction. J Phys Chem Lett 2024; 15:4851-4857. [PMID: 38669215 PMCID: PMC11089567 DOI: 10.1021/acs.jpclett.4c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Metal-air batteries are an emerging technology with great potential to satisfy the demand for energy in high-consumption applications. However, this technology is still in an early stage, facing significant challenges such as a low cycle life that currently limits its practical use. Poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymer has already demonstrated its efficiency as catalyst for oxygen reduction reaction (ORR) discharge as an alternative to traditional expensive and nonsustainable metal catalysts. Apart from that, in most electrochemical processes, three phenomena are needed: redox activity and electronic and ionic conduction. Material morphology is important to maximize the contact area and optimize the 3 mechanisms to obtain high-performance devices. In this work, porous scaffolds of PEDOT-organic ionic plastic crystal (OIPC) are prepared through vapor phase polymerization to be used as porous self-standing cathodes. The scaffolds, based on abundant elements, showed good thermal stability (200 °C), with potential ORR reversible electrocatalytic activity: 60% of Coulombic efficiency in aqueous medium after 200 cycles.
Collapse
Affiliation(s)
- Rafael Del Olmo
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Antonio Dominguez-Alfaro
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Jorge L. Olmedo-Martínez
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Oihane Sanz
- Department
of Applied Chemistry, University of the
Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Cristina Pozo-Gonzalo
- Institute
for Frontier Materials (IFM), Deakin University, Burwood, Victoria 3125, Australia
| | - Maria Forsyth
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Tolosa 72, 20018 Donostia-San Sebastián, Spain
- Institute
for Frontier Materials (IFM), Deakin University, Burwood, Victoria 3125, Australia
- Ikerbasque,
Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Nerea Casado
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Tolosa 72, 20018 Donostia-San Sebastián, Spain
- Ikerbasque,
Basque Foundation for Science, E-48011 Bilbao, Spain
| |
Collapse
|
2
|
Karunarathne S, Kannangara YY, Ratwani CR, Sandaruwan C, Wijesinghe WPSL, Kamali AR, Abdelkader AM. Stoichiometrically optimized e g orbital occupancy of Ni-Co oxide catalysts for Li-air batteries. NANOSCALE 2024; 16:7937-7950. [PMID: 38545684 DOI: 10.1039/d4nr00518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Li-air battery (LAB) technology is making continuous progress toward its theoretical capacity, which is comparable to gasoline. However, the sluggish reaction at the cathode is still a challenge. We propose a simple strategy to optimize the surface eg occupancy by adjusting the stoichiometric ratios of transition metal-based spinel structures through a controlled hydrothermal synthesis. Three distinct stoichiometries of Ni-Co oxides were used to demonstrate the direct correlation between stoichiometry and catalytic performance. The groundsel flower-like structure having a 1 : 1.4 Ni : Co atomic ratio with high surface area, high defect density, and an abundance of Ni3+ at the surface with semi-filled eg orbitals was found to benefit the structure promoting high catalytic activities in aqueous and aprotic media. The assembled LAB cells employing this cathode demonstrate an exceptional lifespan, operating for 3460 hours and completing 173 cycles while achieving the highest discharge capacity of 13 759 mA h g-1 and low charging overpotentials. The key to this prolonged performance lies in the full reversibility of the cell, attributed to its excellent OER performance. A well-surface adsorbed, amorphous LiO2/Li2O2 discharge product is found to possess high diffusivity and ease of decomposition, contributing significantly to the enhanced longevity of the cell.
Collapse
Affiliation(s)
- Shadeepa Karunarathne
- Faculty of Science and Technology, Bournemouth University, Talbot Campus, Poole, BH12 5BB, UK.
| | | | - Chirag R Ratwani
- Faculty of Science and Technology, Bournemouth University, Talbot Campus, Poole, BH12 5BB, UK.
| | | | | | - Ali Reza Kamali
- Energy and Environmental Materials Research Centre (E2MC), Northeastern University, Shenyang, 110819, China.
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK.
| | - Amr M Abdelkader
- Faculty of Science and Technology, Bournemouth University, Talbot Campus, Poole, BH12 5BB, UK.
| |
Collapse
|
3
|
Li J, Shi Y, Wang J, Liu Q, Luan L, Li Q, Cao Q, Zhang T, Sun H. Cobalt-doped tin disulfide catalysts for high-capacity lithium-air batteries with high lifetime. Phys Chem Chem Phys 2023; 25:26885-26893. [PMID: 37782482 DOI: 10.1039/d3cp02474a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Dual electrolyte lithium-air batteries have received widespread attention for their ultra-high energy density. However, the low internal redox efficiency of these batteries results in a relatively short operating life. SnS2 is widely used in Li-S batteries, Li-ion batteries, photocatalysis, and other fields due to the high discharge capacity in batteries. However, SnS2 suffers from low electrical conductivity and slow redox kinetics. In this study, Co-doped SnS2 is prepared by hydrothermal method for application in dual-electrolyte lithium-air batteries to study its electrochemical performance and its catalytic reaction process by DFT theory. Conductivity tests show that the Co doping enhances the electrical conductivity of the material and high transmission electron microscopy (HRTEM) results demonstrate that the Co doping of SnS2 increases the grain plane spacing and the material indicates that defects are created on the surface of the material, which is more beneficial to the electrochemical performance of the cell. Co-doped SnS2 exhibits excellent good cycling stability and high discharge capacity in a dual electrolyte lithium-air battery, maintaining a 0.7 V overpotential for 120 h at a current density of 0.1 mA cm-2, with a cell life of over 500 h and an initial discharge capacity showing excellent results up to 16 065 mA h g-1. In addition, this study explores the catalytic activity of Co-doped SnS2 based on density flooding theory (DFT). The results show that Co atoms have a synergistic effect with Sn atoms to perturb the lattice parameters. The calculations show that the catalytic activity is enhanced with the increasing of Co doping content and 3Co-Sn exhibits minimal overpotential.
Collapse
Affiliation(s)
- Jie Li
- School of Mechanical Engineering, Shenyang Jianzhu University, No. 25 Middle Road Hunnan, Shenyang, 110168, China.
| | - Yuzhi Shi
- School of Mechanical Engineering, Shenyang Jianzhu University, No. 25 Middle Road Hunnan, Shenyang, 110168, China.
| | - Junhai Wang
- School of Mechanical Engineering, Shenyang Jianzhu University, No. 25 Middle Road Hunnan, Shenyang, 110168, China.
| | - Qianhe Liu
- Human Resources Department, Shenyang Jianzhu University, No. 25 Middle Road Hunnan, Shenyang, 110168, China
| | - Lihua Luan
- School of Mechanical Engineering, Shenyang Jianzhu University, No. 25 Middle Road Hunnan, Shenyang, 110168, China.
| | - Qiang Li
- School of Mechanical Engineering, Shenyang Jianzhu University, No. 25 Middle Road Hunnan, Shenyang, 110168, China.
| | - Qinghao Cao
- School of Mechanical Engineering, Shenyang Jianzhu University, No. 25 Middle Road Hunnan, Shenyang, 110168, China.
| | - Tianyu Zhang
- School of Mechanical Engineering, Shenyang Jianzhu University, No. 25 Middle Road Hunnan, Shenyang, 110168, China.
| | - Hong Sun
- School of Mechanical Engineering, Shenyang Jianzhu University, No. 25 Middle Road Hunnan, Shenyang, 110168, China.
| |
Collapse
|
4
|
Zarei H, Sobhani S, Sansano JM. First Reusable Catalyst for the Reductive Coupling Reaction of Organohalides with Aldehydes. ACS OMEGA 2023; 8:36801-36814. [PMID: 37841197 PMCID: PMC10568700 DOI: 10.1021/acsomega.3c03414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023]
Abstract
In this study, we simulate the reductive coupling (Barbier-Grignard-type) reaction of organohalides with aldehydes using a new reusable catalyst. In this regard, bimetallic alloys of NiCo encapsulated in melamine-based dendrimers (MBD) immobilized on magnetic nanoparticles symbolized as γ-Fe2O3-MBD/NiCo were designed and synthesized. The structure and properties of the catalyst were studied by a variety of techniques such as Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), energy-dispersive spectrometry (EDS) mapping, and inductively coupled plasma (ICP). The presence of NiCo nanoalloys was confirmed by XRD and XPS analysis, TEM images, and EDS mapping. Various secondary alcohols were produced in good to high yields by reductive coupling of different types of aldehydes and organohalides in the presence of HCO2K as a nonmetallic reducing agent in aqueous media catalyzed by γ-Fe2O3-MBD/NiCo. In these reactions, the high catalytic performance of γ-Fe2O3-MBD/NiCo was achieved in comparison to monometallic counterparts due to the synergistic cooperative effect of Co and Ni in the NiCo nanoalloys. Magnetic and hydrophilic properties of the catalyst facilitate the catalyst recyclability for seven runs. The reusability of γ-Fe2O3-MBD/NiCo, use of water as an environmentally friendly solvent, ease of processing, and absence of metal additives make this process an excellent choice for the reductive coupling reaction to produce secondary alcohols from aldehydes. This is the first report on these kinds of reactions using a reusable catalyst.
Collapse
Affiliation(s)
- Hamed Zarei
- Department
of Chemistry, College of Sciences, University
of Birjand, Birjand 414, Iran
| | - Sara Sobhani
- Department
of Chemistry, College of Sciences, University
of Birjand, Birjand 414, Iran
| | - José Miguel Sansano
- Departamento
de Química Orgánica, Facultad de Ciencias, Centro de
Innovación en Química Avanzada (ORFEOCINQA) and Instituto
de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| |
Collapse
|
5
|
Gollavelli G, Gedda G, Mohan R, Ling YC. Status Quo on Graphene Electrode Catalysts for Improved Oxygen Reduction and Evolution Reactions in Li-Air Batteries. Molecules 2022; 27:molecules27227851. [PMID: 36431956 PMCID: PMC9692502 DOI: 10.3390/molecules27227851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Reduced global warming is the goal of carbon neutrality. Therefore, batteries are considered to be the best alternatives to current fossil fuels and an icon of the emerging energy industry. Voltaic cells are one of the power sources more frequently employed than photovoltaic cells in vehicles, consumer electronics, energy storage systems, and medical equipment. The most adaptable voltaic cells are lithium-ion batteries, which have the potential to meet the eagerly anticipated demands of the power sector. Working to increase their power generating and storage capability is therefore a challenging area of scientific focus. Apart from typical Li-ion batteries, Li-Air (Li-O2) batteries are expected to produce high theoretical power densities (3505 W h kg-1), which are ten times greater than that of Li-ion batteries (387 W h kg-1). On the other hand, there are many challenges to reaching their maximum power capacity. Due to the oxygen reduction reaction (ORR) and oxygen evolution reaction (OES), the cathode usually faces many problems. Designing robust structured catalytic electrode materials and optimizing the electrolytes to improve their ability is highly challenging. Graphene is a 2D material with a stable hexagonal carbon network with high surface area, electrical, thermal conductivity, and flexibility with excellent chemical stability that could be a robust electrode material for Li-O2 batteries. In this review, we covered graphene-based Li-O2 batteries along with their existing problems and updated advantages, with conclusions and future perspectives.
Collapse
Affiliation(s)
- Ganesh Gollavelli
- Department of Humanities and Basic Sciences, Aditya Engineering College, Surampalem, Jawaharlal Nehru Technological University Kakinada, Kakinada 533437, India
| | - Gangaraju Gedda
- Department of Chemistry, Presidency University, Banglore 560064, India
| | - Raja Mohan
- Department of Chemistry, Presidency University, Banglore 560064, India
| | - Yong-Chien Ling
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
- Correspondence:
| |
Collapse
|
6
|
Wang W, Wang Y, Wang X, Jiang B, Song H. Engineering Hollow Core-Shell N-C@Co/N-C Catalysts with Bits of Ni Doping Used as Efficient Electrocatalysts in Microbial Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41912-41923. [PMID: 36066511 DOI: 10.1021/acsami.2c09230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The sluggish and inefficient oxygen reduction reaction (ORR) of cathode catalysts in microbial fuel cells is widely accepted as the key restriction in implementing their large-scale actual production application. Recently, modification of nitrogen-doping carbon materials with some transition metal species (M-N-C) is expected to be reserve force to substitute commercial noble metal catalysts. However, long-term stability is always unable to solve effectively. We report a simple synthetic approach of metal-organic framework-derived hollow core-shell Co-nitrogen codoping-modified porous carbon catalysts (N-C@Co/N-C-n%Ni), which is introduced by bits of Ni substance, via the template method and vacuum-assisted impregnation method that exhibit similar catalytic activity to commercial Pt/C catalysts. The hollow core-shell H-N-C@Co/N-C-3%Ni catalyst shows excellent ORR performance and stability, which is 96.31% of the initial current after 125 h continuous reaction, and has been capable of yielding a maximum power density of 1.17 ± 0.01 W·m-2 with 2% decrease in 45 days for long-term continuous operation.
Collapse
Affiliation(s)
- Wenyi Wang
- College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
- Provincial Key Laboratory of Green Chemistry & Energy Conversion Laboratory, Northeast Petroleum University, Daqing 163318, China
| | - Yuanyuan Wang
- College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
- Provincial Key Laboratory of Green Chemistry & Energy Conversion Laboratory, Northeast Petroleum University, Daqing 163318, China
| | - Xueqin Wang
- College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
- Provincial Key Laboratory of Green Chemistry & Energy Conversion Laboratory, Northeast Petroleum University, Daqing 163318, China
| | - Bolong Jiang
- Qingdao University of Technology, Qingdao 266000, Shandong, China
| | - Hua Song
- College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
| |
Collapse
|
7
|
Ryu CH, Ahn HS. Investigation into the morphological implications on electron transfer dynamics of lithium peroxides by scanning electrochemical microscopy. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- C. Hyun Ryu
- Department of Chemistry Yonsei University Seoul South Korea
| | - Hyun S. Ahn
- Department of Chemistry Yonsei University Seoul South Korea
| |
Collapse
|
8
|
Wang J, Zheng J, Liu X. The key to improving the performance of Li-air batteries: Recent progress and challenges of the catalysts. Phys Chem Chem Phys 2022; 24:17920-17940. [DOI: 10.1039/d2cp02212e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Li-air batteries are considered to be one of the most promising energy storage devices due to their high energy density and large specific capacity. But the high overpotential, the sluggish...
Collapse
|
9
|
Wang W, Wang X, Wang Y, Jiang B, Song H. Size-controlled, hollow and hierarchically porous Co 2Ni 2 alloy nanocubes for efficient oxygen reduction in microbial fuel cells. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00480h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic illustration of the fabrication of CoxNiy alloy nanocubes (ANCs) and hollow CoxNiy alloy nanocubes (HANCs).
Collapse
Affiliation(s)
- Wenyi Wang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Xueqin Wang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Yuanyuan Wang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Bolong Jiang
- Binhai Residential Environment Academic Innovation Center, Qingdao University of Technology, Qingdao 266000, Shandong, China
| | - Hua Song
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| |
Collapse
|
10
|
Feng Y, Tian G, Peng Q, Wu Y, Li Y, Luo X, Han Y, Li Q. Fe‐N Doped Peanut Shell Activated Carbon as a Superior Electrocatalyst for Oxygen Reduction and Cathode Catalyst for Zinc‐Air Battery. ChemElectroChem 2021. [DOI: 10.1002/celc.202101192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yunxiao Feng
- College of Chemical and Environmental Engineering Pingdingshan University South Section of Xincheng Future Road Pingdingshan 467000 China
| | - Gang Tian
- College of Chemical and Environmental Engineering Pingdingshan University South Section of Xincheng Future Road Pingdingshan 467000 China
| | - Qinlong Peng
- College of Chemical and Environmental Engineering Pingdingshan University South Section of Xincheng Future Road Pingdingshan 467000 China
| | - Yibo Wu
- College of Chemical and Environmental Engineering Pingdingshan University South Section of Xincheng Future Road Pingdingshan 467000 China
| | - Yanling Li
- College of Chemical and Environmental Engineering Pingdingshan University South Section of Xincheng Future Road Pingdingshan 467000 China
| | - Xiaoqiang Luo
- College of Chemical and Environmental Engineering Pingdingshan University South Section of Xincheng Future Road Pingdingshan 467000 China
| | - Yongjun Han
- College of Chemical and Environmental Engineering Pingdingshan University South Section of Xincheng Future Road Pingdingshan 467000 China
| | - Qingbin Li
- College of Chemical and Environmental Engineering Pingdingshan University South Section of Xincheng Future Road Pingdingshan 467000 China
| |
Collapse
|
11
|
Xu J, Ma Y, Xuan C, Ma C, Wang J. Three‐dimensional electrodes for oxygen electrocatalysis. ChemElectroChem 2021. [DOI: 10.1002/celc.202101522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jinxiao Xu
- Qingdao Agricultural University College of Life Science CHINA
| | - Yingjun Ma
- Qingdao Agricultural University College of Life Science CHINA
| | - Cuijuan Xuan
- Qingdao Agricultural University College of Life Science CHINA
| | - Chuanli Ma
- Qingdao Agricultural University College of Life Science CHINA
| | - Jie Wang
- Qingdao Agricultural University 700#, Chengyang District 266109 Qingdao CHINA
| |
Collapse
|
12
|
Yang Y, Su J, Jiang P, Chen J, Hu L, Chen Q. MOFs‐Derived N‐Doped Carbon‐Encapsulated
Metal/Alloy Electrocatalysts to Tune the Electronic Structure and Reactivity of Carbon Active Sites
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yang Yang
- Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science & Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Jianwei Su
- Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science & Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Peng Jiang
- Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science & Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Jitang Chen
- Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science & Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Lin Hu
- The Anhui Key Laboratory of Condensed Mater Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science Chinese Academy of Sciences Hefei Anhui 230031 China
| | - Qianwang Chen
- Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science & Engineering University of Science and Technology of China Hefei Anhui 230026 China
- The Anhui Key Laboratory of Condensed Mater Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science Chinese Academy of Sciences Hefei Anhui 230031 China
| |
Collapse
|
13
|
Parkash A. Metal-organic framework derived ultralow-loading platinum-copper catalyst: a highly active and durable bifunctional electrocatalyst for oxygen-reduction and evolution reactions. NANOTECHNOLOGY 2021; 32:325703. [PMID: 33902017 DOI: 10.1088/1361-6528/abfb9b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Electrocatalysts with high active oxygen reduction (ORR) and oxygen evolution reaction (OER) activities are key factors in renewable energy technologies. Unlike common strategies for adjusting the proportion of metal centers in a multi-metal organic framework (MOF), herein, we designed and synthesized bifunctional electrocatalysts using cetyltrimethylammonium bromide (CTAB)-capped ultra-low content platinum (Pt) (≤0.5 wt.% Pt) and copper (Cu) nanoparticles and doped on the surface of zinc-based MOF (Zn-MOF-74) and calcinated at 900 °C. According to the electrochemical activity, the Pt/Cu/NPC-900 exhibits superior catalytic activities towards both the ORR with the onset (E0) and half-wave (E1/2) potentials were 1.0 V and 0.89 V versus RHE, respectively, and OER (Eo = 1.48 V versus RHE and overpotential (η) = 0.265 V versus RHE) in an alkaline electrolyte at ambient temperature. Also, Pt/Cu/NPC-900 catalyzes through a 4-electron process and exhibits superior stability. Such insightful findings, as well as a newly developed approach, provides rational design and synthesis of an economical and efficient strategy for bifunctional electrocatalyst development.
Collapse
Affiliation(s)
- Anand Parkash
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Chang'an, West Street 620, Xi'an 710119, People's Republic of China
| |
Collapse
|
14
|
Trimetallic Zeolitic imidazolite framework-derived Co nanoparticles@CoFe-nitrogen-doped porous carbon as bifunctional electrocatalysts for Zn-air battery. J Colloid Interface Sci 2021; 586:621-629. [DOI: 10.1016/j.jcis.2020.10.130] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 11/17/2022]
|
15
|
Sha Q, Wang J, Lu Y, Zhao Z. Polyaniline@MOF fiber derived Fe–Co oxide-based high performance electrocatalyst. NEW J CHEM 2021. [DOI: 10.1039/d0nj05423b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Electrochemical energy conversion and storage are important and coupled with a number of electrocatalytic processes.
Collapse
Affiliation(s)
- Qiqi Sha
- School of Material Science and Engineering
- University of Jinan
- Jinan 250022
- China
| | - Jianrong Wang
- School of Material Science and Engineering
- University of Jinan
- Jinan 250022
- China
| | - Yizhong Lu
- School of Material Science and Engineering
- University of Jinan
- Jinan 250022
- China
| | - Zhenlu Zhao
- School of Material Science and Engineering
- University of Jinan
- Jinan 250022
- China
- Department of Bionano Engineering
| |
Collapse
|
16
|
Jing S, Gong X, Ji S, Jia L, Pollet BG, Yan S, Liang H. Self-standing heterostructured NiC x -NiFe-NC/biochar as a highly efficient cathode for lithium-oxygen batteries. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:1809-1821. [PMID: 33335825 PMCID: PMC7722627 DOI: 10.3762/bjnano.11.163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Lithium-oxygen batteries have attracted research attention due to their low cost and high theoretical capacity. Developing inexpensive and highly efficient cathode materials without using noble metal-based catalysts is highly desirable for practical applications in lithium-oxygen batteries. Herein, a heterostructure of NiFe and NiC x inside of N-doped carbon (NiC x -NiFe-NC) derived from bimetallic Prussian blue supported on biochar was developed as a novel self-standing cathode for lithium-oxygen batteries. The specific discharge capacity of the best sample was 27.14 mAh·cm-2 at a stable discharge voltage of 2.75 V. The hybridization between the d-orbital of Ni and s and p-orbitals of carbon in NiC x , formed at 900 °C, enhanced the electrocatalytic performance due to the synergistic effect between these components. The structure of NiC x -NiFe-NC efficiently improved the electron and ion transfer between the cathode and the electrolyte during the electrochemical processes, resulting in superior electrocatalytic properties in lithium-oxygen batteries. This study indicates that nickel carbide supported on N-doped carbon is a promising cathode material for lithium-oxygen batteries.
Collapse
Affiliation(s)
- Shengyu Jing
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China
| | - Xu Gong
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China
| | - Shan Ji
- College of Biological, Chemical Science and Chemical Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Linhui Jia
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research Group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Sheng Yan
- Shanghai Time Shipping CO., LTD, Shanghai, 200126, China
| | - Huagen Liang
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China
| |
Collapse
|
17
|
Zhang YL, Goh K, Zhao L, Sui XL, Gong XF, Cai JJ, Zhou QY, Zhang HD, Li L, Kong FR, Gu DM, Wang ZB. Advanced non-noble materials in bifunctional catalysts for ORR and OER toward aqueous metal-air batteries. NANOSCALE 2020; 12:21534-21559. [PMID: 33112936 DOI: 10.1039/d0nr05511e] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The catalyst in the oxygen electrode is the core component of the aqueous metal-air battery, which plays a vital role in the determination of the open circuit potential, energy density, and cycle life of the battery. For rechargeable aqueous metal-air batteries, the catalyst should have both good oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic performance. Compared with precious metal catalysts, non-precious metal materials have more advantages in terms of abundant resource reserves and low prices. Over the past few years, great efforts have been made in the development of non-precious metal bifunctional catalysts. This review selectively evaluates the advantages, disadvantages and development status of recent advanced materials including pure carbon materials, carbon-based metal materials and carbon-free materials as bifunctional oxygen catalysts. Preliminary improvement strategies are formulated to make up for the deficiency of each material. The development prospects and challenges facing bifunctional catalysts in the future are also discussed.
Collapse
Affiliation(s)
- Yun-Long Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Athika M, Elumalai P. Porous Carbon Networks Decorated with Cobalt on CoFe
2
O
4
as an Air‐Breathing Electrode for High‐Capacity Rechargeable Lithium‐Air Batteries: Role of Metallic Cobalt Nanoparticles. ChemElectroChem 2020. [DOI: 10.1002/celc.202000908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mattath Athika
- Electrochemical Energy and Sensors Lab, Department of Green Energy Technology, Madanjeet School of Green Energy Technologies Pondicherry University Puducherry 605014 India
| | - Perumal Elumalai
- Electrochemical Energy and Sensors Lab, Department of Green Energy Technology, Madanjeet School of Green Energy Technologies Pondicherry University Puducherry 605014 India
| |
Collapse
|