1
|
Serebrennikova KV, Komova NS, Zherdev AV, Dzantiev BB. SERS Sensors with Bio-Derived Substrates Under the Way to Agricultural Monitoring of Pesticide Residues. BIOSENSORS 2024; 14:573. [PMID: 39727838 DOI: 10.3390/bios14120573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
Uncontrolled use of pesticides in agriculture leads to negative consequences for the environment, as well as for human and animal health. Therefore, timely detection of pesticides will allow application of measures to eliminate the excess of maximum residue limits and reduce possible negative consequences in advance. Common methods of pesticide analysis suffer from high costs, and are time consuming, and labor intensive. Currently, more attention is being paid to the development of surface-enhanced Raman scattering (SERS) sensors as a non-destructive and highly sensitive tool for detecting various chemicals in agricultural applications. This review focuses on the current developments of biocompatible SERS substrates based on natural materials with unique micro/nanostructures, flexible SERS substrates based on biopolymers, as well as functionalized SERS substrates, which are close to the current needs and requirements of agricultural product quality control and environmental safety assessment. The impact of herbicides on the process of photosynthesis is considered and the prospects for the application of Raman spectroscopy and SERS for the detection of herbicides are discussed.
Collapse
Affiliation(s)
- Kseniya V Serebrennikova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Nadezhda S Komova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| |
Collapse
|
2
|
Liu X, Zhang C, Wang C, Yuan Y, Yao J. Improving insight into the localized electrochemical Volmer reaction based on surface enhanced Raman spectroscopy and collisions. Chem Commun (Camb) 2024; 60:9805-9808. [PMID: 39162086 DOI: 10.1039/d4cc03340j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
An operando EC-SERS strategy was successfully developed for monitoring the Volmer reaction based on dynamic collisions. Its feasibility and universality were verified, and it provided a promising approach for visualizing a localized surface reaction.
Collapse
Affiliation(s)
- Xiaoyu Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, China.
| | - Chenjie Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, China.
| | - Chen Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, China.
| | - Yaxian Yuan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, China.
| | - Jianlin Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, China.
| |
Collapse
|
3
|
Wang C, Han J, Xue D, Gu C, Zeng S, Jiang J, Jiang T, Li X, Wu K. SERS-active immunoassay kit for SARS-CoV‑2 mediated by the cooperative chemical and electromagnetic effects of MXene modified with gold nanowires. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123445. [PMID: 37757541 DOI: 10.1016/j.saa.2023.123445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Surface-enhanced Raman scattering (SERS) technique with high sensitivity, reliable specificity, and rapid recognition ability exhibits attractive promise for the effective fast-monitoring of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein, a novel SERS-active immunoassay kit for SARS-CoV-2 nucleocapsid (N) protein was prepared by in-situ growing gold (Au) nanowire forests (NFs) onto Ti3C2Tx, which was then modified onto polymethyl methacrylate (PMMA) matrix and encapsulated into kit. It was noted that the Au nanowires with fibrous structures which vertically anchored on Ti3C2Tx served as perfect channels to promote photo-induced charge transfer. The synergistic action of electromagnetic and chemical effects resulted in an enhancement factor (EF) of 1.27 × 107. Furthermore, the unreliable fluctuation of the enhanced signal was eliminated by using the intrinsic Raman signal of the flexible PMMA platform, achieving an improved correlation coefficient (R2) value from 0.950 to 0.990. Moreover, the as-designed immunoassay kit with both high sensitivity and remedied quantitative ability rendered by the Ti3C2Tx@Au NFs-PMMA composite exhibited a powerful performance in the practical detection of N-protein with concentration low to 5.0 × 10-8 mg/mL.
Collapse
Affiliation(s)
- Chucheng Wang
- School of Materials Science and Chemical Engineering, School of Physical Science and Technology, The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Junshan Han
- School of Materials Science and Chemical Engineering, School of Physical Science and Technology, The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Danni Xue
- School of Materials Science and Chemical Engineering, School of Physical Science and Technology, The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Chenjie Gu
- School of Materials Science and Chemical Engineering, School of Physical Science and Technology, The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Shuwen Zeng
- XLIM Research Institute, UMR 7252 CNRS/University of Limoges, 87060 Limoges, France
| | - Junhui Jiang
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo 315010, Zhejiang, PR China
| | - Tao Jiang
- School of Materials Science and Chemical Engineering, School of Physical Science and Technology, The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| | - Xing Li
- School of Materials Science and Chemical Engineering, School of Physical Science and Technology, The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| | - Kerong Wu
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo 315010, Zhejiang, PR China.
| |
Collapse
|
4
|
Fu F, Liu D, Wu Y. Silk-based conductive materials for smart biointerfaces. SMART MEDICINE 2023; 2:e20230004. [PMID: 39188283 PMCID: PMC11236014 DOI: 10.1002/smmd.20230004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/22/2023] [Indexed: 08/28/2024]
Abstract
Silk-based conductive materials are widely used in biointerface applications, such as artificial epidermal sensors, soft and implantable bioelectronics, and tissue/cell scaffolds. Such biointerface materials require coordinated physicochemical, biological, and mechanical properties to meet current practical needs and future sophisticated demands. However, it remains a challenge to formulate silk-based advanced materials with high electrical conductivity, good biocompatibility, mechanical robustness, and in some cases, tissue adhesion ability without compromising other physicochemical properties. In this review, we highlight recent progress in the development of functional conductive silk-based advanced materials with different morphologies. Then, we reviewed the advanced paradigms of these silk materials applied as wearable flexible sensors, implantable electronics, and tissue/cell engineering with perspectives on the application challenges. Silk-based conductive materials can serve as promising building blocks for biomedical devices in personalized healthcare and other fields of bioengineering.
Collapse
Affiliation(s)
- Fanfan Fu
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingChina
- School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
| | - Dongmei Liu
- School of Computer Science and EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Yilun Wu
- School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
5
|
Ni C, Zhao J, Xia X, Wang Z, Zhao X, Yang J, Zhang N, Yang Y, Zhang H, Gao D. Constructing a Ring-like Self-Aggregation SERS Sensor with the Coffee Ring Effect for Ultrasensitive Detection and Photocatalytic Degradation of the Herbicides Paraquat and Diquat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15296-15310. [PMID: 36441926 DOI: 10.1021/acs.jafc.2c06488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A strategy for building ring-like deposit surface-enhanced Raman scattering (SERS) sensors with the coffee ring effect through the functional modification of the silica nanoparticle surface encapsulated by free-tagged Ag nanoparticles is addressed along with their applications in the SERS-based detection and degradation of target species, including paraquat, diquat, and their free radicals. The nanogap formed by two interparticles with SERS hotspots provides a gigantic amplification signal for the Raman scattering intensity of the analyte molecule located approximately at the hotspots. The enhanced Raman spectrum signals of these target analytes were achieved through the hotspot region of the surface plasmon resonance (SPR) located on the embankment formed by self-aggregation of SiO2@Ag nanoparticles due to the coffee ring effect. Meanwhile, the intrinsic properties of Ag nanoparticles embedded onto the silica surface were applied to photocatalytically degrade the target analytes by harvesting energy from sunlight. The SERS sensor detected the analytes down to 10-9 M in the aqueous solution.
Collapse
Affiliation(s)
- Caiyu Ni
- Department of Chemical Engineering, School of Energy, Materials and Chemical Engineering, Hefei University, Hefei230601, Anhui, China
| | - Jiadong Zhao
- Department of Chemical Engineering, School of Energy, Materials and Chemical Engineering, Hefei University, Hefei230601, Anhui, China
| | - Xiaoxiao Xia
- Department of Biological Engineering, School of Biology, Food and Environment Engineering, Hefei University, Hefei230601, Anhui, China
| | - Zhihui Wang
- Department of Chemical Engineering, School of Energy, Materials and Chemical Engineering, Hefei University, Hefei230601, Anhui, China
| | - Xiaoxiao Zhao
- Department of Chemical Engineering, School of Energy, Materials and Chemical Engineering, Hefei University, Hefei230601, Anhui, China
| | - Junyu Yang
- Department of Chemical Engineering, School of Energy, Materials and Chemical Engineering, Hefei University, Hefei230601, Anhui, China
| | - Nianxi Zhang
- Department of Chemical Engineering, School of Energy, Materials and Chemical Engineering, Hefei University, Hefei230601, Anhui, China
| | - Yang Yang
- Department of Biological Engineering, School of Biology, Food and Environment Engineering, Hefei University, Hefei230601, Anhui, China
| | - Hui Zhang
- Department of Chemical Engineering, School of Energy, Materials and Chemical Engineering, Hefei University, Hefei230601, Anhui, China
| | - Daming Gao
- Department of Chemical Engineering, School of Energy, Materials and Chemical Engineering, Hefei University, Hefei230601, Anhui, China
| |
Collapse
|
6
|
Lu H, Yang Y, Chen R, Huang W, Cheng H, Liu X, Kong H, Li L, Feng J. Quantitative evaluation of human carboxylesterase 1 by SERS-ELISA using a synergistic enhancement strategy based on gold nanoparticles and metal–organic framework. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Hassan MM, Xu Y, He P, Zareef M, Li H, Chen Q. Simultaneous determination of benzimidazole fungicides in food using signal optimized label-free HAu/Ag NS-SERS sensor. Food Chem 2022; 397:133755. [PMID: 35901616 DOI: 10.1016/j.foodchem.2022.133755] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022]
Abstract
Extensively employed pesticide in agriculture causes residue in food products that would threaten public health safety. The surface-enhanced Raman scattering (SERS) signal reliant on double sensing of carbendazim and thiabendazole in a single step is achieved without the aid of any bio-recognition element. A label-free anisotropic bimetallic hollow Au/Ag nanostars (HAu/Ag NS) SERS substrate was synthesized with numerous hot spots for Raman molecule through a galvanic displacement-free deposition. The individual and mixed analyte calibration results were compared based on the identified peak at 1224 (carbendazim) and 778 (thiabendazole) cm-1 and exhibited insignificant differences. The sensor could detect carbendazim and thiabendazole up to 4.28 × 10-4 and 6.04 × 10-4 µg·g-1 or µg·mL-1 in both individual and mixture of their extract. The recovery for accuracy and precision analysis was 91.54-98.26 % in rice and water. Finally, validation results were achieved satisfactorily (p > 0.05) with HPLC.
Collapse
Affiliation(s)
- Md Mehedi Hassan
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 213013, PR China
| | - Yi Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 213013, PR China
| | - Peihuan He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 213013, PR China
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 213013, PR China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 213013, PR China
| | - Quansheng Chen
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 213013, PR China.
| |
Collapse
|
8
|
Fan T, Ke Y, Zhang L, Cai L, Li Z. Large-area Co(OH)2 Nanoflower Array Films Decorated with Ag Nanoparticles as Sensitive SERS Substrates. CrystEngComm 2022. [DOI: 10.1039/d2ce00572g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel structure of large-area three-dimensional (3D) well-ordered Co(OH)2 nanoflower array films decorated with Ag nanoparticles (Ag NPs) was designed as sensitive SERS substrates for trace detection of pesticides. Co(OH)2...
Collapse
|
9
|
Xiao L, Ding Z, Zhang X, Wang X, Lu Q, Kaplan DL. Silk Nanocarrier Size Optimization for Enhanced Tumor Cell Penetration and Cytotoxicity In Vitro. ACS Biomater Sci Eng 2021; 8:140-150. [PMID: 34878245 DOI: 10.1021/acsbiomaterials.1c01122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Silk nanofibers are versatile carriers for hydrophobic and hydrophilic drugs, but fall short in terms of effective delivery to cells, which is essential for therapeutic benefits. Here, the size of silk nanofibers was tuned by ultrasonic treatment to improve the cell penetration features without impacting the structural features. The gradual decrease in silk nanofiber length from 1700 to 40 nm resulted in improved cell uptake. The internalized silk nanofiber carriers evaded lysosomes, which facilitated retention in cancer cells in vitro. The smaller sizes also facilitated enhanced penetration of tumor spheroids for improved delivery in vitro. The cytotoxicity of paclitaxel (PTX)-laden nanocarriers increased when the length of the silk nanocarriers decreased. Both the drug loading capacity and delivery of silk nanocarriers with optimized sizes suggest potential utility in cell treatments.
Collapse
Affiliation(s)
- Liying Xiao
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Xue Wang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P. R. China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
10
|
Ma H, Cui Q, Xu L, Tian Y, Jiao A, Wang C, Zhang M, Li S, Chen M. Silk fibroin fibers decorated with urchin-like Au/Ag nanoalloys: a flexible hygroscopic SERS sensor for monitoring of folic acid in human sweat. OPTICS EXPRESS 2021; 29:30892-30904. [PMID: 34614806 DOI: 10.1364/oe.435568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy has become a powerful and sensitive analytical tool for the detection and assessment of chemical/biological molecules in special scenarios. Herein we propose a flexible hygroscopic SERS biocompatible sensor based on the silk fibroin fibers (SFF) decorated with urchin-like Au/Ag nanoalloys (NAs). The hybrid SFF-Au/Ag NAs with a stronger absorbance capacity (500∼1100 nm) and excellent hygroscopicity provide a remarkable higher near-infrared (NIR)-SERS activity than that of bare urchin-like Au/Ag NAs. The interesting NIR-SERS sensor enables the limit of detection (LOD) of folic acid (FA) to be achieved at nanomolar (nM, 10-9 M) level, facilitating the ultrasensitive monitoring of FA in human sweat and offering reliable real-time personal health management in the near future.
Collapse
|
11
|
Qu Q, Wang J, Zeng C, Wang M, Qi W, He Z. AuNP array coated substrate for sensitive and homogeneous SERS-immunoassay detection of human immunoglobulin G. RSC Adv 2021; 11:22744-22750. [PMID: 35480431 PMCID: PMC9034334 DOI: 10.1039/d1ra02404c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022] Open
Abstract
Owing to the high sensitivity, fast responsiveness and high specificity, immunoassays using surface-enhanced Raman scattering (SERS) as the readout signal displayed great potential in disease diagnosis. In this study, we developed a SERS-immunoassay method for the detection of human immunoglobulin G (HIgG). Upon involving well-ordered AuA on a SERSIA substrate, the LSPR effect was further enhanced to generate a strong and uniform Raman signal through the formation of sandwich structure with the addition of target HIgG and SERSIA tag. Optimization of the assay provided a wide linear range (0.1–200 μg mL−1) and low limit of detection (0.1 μg mL−1). In addition, the SERS-immunoassay method displayed excellent specificity and was homogeneous, which guaranteed the practical use of this method in the quantitative detection of HIgG. To validate this assay, human serum was analysed, which demonstrated the potential advantages of SERS-immunoassay technology in clinical diagnostics. An AuNP array coated substrate was developed for the SERS-immunoassay detection of human immunoglobulin G.![]()
Collapse
Affiliation(s)
- Qi Qu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300350 P. R. China
| | - Jing Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300350 P. R. China
| | - Chuan Zeng
- Technical Center of Zhuhai Entry-Exit Inspection and Quarantine Bureau Zhuhai P. R. China
| | - Mengfan Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300350 P. R. China .,Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin 300350 P. R. China
| | - Wei Qi
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300350 P. R. China .,The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin Tianjin 300072 P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin 300350 P. R. China
| | - Zhimin He
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300350 P. R. China
| |
Collapse
|
12
|
Yadav S, Satija J. The current state of the art of plasmonic nanofibrous mats as SERS substrates: design, fabrication and sensor applications. J Mater Chem B 2021; 9:267-282. [PMID: 33241248 DOI: 10.1039/d0tb02137g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is a widely used analytical tool that allows molecular fingerprint-based ultra-sensitive detection through an enhanced electromagnetic field generated by plasmonic metal nanoparticles (MNPs) by virtue of their localized surface plasmon resonance (LSPR). Although significant progress has been made in the design and fabrication of a variety of SERS substrates, MNP-decorated electrospun nanofibrous (NF) mats have attracted much attention due to their unique nanoscale structural and functional properties. This review focuses on the current state of the art in the fabrication of plasmonic NF mats with the main focus on the pre-mix, in situ, and ex situ approaches. The characteristic functional advantages and limitations of these strategies are also highlighted, which might be helpful for the research community when adopting a suitable approach. The potential of these plasmonic NF mats as a SERS-active optical sensor substrate, and their performance parameters such as the limit of detection, analytical range, and enhancement factor, and real-world applications are also discussed. The summary and futuristic discussion in this review might be of significant value in developing plasmonic NF mat-based SERS-active point-of-care diagnostic chips for a wide range of applications.
Collapse
Affiliation(s)
- Sangeeta Yadav
- School of Biosciences and Technology (SBST), Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Jitendra Satija
- Centre for Nanobiotechnology (CNBT), Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
13
|
Zhao X, Luo X, Bazuin CG, Masson JF. In Situ Growth of AuNPs on Glass Nanofibers for SERS Sensors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55349-55361. [PMID: 33237739 DOI: 10.1021/acsami.0c15311] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is challenging to fabricate plasmonic nanosensors on high-curvature surfaces with high sensitivity and reproducibility at low cost. Here, we report a facile and straightforward strategy, based on an in situ growth technique, for fabricating glass nanofibers covered by asymmetric gold nanoparticles (AuNPs) with tunable morphologies and adjustable spacings, leading to much improved surface-enhanced Raman scattering (SERS) sensitivity because of hotspots generated by the AuNP surface irregularities and adjacent AuNP coupling. First, nanosensors covered with uniform and well-dispersed citrate-capped spherical AuNPs were constructed using a polystyrene-b-poly(4-vinylpyridine) (PS-P4VP, with 33 mol % P4VP content and 61 kg/mol total molecular weight) block copolymer brush-layer templating method, and then, the deposited AuNPs were grown to asymmetric AuNPs. AuNP morphologies and hence the optical characteristics of AuNP-covered glass nanofibers were easily controlled by the choice of experimental parameters, such as the growth time and growth solution composition. In particular, tunable AuNP average diameters between about 40 and 80 nm with AuNP spacings between about 50 and 1 nm were achieved within 15 min of growth. The SERS sensitivity of branched AuNP-covered nanofibers (3 min growth time) was demonstrated to be more than threefold more intense than that of the original spherical AuNP-covered nanofibers using a 633 nm laser. Finite-difference time-domain simulations were performed, showing that the electric field enhancement is highest for intermediate AuNP diameters. Furthermore, SERS applications of these nanosensors for H2O2 detection and pH sensing were demonstrated, offering appealing and promising candidates for real-time monitoring of extra/intracellular species in vitro and in vivo.
Collapse
Affiliation(s)
- Xingjuan Zhao
- Département de chimie, Centre québécois des matériaux fonctionnels (CQMF) and Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Xiaojun Luo
- Département de chimie, Centre québécois des matériaux fonctionnels (CQMF) and Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P.R. China
| | - C Geraldine Bazuin
- Département de chimie, Centre québécois des matériaux fonctionnels (CQMF) and Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Jean-Francois Masson
- Département de chimie, Centre québécois des matériaux fonctionnels (CQMF) and Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
14
|
Golubewa L, Karpicz R, Matulaitiene I, Selskis A, Rutkauskas D, Pushkarchuk A, Khlopina T, Michels D, Lyakhov D, Kulahava T, Shah A, Svirko Y, Kuzhir P. Surface-Enhanced Raman Spectroscopy of Organic Molecules and Living Cells with Gold-Plated Black Silicon. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50971-50984. [PMID: 33107725 DOI: 10.1021/acsami.0c13570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Black silicon (bSi) refers to an etched silicon surface comprising arrays of microcones that effectively suppress reflection from UV to near-infrared (NIR) while simultaneously enhancing the scattering and absorption of light. This makes bSi covered with a nm-thin layer of plasmonic metal, i.e., gold, an attractive substrate material for sensing of bio-macromolecules and living cells using surface-enhanced Raman spectroscopy (SERS). The performed Raman measurements accompanied with finite element numerical simulation and density functional theory analysis revealed that at the 785 nm excitation wavelength, the SERS enhancement factor of the bSi/Au substrate is as high as 108 due to a combination of electromagnetic and chemical mechanisms. This finding makes the SERS-active bSi/Au substrate suitable for detecting trace amounts of organic molecules. We demonstrate the outstanding performance of this substrate by highly sensitive and specific detection of a small organic molecule of 4-mercaptobenzoic acid and living C6 rat glioma cell nucleic acids/proteins/lipids. Specifically, the bSi/Au SERS-active substrate offers a unique opportunity to investigate the living cells' malignant transformation using characteristic protein disulfide Raman bands as a marker. Our findings evidence that bSi/Au provides a pathway to the highly sensitive and selective, scalable, and low-cost substrate for lab-on-a-chip SERS biosensors that can be integrated into silicon-based photonics devices.
Collapse
Affiliation(s)
- Lena Golubewa
- Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
- Institute for Nuclear Problems, Belarusian State University, Bobruiskaya 11, Minsk 220006, Belarus
| | - Renata Karpicz
- Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
| | - Ieva Matulaitiene
- Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
| | - Algirdas Selskis
- Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
| | - Danielis Rutkauskas
- Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
| | - Aliaksandr Pushkarchuk
- Institute for Nuclear Problems, Belarusian State University, Bobruiskaya 11, Minsk 220006, Belarus
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, Surganova 13, Minsk 220072, Belarus
| | - Tatsiana Khlopina
- Institute for Nuclear Problems, Belarusian State University, Bobruiskaya 11, Minsk 220006, Belarus
| | - Dominik Michels
- Computer, Electrical and Mathematical Science and Engineering Division, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Dmitry Lyakhov
- Computer, Electrical and Mathematical Science and Engineering Division, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Tatsiana Kulahava
- Institute for Nuclear Problems, Belarusian State University, Bobruiskaya 11, Minsk 220006, Belarus
| | - Ali Shah
- Department of Micro and Nanosciences, Aalto University, Espoo, P. O. Box 13500, FI-00076, Finland
| | - Yuri Svirko
- Institute of Photonics, University of Eastern Finland, Yliopistokatu 2, Joensuu FI-80100, Finland
| | - Polina Kuzhir
- Institute for Nuclear Problems, Belarusian State University, Bobruiskaya 11, Minsk 220006, Belarus
- Institute of Photonics, University of Eastern Finland, Yliopistokatu 2, Joensuu FI-80100, Finland
| |
Collapse
|
15
|
Xu G, Ding Z, Lu Q, Zhang X, Zhou X, Xiao L, Lu G, Kaplan DL. Electric field-driven building blocks for introducing multiple gradients to hydrogels. Protein Cell 2020; 11:267-285. [PMID: 32048173 PMCID: PMC7093350 DOI: 10.1007/s13238-020-00692-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 01/14/2020] [Indexed: 01/25/2023] Open
Abstract
Gradient biomaterials are considered as preferable matrices for tissue engineering due to better simulation of native tissues. The introduction of gradient cues usually needs special equipment and complex process but is only effective to limited biomaterials. Incorporation of multiple gradients in the hydrogels remains challenges. Here, beta-sheet rich silk nanofibers (BSNF) were used as building blocks to introduce multiple gradients into different hydrogel systems through the joint action of crosslinking and electric field. The blocks migrated to the anode along the electric field and gradually stagnated due to the solution-hydrogel transition of the systems, finally achieving gradient distribution of the blocks in the formed hydrogels. The gradient distribution of the blocks could be tuned easily through changing different factors such as solution viscosity, which resulted in highly tunable gradient of mechanical cues. The blocks were also aligned under the electric field, endowing orientation gradient simultaneously. Different cargos could be loaded on the blocks and form gradient cues through the same crosslinking-electric field strategy. The building blocks could be introduced to various hydrogels such as Gelatin and NIPAM, indicating the universality. Complex niches with multiple gradient cues could be achieved through the strategy. Silk-based hydrogels with suitable mechanical gradients were fabricated to control the osteogenesis and chondrogenesis. Chondrogenic-osteogenic gradient transition was obtained, which stimulated the ectopic osteochondral tissue regeneration in vivo. The versatility and highly controllability of the strategy as well as multifunction of the building blocks reveal the applicability in complex tissue engineering and various interfacial tissues.
Collapse
Affiliation(s)
- Gang Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Lianyungang, 222061, China
| | - Zhaozhao Ding
- Department of Burns and Plastic Surgery, Engineering Research Center of the Ministry of Education for Wound Repair Technology, The Affiliated Hospital of Jiangnan University, Wuxi, 214041, China
| | - Qiang Lu
- Department of Burns and Plastic Surgery, Engineering Research Center of the Ministry of Education for Wound Repair Technology, The Affiliated Hospital of Jiangnan University, Wuxi, 214041, China.
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China.
| | - Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Xiaozhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| | - Liying Xiao
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Guozhong Lu
- Department of Burns and Plastic Surgery, Engineering Research Center of the Ministry of Education for Wound Repair Technology, The Affiliated Hospital of Jiangnan University, Wuxi, 214041, China.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
16
|
Ding Z, Lu G, Cheng W, Xu G, Zuo B, Lu Q, Kaplan DL. Tough Anisotropic Silk Nanofiber Hydrogels with Osteoinductive Capacity. ACS Biomater Sci Eng 2020; 6:2357-2367. [PMID: 33455344 DOI: 10.1021/acsbiomaterials.0c00143] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multiple physical cues such as hierarchical microstructures, topography, and stiffness influence cell fate during tissue regeneration. Yet, introducing multiple physical cues to the same biomaterial remains a challenge. Here, a synergistic cross-linking strategy was developed to fabricate protein hydrogels with multiple physical cues based on combinations of two types of silk nanofibers. β-sheet-rich silk nanofibers (BSNFs) were blended with amorphous silk nanofibers (ASNFs) to form composite nanofiber systems. The composites were transformed into tough hydrogels through horseradish peroxidase (HRP) cross-linking in an electric field, where ASNFs were cross-linked with HRP, while BSNFs were aligned by the electrical field. Anisotropic morphologies and higher stiffness of 120 kPa were achieved. These anisotropic hydrogels induced osteogenic differentiation and the aligned aggregation of stem cells in vitro while also exhibiting osteoinductive capacity in vivo. Improved tissue outcomes with the hydrogels suggest promising applications in bone tissue engineering, as the processing strategy described here provides options to form hydrogels with multiple physical cues.
Collapse
Affiliation(s)
- Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Guozhong Lu
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, People's Republic of China
| | - Weinan Cheng
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen 361000, People's Republic of China
| | - Gang Xu
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Lianyungang 222061, People's Republic of China
| | - Baoqi Zuo
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China.,Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|