1
|
Cheng R, Zhang X, Li J, Zheng H, Zhang Q. Nanoporous, Ultrastiff, and Transparent Plastic-like Polymer Hydrogels Enabled by Hydrogen Bonding-Induced Self-Assembly. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42783-42793. [PMID: 39087622 DOI: 10.1021/acsami.4c10382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Most natural supporting tissues possess both exceptional mechanical strength, a significant amount of water, and the anisotropic structure, as well as nanoscale assembly. These properties are essential for biological processes, but have been challenging to emulate in synthetic materials. In an effort to achieve simultaneous improvement of these trade-off features, a hydrogen bonding-induced self-assembly strategy was introduced to create nanoporous plastic-like polymer hydrogels. Multiple hydrogen bonding-mediated networks and nanoporous orientation structures endow transparent hydrogels with remarkable mechanical robustness. They exhibit Young's modulus of up to 223.7 MPa and a breaking strength of up to 10.3 MPa, which are superior to those of most common polymer hydrogels. The uniform porous nanostructures of hydrogen-bonded hydrogels contribute to a significantly larger specific surface area compared to conventional hydrogels. This allows for the retention of high mechanical properties in environments with a high water content of 70 wt %. A rubbery stage is observed during the heating process, which can reverse and reshape the manufacture of objects with various desired 2D or 3D shapes using techniques such as origami and kirigami. Finally, as a proof-of-concept, the outstanding mechanical properties of poly(MAA-co-AA-co-NVCL) hydrogel, combined with its high water content, make it suitable for applications such as smart temperature monitors, multilevel information anticounterfeiting, and artificial muscles.
Collapse
Affiliation(s)
- Ruidong Cheng
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xuehui Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jie Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hua Zheng
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
2
|
Ma Y, Lu Y, Yue Y, He S, Jiang S, Mei C, Xu X, Wu Q, Xiao H, Han J. Nanocellulose-mediated bilayer hydrogel actuators with thermo-responsive, shape memory and self-sensing performances. Carbohydr Polym 2024; 335:122067. [PMID: 38616090 DOI: 10.1016/j.carbpol.2024.122067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 04/16/2024]
Abstract
Inspired by creatures, abundant stimulus-responsive hydrogel actuators with diverse functionalities have been manufactured for applications in soft robotics. However, constructing a shape memory and self-sensing bilayer hydrogel actuator with high mechanical strength and strong interfacial bonding still remains a challenge. Herein, a novel bilayer hydrogel with a stimulus-responsive TEMPO-oxidized cellulose nanofibers/poly(N-isopropylacrylamide) (TOCN/PNIPAM) layer and a non-responsive TOCN/polyacrylamide (TOCN/PAM) layer is proposed as a thermosensitive actuator. TOCNs as a nano-reinforced phase provide a high mechanical strength and endow the hydrogel actuator with a strong interfacial bonding. Due to the incorporation of TOCNs, the TOCN/PNIPAM hydrogel exhibits a high compressive strength (~89.2 kPa), elongation at break (~170.7 %) and tensile strength (~24.0 kPa). The prepared PNIPAM/TOCN/PAM hydrogel actuator performs the roles of an encapsulation, jack, temperature-controlled fluid valve and temperature-control manipulator. The incorporation of Fe3+ further endows the bilayer hydrogel actuator with a synergistic performance of shape memory and temperature-driven, which can be used as a temperature-responsive switch to detect ambient temperature. The PNIPAM/TOCN/PAM-Fe3+ conductive hydrogel can be assembled into a flexible sensor and generate sensing signals when driven by temperature changes to achieve real-time feedback. This research may lead to new insights into the design and manufacturing of intelligent flexible soft robots.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ya Lu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yiying Yue
- College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Shuijian He
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaohua Jiang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Changtong Mei
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xinwu Xu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qinglin Wu
- School of Renewable Natural Resources, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, 15 Dineen Drive, Fredericton, NB E3B 5A3, Canada
| | - Jingquan Han
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Hang T, Chen Y, Yin F, Shen J, Li X, Li Z, Zheng J. Highly stretchable polyvinyl alcohol composite conductive hydrogel sensors reinforced by cellulose nanofibrils and liquid metal for information transmission. Int J Biol Macromol 2024; 258:128855. [PMID: 38114002 DOI: 10.1016/j.ijbiomac.2023.128855] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
Conductive hydrogels have received widespread attention in the field of flexible sensors. However, a single network structure inside the hydrogel sensor usually makes it difficult to bear larger mechanical loadings, greatly limiting practical applications. Developing a recoverable conductive hydrogel sensor with high toughness and adaptability is still challenging. Herein, a high-performance polyvinyl alcohol (PVA)-based conductive composite hydrogel was constructed, assisted by green cellulose nanofibrils (CNFs), magnesium chloride (MgCl2), ethylene glycol (EG), and liquid metal (LM). The synergistic effects between CNFs and LM enhanced the network structure inside the recoverable hydrogel. This resulted in an excellent tensile strength of 3.86 MPa with an elongation at break of as high as 918.4 % and compressive strength of 4.04 MPa at 80 % strain. In addition, the conductive network composed of MgCl2 and LM endowed the hydrogel good electrical conductivity. Moreover, it could be used as a flexible strain sensor for various application scenarios, e.g., micro-stress monitoring (water droplet falling) and information encryption transmission of Morse code. Such uniqueness will provide a design strategy for developing a new generation of hydrogel sensors.
Collapse
Affiliation(s)
- Tianyi Hang
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Yiming Chen
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China.
| | - Fuqiang Yin
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiahui Shen
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Xiping Li
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Zhaochun Li
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Jiajia Zheng
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
4
|
Lim B, Kim J, Desai MS, Wu W, Chae I, Lee SW. Elastic Fluorescent Protein-Based Down-Converting Optical Films for Flexible Display. Biomacromolecules 2023; 24:118-131. [PMID: 36507771 DOI: 10.1021/acs.biomac.2c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein-based material design provides great advantages to developing smart biomaterials with tunable structures and desired functions. They have been widely used in many biomedical applications including tissue engineering and drug delivery. However, protein-based materials are not yet widely used in optoelectronic materials despite their excellent optical and tunable mechanical properties. Here, we synthesized engineered fluorescent proteins (FPs) fused with elastic protein for the development of optoelectrical down-converting optical filters for flexible display materials. We synthesized sequence-specific FPs to tune blue, green, yellow, and red colors and fused them with elastic protein to tune mechanical properties. We fabricated flexible self-supporting film materials and characterized mechanical properties and down-converting optical properties. We also fabricated a hybrid light-emitting diode (LED) to down convert blue to desired green, red, and white colors. Furthermore, we constructed a flexible white LED using organic LED as a flexible substrate. Our modular synthesis approach of tunable bio-optoelectrical material approaches will be useful to design future biocompatible and flexible display materials and technologies.
Collapse
Affiliation(s)
- Butaek Lim
- Department of Bioengineering, University of California, Berkeley, Berkeley, California94720, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Jinyeong Kim
- Samsung Display Co Ltd, 1 Samsung-ro, Giheung-gu, Yongin-si17113, Republic of Korea
| | - Malav S Desai
- Department of Bioengineering, University of California, Berkeley, Berkeley, California94720, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Weiyu Wu
- Department of Bioengineering, University of California, Berkeley, Berkeley, California94720, United States
| | - Inseok Chae
- Department of Bioengineering, University of California, Berkeley, Berkeley, California94720, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Seung-Wuk Lee
- Department of Bioengineering, University of California, Berkeley, Berkeley, California94720, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| |
Collapse
|
5
|
Howard E, Li M, Kozma M, Zhao J, Bae J. Self-strengthening stimuli-responsive nanocomposite hydrogels. NANOSCALE 2022; 14:17887-17894. [PMID: 36448666 DOI: 10.1039/d2nr05408f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Stimuli-responsive hydrogels with self-strengthening properties are promising for the use of autonomous growth and adaptation systems to the surrounding environments by mimicking biological materials. However, conventional stimuli-responsive hydrogels require structural destruction to initiate mechanochemical reactions to grow new polymeric networks and strengthen themselves. Here we report continuous self-strengthening of a nanocomposite hydrogel composed of poly(N-isopropylacrylamide) (PNIPAM) and nanoclay (NC) by using external stimuli such as heat and ionic strength. The internal structures of the NC-PNIPAM hydrogel are rearranged through the swelling-deswelling cycles or immersing in a salt solution, thus its mechanical properties are significantly improved. The effects of concentration of NC in hydrogels, number of swelling-deswelling cycles, and presence of salt in the surrounding environment on the mechanical properties of hydrogels are characterized by nanoindentation and tensile tests. The self-strengthening mechanical performance of the hydrogels is demonstrated by the loading ability. This work may offer promise for applications such as artificial muscles and soft robotics.
Collapse
Affiliation(s)
- Elizabeth Howard
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Minghao Li
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael Kozma
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Jiayu Zhao
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Jinhye Bae
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
- Chemical Engineering Program, Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
A Metal Ion and Thermal-Responsive Bilayer Hydrogel Actuator Achieved by the Asymmetric Osmotic Flow of Water between Two Layers under Stimuli. Polymers (Basel) 2022; 14:polym14194019. [PMID: 36235968 PMCID: PMC9570860 DOI: 10.3390/polym14194019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Shape-morphing hydrogels have drawn great attention due to their wide applications as soft actuators, while asymmetric responsive shape-morphing behavior upon encountering external stimuli is fundamental for the development of hydrogel actuators. Therefore, in this work, bilayer hydrogels were prepared and the shrinkage ratios (LA/LN) of the AAm/AAc layer to the NIPAM layer immersed in different metal ion solutions, leading to bending in different directions, were investigated. The difference in the shrinkage ratio was attributed to the synergistic effect of the osmolarity difference between the inside and outside of the hydrogels and the interaction difference between the ion and hydrogel polymer chains. Additionally, under thermal stimuli, the hydrogel actuator would bend toward the NIPAM layer due to the shrinkage of the hydrogel networks caused by the hydrophilic–hydrophobic phase transition of NIPAM blocks above the LCST. This indicates that metal ion and thermal-responsive shape-morphing hydrogel actuators with good mechanical properties could be used as metal ion or temperature-controllable switches or other smart devices.
Collapse
|
7
|
Duan Y, Zhao Y, Ai S, Qiu D, Wang X, Qu X, Yang Z. Programmable Processing toward Stiff Composite Hydrogels. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yexiao Duan
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanran Zhao
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shili Ai
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoyan Wang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Xiaozhong Qu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenzhong Yang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Gong K, Hou L, Wu P. Hydrogen-Bonding Affords Sustainable Plastics with Ultrahigh Robustness and Water-Assisted Arbitrarily Shape Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201065. [PMID: 35261086 DOI: 10.1002/adma.202201065] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Herein, the supramolecular plastic-like hydrogel (SPH) is introduced as a platform to fabricate sustainable plastics with ultrahigh stiffness and strength as well as water-assisted arbitrarily shapeable capability. The transparent plastics are constructed from SPHs of cellulose ether/polycarboxylic acid complexes and demonstrate mechanical robustness with Young's modulus up to 3.4 GPa and tensile strength up to 124.0 MPa, superior or comparable to most common plastics. Meanwhile, the shape of the plastics can be reversibly engineered by air drying of the SPHs with diverse 2D/3D shapes and structures, which are generated conveniently via origami, kirigami, embossing, etc., in virtue of plastic deformation and shape memory effect of SPHs. On the basis of multi-dimensional infrared-spectral analysis, it is revealed that the dense acid-acid and acid-ether hydrogen (H)-bonding network in the plastic is responsible for the mechanical robustness while the evolution of water-polymer H-bonds into polymer-polymer H-bonds during air drying contributes to the shape fixing. This work provides a novel method of manufacturing sustainable plastics with simultaneous strong mechanical performance and convenient processibility from hydrogels with plastic-like mechanical behavior.
Collapse
Affiliation(s)
- Kai Gong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Lei Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
9
|
Highly Tough, Stretchable and Self-Healing Polyampholyte Elastomers with Dual Adhesiveness. Int J Mol Sci 2022; 23:ijms23094548. [PMID: 35562939 PMCID: PMC9104851 DOI: 10.3390/ijms23094548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
A new type of polyampholyte with unique viscoelastic properties can be easily synthesized by the copolymerization of butyl acrylate with dimethylaminoethyl methacrylate and acid acrylate in one pot. The elastic modulus of the as-prepared polyampholyte can be easily tuned by adjusting the ratio between the butyl acrylate and ionic monomers. The polyampholyte synthesized by a low proportion of ionic monomer showed low tensile strength and high stretchability, resulting in good conformal compliance with the biological tissues and potent energy dissipation. Due to the existence of high-intensity reversible ionic bonds in the polymer matrix, excellent self-recovery and self-healing properties were achieved on the as-prepared polyampholytes. By combining the high Coulombic interaction and interfacial energy dissipation, tough adhesiveness was obtained for the polyampholyte on various substrates. This new type of polyampholyte may have important applications in adhesives, packaging and tissue engineering.
Collapse
|
10
|
Gao Y, Wang P, Zhao F, Liu X, Wu J, Hu J. A facile approach for anisotropic hydrogel with light-regulated stiffness and its application to achieve mechanical toughening. Macromol Rapid Commun 2022; 43:e2200077. [PMID: 35298857 DOI: 10.1002/marc.202200077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/07/2022] [Indexed: 11/10/2022]
Abstract
Many load-bearing tissues in nature obtain high toughness by fabricating anisotropic structures with spatially regulated composition and modulus at macroscale. This reality inspires a toughening strategy for hydrogel based on the controlling of modulus heterogeneity. Herein, a facile approach to realize light-regulated spatial modulus heterogeneity with large contrast in hydrogel is proposed. Ferric citric acid complex is used as a light-responsive ionic crosslinker, which can first stiffen an alginate/polyacrylamide hydrogel by coordinating with the alginate to form another network, then realize light-triggered softening through photoreduction of ferric ions. Based on this, a stripe-patterned hydrogel with alternating stiff and soft segments can be fabricated through photopatterning. The modulus contrast between the stiff and soft phases can be adjusted by control of several influence factors and the maximum modulus contrast reach up to 87 times. As a result, the toughness of the stripe-patterned hydrogel is enhanced by 3.5 times comparing to that hydrogel without pattern. This approach shows great potential in synthesis of smart hydrogel with light-programmable mechanical performances, and may be widely applicable for the hydrogels with functional groups that can coordinate with metal ions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yang Gao
- State Key Laboratory of Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Peiyao Wang
- State Key Laboratory of Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Fei Zhao
- State Key Laboratory of Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiao Liu
- State Key Laboratory of Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jingping Wu
- State Key Laboratory of Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jian Hu
- State Key Laboratory of Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
11
|
Chen RY, Lai CJ, Chen YJ, Wu MX, Yang H. Omnidirectional / Unidirectional Antireflection-Switchable Structures Inspired by Dragonfly Wings. J Colloid Interface Sci 2021; 610:246-257. [PMID: 34923266 DOI: 10.1016/j.jcis.2021.12.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 10/19/2022]
Abstract
Randomly arranged irregular inclined conical structure-covered dragonfly wings, distinguished from periodic conical structure-covered cicada wings, are with high optical transparency for wide viewing angles. Bioinspired by the antireflective structures, we develop a colloidal lithography approach for engineering randomly arranged irregular conical structures with shape memory polymer-based tips. The structures establish a gradual refractive index transition to suppresses optical reflection in the visible spectrum. By manipulating the configuration of structure tips through applying common solvent stimulations or contact pressures under ambient conditions, the resulting unidirectional antireflection and omnidirectional antireflection performances are able to be instantaneously and reversibly switched. The dependences of structure shape, structure inclination, structure arrangement, and structure composition on the switchable antireflection capability are also systematically investigated in this study.
Collapse
Affiliation(s)
- Ru-Yu Chen
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan
| | - Chung-Jui Lai
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan
| | - You-Jie Chen
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan
| | - Mei-Xuan Wu
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan
| | - Hongta Yang
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan
| |
Collapse
|
12
|
Xu C, Zhang X, Liu S, Zhao X, Geng C, Wang L, Xia Y. Selected Phase Separation Renders High Strength and Toughness to Polyacrylamide/Alginate Hydrogels with Large-Scale Cross-Linking Zones. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25383-25391. [PMID: 34014071 DOI: 10.1021/acsami.1c04577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High water content usually contradicts the mechanics for hydrogels, and achieving both characteristics is extremely challenging. Herein, a novel confined-chain-aggregation (CCA) strategy is developed to fabricate ultrastrong and tough hydrogels without sacrificing their inherent water capacity. Based on the popular polyacrylamide/alginate (PAAm/Alg) system with a double network (DN), a poor solvent exchange is induced once PAAm is fully cross-linked but prior to ionic cross-linking of alginate. In this case, the alginate chains are restricted by the chemical PAAm network and undergo a confined-chain aggregation, which guarantees an interpenetrating network of both polymers and simultaneously generates micron-scale aggregates. In addition, after the subsequent water uptake, the accompanying formation of hydrogen bonds and metal-ligand coordination stabilizes the newly formed alginate aggregates, serving as large-scale cross-linking zones. However, the PAAm chains are anchored by the preformed cross-linking points and convert back to the uniformly distributed, high-water-content state, achieving a selected phase separation in a DN system. The combined CCA and hybrid cation cross-linking method gives mechanical strength and toughness to the PAAm/Alg hydrogels to reach approximately 30 and 5 times the traditional methods, respectively. This investigation provides a general strategy for the development of a new generation of double-network hydrogels, which will expand their application as structural materials for cartilage and soft robotics.
Collapse
Affiliation(s)
- Chongzhi Xu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiansheng Zhang
- College of Textiles and Clothing, Research Center for Intelligent and Wearable Technology, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao 266071, China
- National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Taian 271000, China
| | - Shuo Liu
- College of Textiles and Clothing, Research Center for Intelligent and Wearable Technology, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao 266071, China
| | - Xianwei Zhao
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Cunzhen Geng
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Lili Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanzhi Xia
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
13
|
Narasimhan BN, Deijs GS, Manuguri S, Ting MSH, Williams MAK, Malmström J. A comparative study of tough hydrogen bonding dissipating hydrogels made with different network structures. NANOSCALE ADVANCES 2021; 3:2934-2947. [PMID: 36134190 PMCID: PMC9419215 DOI: 10.1039/d1na00103e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/26/2021] [Indexed: 05/05/2023]
Abstract
Hydrogels are excellent soft materials to interface with biological systems. Precise control and tunability of dissipative properties of gels are particularly interesting in tissue engineering applications. In this work, we produced hydrogels with tunable dissipative properties by photopolymerizing a second polymer within a preformed cross-linked hydrogel network of poly(acrylamide). We explored second networks made with different structures and capacity to hydrogen bond with the first network, namely linear poly(acrylic acid) and branched poly(tannic acid). Gels incorporating a second network made with poly(tannic acid) exhibited excellent stiffness (0.35 ± 0.035 MPa) and toughness (1.64 ± 0.26 MJ m-3) compared to the poly(acrylic acid) counterparts. We also demonstrate a strategy to fabricate hydrogels where the dissipation (loss modulus) can be tuned independently from the elasticity (storage modulus) suitable for cell culture applications. We anticipate that this modular design approach for producing hydrogels will have applications in tailored substrates for cell culture studies and in load bearing tissue engineering applications.
Collapse
Affiliation(s)
- Badri Narayanan Narasimhan
- Department of Chemical and Materials Engineering, University of Auckland Auckland New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology 6140 Wellington New Zealand
| | - Gerrit Sjoerd Deijs
- Department of Chemical and Materials Engineering, University of Auckland Auckland New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology 6140 Wellington New Zealand
| | - Sesha Manuguri
- Department of Chemical and Materials Engineering, University of Auckland Auckland New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology 6140 Wellington New Zealand
| | - Matthew Sheng Hao Ting
- Department of Chemical and Materials Engineering, University of Auckland Auckland New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology 6140 Wellington New Zealand
| | - M A K Williams
- MacDiarmid Institute for Advanced Materials and Nanotechnology 6140 Wellington New Zealand
- School of Fundamental Sciences, Massey University PN461, Private Bag 11222 Palmerston North 4442 New Zealand
| | - Jenny Malmström
- Department of Chemical and Materials Engineering, University of Auckland Auckland New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology 6140 Wellington New Zealand
| |
Collapse
|
14
|
Wu C, Liu X, Ying Y. Soft and Stretchable Optical Waveguide: Light Delivery and Manipulation at Complex Biointerfaces Creating Unique Windows for On-Body Sensing. ACS Sens 2021; 6:1446-1460. [PMID: 33611914 DOI: 10.1021/acssensors.0c02566] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past few decades, optical waveguides have been increasingly used in wearable/implantable devices for on-body sensing. However, conventional optical waveguides are stiff, rigid, and brittle. A mismatch between conventional optical waveguides and complex biointerfaces makes wearable/implantable devices uncomfortable to wear and potentially unsafe. Soft and stretchable polymer optical waveguides not only inherit many advantages of conventional optical waveguides (e.g., immunity to electromagnetic interference and without electrical hazards) but also provide a new perspective for solving the mismatch between conventional optical waveguides and complex biointerfaces, which is essential for the development of light-based wearable/implantable sensors. In this review, polymer optical waveguides' unique properties, including flexibility, biocompatibility and biodegradability, porosity, and stimulus responsiveness, and their applications in the wearable/implantable field in recent years are summarized. Then, we briefly discuss the current challenges of high optical loss, unstable signal transmission, low manufacturing efficiency, and difficulty in deployment during implantation of flexible polymer optical waveguides, and propose some possible solutions to these problems.
Collapse
Affiliation(s)
- Chenjian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiangjiang Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- College of Mechanical and Electrical Engineering, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
15
|
Liang X, Ding H, Wang Q, Wang M, Yin B, Sun G. Nature-inspired semi-IPN hydrogels with tunable mechanical properties and multi-responsiveness. NEW J CHEM 2021. [DOI: 10.1039/d0nj04675b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tough hydrogels (PAP hydrogels) with high mechanical properties and multi-responsiveness.
Collapse
Affiliation(s)
- Xiaoxu Liang
- Joint Key Laboratory of the Ministry of Education
- Institute of Applied Physics and Materials Engineering
- University of Macau
- Avenida da Universidade
- Taipa
| | - Hongyao Ding
- Joint Key Laboratory of the Ministry of Education
- Institute of Applied Physics and Materials Engineering
- University of Macau
- Avenida da Universidade
- Taipa
| | - Qiao Wang
- Joint Key Laboratory of the Ministry of Education
- Institute of Applied Physics and Materials Engineering
- University of Macau
- Avenida da Universidade
- Taipa
| | - Miaomiao Wang
- Joint Key Laboratory of the Ministry of Education
- Institute of Applied Physics and Materials Engineering
- University of Macau
- Avenida da Universidade
- Taipa
| | - Bibo Yin
- Joint Key Laboratory of the Ministry of Education
- Institute of Applied Physics and Materials Engineering
- University of Macau
- Avenida da Universidade
- Taipa
| | - Guoxing Sun
- Joint Key Laboratory of the Ministry of Education
- Institute of Applied Physics and Materials Engineering
- University of Macau
- Avenida da Universidade
- Taipa
| |
Collapse
|
16
|
Zhu Y, Lin L, Chen Y, Song Y, Lu W, Guo Y. Extreme Temperature-Tolerant Conductive Gel with Antibacterial Activity for Flexible Dual-Response Sensors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56470-56479. [PMID: 33270426 DOI: 10.1021/acsami.0c17242] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Flexible sensors based on conductive hydrogel show great potential in electronic skin and human-machine interface. However, pure water in hydrogel inevitably freezes or rapidly evaporates under extreme temperatures, leading to inadequate fulfillment of sensor performances. Herein, a well-designed strategy is reported for fabricating extreme temperature-tolerant gel-based sensors. By immersing a gelatin/polyacrylamide (PAAm)-clay composite (GC) hydrogel into a ZnCl2/water/glycerol system, a phase-transition-tunable gel (PTTGC gel) is obtained with outstanding antifreezing (-82 °C) and long-lasting moisture (70 °C, more than 40 days) properties. Meanwhile, the gel also presents good antibacterial activity and biocompatibility attributing to Zn2+ and gelatin, respectively. Then, a dual-response sensor with a wide operating temperature (-60 to 60 °C) is proposed, presenting high stress and temperature sensitivities and long-term stability. The sensor will meet the needs of the human-machine interface for scientific investigation and data monitoring in polar, desert, etc.
Collapse
Affiliation(s)
- Yi Zhu
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Lin
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yu Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yeping Song
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310000, China
| | - Weipeng Lu
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310000, China
| | - Yanchuan Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Dai CF, Zhang XN, Du C, Frank A, Schmidt HW, Zheng Q, Wu ZL. Photoregulated Gradient Structure and Programmable Mechanical Performances of Tough Hydrogels with a Hydrogen-Bond Network. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53376-53384. [PMID: 33170639 DOI: 10.1021/acsami.0c17198] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gradient materials exist widely in natural living organisms, affording fascinating biological and mechanical properties. However, the synthetic gradient hydrogels are usually mechanically weak or only have relatively simple gradient structures. Here, we report on tough nanocomposite hydrogels with designable gradient network structure and mechanical properties by a facile post-photoregulation strategy. Poly(1-vinylimidazole-co-methacrylic acid) hydrogels containing gold nanorods (AuNRs) are in a glassy state and show typical yielding and forced elastic deformation at room temperature. The gel slightly contracts its volume when the temperature is above the glass-transition temperature that results in a collapse of the chain segments and formation of denser intra- and interchain hydrogen bonds. Consequently, the mechanical properties of the gels are enhanced, when the temperature returns to room temperature. The mechanical performances of hydrogels can also be locally tuned by near-infrared light irradiation due to the photothermal effect of AuNRs. Hydrogels with arbitrary two-dimensional gradients can be facilely developed by site-specific photoirradiation. The treated and untreated regions with different stiffness and yielding stress possess construct behaviors in stretching or twisting deformations. A locally reinforced hydrogel with the kirigami structure becomes notch-insensitive and exhibits improved strength and stretchability because the treated regions ahead the cuts have better resistance to crack advancement. These tough hydrogels with programmable gradient structure and mechanics should find applications as structural elements, biological devices, etc.
Collapse
Affiliation(s)
- Chen Fei Dai
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xin Ning Zhang
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Cong Du
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Andreas Frank
- Department of Macromolecular Chemistry I and Bavarian Polymer Institute, University of Bayreuth, Bayreuth 95440, Germany
| | - Hans-Werner Schmidt
- Department of Macromolecular Chemistry I and Bavarian Polymer Institute, University of Bayreuth, Bayreuth 95440, Germany
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
18
|
Zha XJ, Zhang ST, Pu JH, Zhao X, Ke K, Bao RY, Bai L, Liu ZY, Yang MB, Yang W. Nanofibrillar Poly(vinyl alcohol) Ionic Organohydrogels for Smart Contact Lens and Human-Interactive Sensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23514-23522. [PMID: 32329606 DOI: 10.1021/acsami.0c06263] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydrogel bioelectronics as one of the next-generation wearable and implantable electronics ensures excellent biocompatibility and softness to link the human body and electronics. However, volatile, opaque, and fragile features of hydrogels due to the sparse and microscale three-dimensional network seriously limit their practical applications. Here, we report a type of smart and robust nanofibrillar poly(vinyl alcohol) (PVA) organohydrogels fabricated via one-step physical cross-linking. The nanofibrillar network cross-linked by numerous PVA nanocrystallites enables the formation of organohydrogels with high transparency (90%), drying resistance, high toughness (3.2 MJ/m3), and tensile strength (1.4 MPa). For strain sensor application, the PVA ionic organohydrogel after soaking in NaCl solution shows excellent linear sensitivity (GF = 1.56, R2 > 0.998) owing to the homogeneous nanofibrillar PVA network. We demonstrate the potential applications of the nanofibrillar PVA-based organohydrogel in smart contact lens and emotion recognition. Such a strategy paves an effective way to fabricate strong, tough, biocompatible, and ionically conductive organohydrogels, shedding light on multifunctional sensing applications in next-generation flexible bioelectronics.
Collapse
Affiliation(s)
- Xiang-Jun Zha
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Shu-Ting Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Jun-Hong Pu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Xing Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Kai Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Rui-Ying Bao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Lu Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Zheng-Ying Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Ming-Bo Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
19
|
Zhou X, Li C, Zhu L, Zhou X. Engineering hydrogels by soaking: from mechanical strengthening to environmental adaptation. Chem Commun (Camb) 2020; 56:13731-13747. [DOI: 10.1039/d0cc05130f] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The soaking strategy could not only strengthen hydrogels with superior mechanical properties but also provide the hydrogels with environmentally adapting properties.
Collapse
Affiliation(s)
- Xiaohu Zhou
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- P. R. China
| | - Chun Li
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- P. R. China
| | - Lifei Zhu
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- P. R. China
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- P. R. China
| |
Collapse
|