1
|
Istif E, Ali M, Ozuaciksoz EY, Morova Y, Beker L. Near-Infrared Triggered Degradation for Transient Electronics. ACS OMEGA 2024; 9:2528-2535. [PMID: 38250408 PMCID: PMC10795112 DOI: 10.1021/acsomega.3c07203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/07/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Electronics that disintegrate after stable operation present exciting opportunities for niche medical implant and consumer electronics applications. The disintegration of these devices can be initiated due to their medium conditions or triggered by external stimuli, which enables on-demand transition. An external stimulation method that can penetrate deep inside the body could revolutionize the use of transient electronics as implantable medical devices (IMDs), eliminating the need for secondary surgery to remove the IMDs. We report near-infrared (NIR) light-triggered transition of metastable cyclic poly(phthalaldehyde) (cPPA) polymers. The transition of the encapsulation layer is achieved through the conversion of NIR light to heat, facilitated by bioresorbable metals, such as molybdenum (Mo). We reported a rapid degradation of cPPA encapsulation layer about 1 min, and the rate of degradation can be controlled by laser power and exposure time. This study offers a new approach for light triggerable transient electronics for IMDs due to the deep penetration depth of NIR light through to organs and tissues.
Collapse
Affiliation(s)
- Emin Istif
- Department
of Molecular Biology and Genetics, Faculty of Engineering and Natural
Science, Kadir Has University, Istanbul 34083, Turkey
| | - Mohsin Ali
- Department
of Biomedical Sciences and Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul 34450, Turkey
| | - Elif Yaren Ozuaciksoz
- Department
of Biomedical Sciences and Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul 34450, Turkey
| | - Yagız Morova
- Koç
University Surface Science and Technology Center (KUYTAM), Rumelifeneri, Istanbul 34450, Turkey
| | - Levent Beker
- Department
of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul 34450, Turkey
- Nanofabrication
and Nanocharacterization Centre for Scientific and Technological Advanced
Research, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul 34450, Turkey
| |
Collapse
|
2
|
Haas S, Desombre M, Kirschhöfer F, Huber MC, Schiller SM, Hubbuch J. Purification of a Hydrophobic Elastin-Like Protein Toward Scale-Suitable Production of Biomaterials. Front Bioeng Biotechnol 2022; 10:878838. [PMID: 35814018 PMCID: PMC9257828 DOI: 10.3389/fbioe.2022.878838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Elastin-like proteins (ELPs) are polypeptides with potential applications as renewable bio-based high-performance polymers, which undergo a stimulus-responsive reversible phase transition. The ELP investigated in this manuscript—ELP[V2Y-45]—promises fascinating mechanical properties in biomaterial applications. Purification process scalability and purification performance are important factors for the evaluation of potential industrial-scale production of ELPs. Salt-induced precipitation, inverse transition cycling (ITC), and immobilized metal ion affinity chromatography (IMAC) were assessed as purification protocols for a polyhistidine-tagged hydrophobic ELP showing low-temperature transition behavior. IMAC achieved a purity of 86% and the lowest nucleic acid contamination of all processes. Metal ion leakage did not propagate chemical modifications and could be successfully removed through size-exclusion chromatography. The simplest approach using a high-salt precipitation resulted in a 60% higher target molecule yield compared to both other approaches, with the drawback of a lower purity of 60% and higher nucleic acid contamination. An additional ITC purification led to the highest purity of 88% and high nucleic acid removal. However, expensive temperature-dependent centrifugation steps are required and aggregation effects even at low temperatures have to be considered for the investigated ELP. Therefore, ITC and IMAC are promising downstream processes for biomedical applications with scale-dependent economical costs to be considered, while salt-induced precipitation may be a fast and simple alternative for large-scale bio-based polymer production.
Collapse
Affiliation(s)
- Sandra Haas
- Institute of Process Engineering in Life Sciences, Section IV: Molecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Monika Desombre
- Institute of Process Engineering in Life Sciences, Section IV: Molecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Frank Kirschhöfer
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Matthias C. Huber
- Center for Biosystems Analysis, Albert‐Ludwigs‐University Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Stefan M. Schiller
- Center for Biosystems Analysis, Albert‐Ludwigs‐University Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Jürgen Hubbuch
- Institute of Process Engineering in Life Sciences, Section IV: Molecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- *Correspondence: Jürgen Hubbuch,
| |
Collapse
|
3
|
Herbert R, Lim H, Park S, Kim J, Yeo W. Recent Advances in Printing Technologies of Nanomaterials for Implantable Wireless Systems in Health Monitoring and Diagnosis. Adv Healthc Mater 2021; 10:e2100158. [PMID: 34019731 DOI: 10.1002/adhm.202100158] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/03/2021] [Indexed: 12/17/2022]
Abstract
The development of wireless implantable sensors and integrated systems, enabled by advances in flexible and stretchable electronics technologies, is emerging to advance human health monitoring, diagnosis, and treatment. Progress in material and fabrication strategies allows for implantable electronics for unobtrusive monitoring via seamlessly interfacing with tissues and wirelessly communicating. Combining new nanomaterials and customizable printing processes offers unique possibilities for high-performance implantable electronics. Here, this report summarizes the recent progress and advances in nanomaterials and printing technologies to develop wireless implantable sensors and electronics. Advances in materials and printing processes are reviewed with a focus on challenges in implantable applications. Demonstrations of wireless implantable electronics and advantages based on these technologies are discussed. Lastly, existing challenges and future directions of nanomaterials and printing are described.
Collapse
Affiliation(s)
- Robert Herbert
- George W. Woodruff School of Mechanical Engineering Center for Human‐Centric Interfaces and Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Hyo‐Ryoung Lim
- George W. Woodruff School of Mechanical Engineering Center for Human‐Centric Interfaces and Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Sehyun Park
- School of Engineering and Computer Science Washington State University Vancouver WA 98686 USA
| | - Jong‐Hoon Kim
- School of Engineering and Computer Science Washington State University Vancouver WA 98686 USA
| | - Woon‐Hong Yeo
- George W. Woodruff School of Mechanical Engineering Center for Human‐Centric Interfaces and Engineering Georgia Institute of Technology Atlanta GA 30332 USA
- Wallace H. Coulter Department of Biomedical Engineering Parker H. Petit Institute for Bioengineering and Biosciences Neural Engineering Center Institute for Materials Institute for Robotics and Intelligent Machines Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|