1
|
Spheres-in-Grating Assemblies with Altered Photoluminescence and Wetting Properties. NANOMATERIALS 2022; 12:nano12071084. [PMID: 35407201 PMCID: PMC9000395 DOI: 10.3390/nano12071084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
Abstract
In this work, we report the fabrication of spheres-in-grating assemblies consisting of equally spaced parallel rectangular grooves filled with fluorescent spheres, by employing embossing and convective self-assembly methods. The developed hierarchical assemblies, when compared to spheres spin-cast on glass, exhibited a blueshift in the photoluminescence spectra, as well as changes in wetting properties induced not only by the patterning process, but also by the nature and size of the utilized spheres. While the patterning process led to increased hydrophobicity, the utilization of spheres with larger diameter improved the hydrophilicity of the fabricated assemblies. Finally, by aiming at the future integration of the spheres-in-grating assemblies as critical components in different technological and medical applications, we report a successful encapsulation of the incorporated spheres within the grating with a top layer of a functional polymer.
Collapse
|
2
|
Foundry-compatible high-resolution patterning of vertically phase-separated semiconducting films for ultraflexible organic electronics. Nat Commun 2021; 12:4937. [PMID: 34400644 PMCID: PMC8367968 DOI: 10.1038/s41467-021-25059-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 07/16/2021] [Indexed: 11/08/2022] Open
Abstract
Solution processability of polymer semiconductors becomes an unfavorable factor during the fabrication of pixelated films since the underlying layer is vulnerable to subsequent solvent exposure. A foundry-compatible patterning process must meet requirements including high-throughput and high-resolution patternability, broad generality, ambient processability, environmentally benign solvents, and, minimal device performance degradation. However, known methodologies can only meet very few of these requirements. Here, a facile photolithographic approach is demonstrated for foundry-compatible high-resolution patterning of known p- and n-type semiconducting polymers. This process involves crosslinking a vertically phase-separated blend of the semiconducting polymer and a UV photocurable additive, and enables ambient processable photopatterning at resolutions as high as 0.5 μm in only three steps with environmentally benign solvents. The patterned semiconducting films can be integrated into thin-film transistors having excellent transport characteristics, low off-currents, and high thermal (up to 175 °C) and chemical (24 h immersion in chloroform) stability. Moreover, these patterned organic structures can also be integrated on 1.5 μm-thick parylene substrates to yield highly flexible (1 mm radius) and mechanically robust (5,000 bending cycles) thin-film transistors. Though shape-changing devices are promising for future haptic displays, existing designs fail to provide smooth surfaces for the user during tactile exploration. Here, the authors utilize flexible auxetic structures to realize shape displays with smooth surfaces and different Gaussian curvatures.
Collapse
|
3
|
Jacobs IE, Bedolla-Valdez ZI, Rotondo BT, Bilsky DJ, Lewis R, Ayala Oviedo AN, Gonel G, Armitage J, Li J, Moulé AJ. Super-Resolution Photothermal Patterning in Conductive Polymers Enabled by Thermally Activated Solubility. ACS NANO 2021; 15:7006-7020. [PMID: 33733736 DOI: 10.1021/acsnano.1c00070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Doping-induced solubility control (DISC) patterning is a recently developed technique that uses the change in polymer solubility upon doping, along with an optical dedoping process, to achieve high-resolution optical patterning. DISC patterning can produce features smaller than predicted by the diffraction limit; however, no mechanism has been proposed to explain such high resolution. Here, we use diffraction to spatially modulate the light intensity and determine the dissolution rate, revealing a superlinear dependence on light intensity. This rate law is independent of wavelength, indicating that patterning resolution is not dominated by an optical dedoping reaction, as was previously proposed. Instead we show here that the optical patterning mechanism is primarily controlled by the thermal profile generated by the laser. To quantify this effect, the thermal profile and dissolution rate are modeled using a finite-element model and compared against patterned line cross sections as a function of wavelength, laser intensity, and dwell time. Our model reveals that although the laser-generated thermal profile is broadened considerably beyond the profile of the laser, the highly temperature dependent dissolution rate results in selective dissolution near the peak of the thermal profile. Therefore, the key factor in achieving super-resolution patterning is a strongly temperature dependent dissolution rate, a common feature of many polymers. In addition to suggesting several routes to improved resolution, our model also demonstrates that doping is not required for optical patterning of conjugated polymers, as was previously believed. Instead, we demonstrate that superlinear resolution optical patterning should be attainable in any conjugated polymer simply by tuning the solvent quality during patterning, thus extending the applicability of our method to a wide class of materials. We demonstrate the generality of photothermal patterning by writing sub-400 nm features into undoped PffBT4T-2OD.
Collapse
Affiliation(s)
- Ian E Jacobs
- Department of Materials Science and Engineering, University of California Davis, One Shields Avenue, Davis, California 95616, United States
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Zaira I Bedolla-Valdez
- Department of Chemical Engineering, University of California Davis, One Shields Avenue, Davis, California 95616, United States
| | - Brandon T Rotondo
- Department of Chemical Engineering, University of California Davis, One Shields Avenue, Davis, California 95616, United States
| | - David J Bilsky
- Department of Chemical Engineering, University of California Davis, One Shields Avenue, Davis, California 95616, United States
| | - Ryan Lewis
- Department of Chemical Engineering, University of California Davis, One Shields Avenue, Davis, California 95616, United States
| | - Alejandra N Ayala Oviedo
- Department of Chemical Engineering, University of California Davis, One Shields Avenue, Davis, California 95616, United States
| | - Goktug Gonel
- Department of Chemical Engineering, University of California Davis, One Shields Avenue, Davis, California 95616, United States
| | - John Armitage
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Jun Li
- Department of Chemical Engineering, University of California Davis, One Shields Avenue, Davis, California 95616, United States
| | - Adam J Moulé
- Department of Chemical Engineering, University of California Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
4
|
Handrea-Dragan M, Botiz I. Multifunctional Structured Platforms: From Patterning of Polymer-Based Films to Their Subsequent Filling with Various Nanomaterials. Polymers (Basel) 2021; 13:445. [PMID: 33573248 PMCID: PMC7866561 DOI: 10.3390/polym13030445] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
There is an astonishing number of optoelectronic, photonic, biological, sensing, or storage media devices, just to name a few, that rely on a variety of extraordinary periodic surface relief miniaturized patterns fabricated on polymer-covered rigid or flexible substrates. Even more extraordinary is that these surface relief patterns can be further filled, in a more or less ordered fashion, with various functional nanomaterials and thus can lead to the realization of more complex structured architectures. These architectures can serve as multifunctional platforms for the design and the development of a multitude of novel, better performing nanotechnological applications. In this work, we aim to provide an extensive overview on how multifunctional structured platforms can be fabricated by outlining not only the main polymer patterning methodologies but also by emphasizing various deposition methods that can guide different structures of functional nanomaterials into periodic surface relief patterns. Our aim is to provide the readers with a toolbox of the most suitable patterning and deposition methodologies that could be easily identified and further combined when the fabrication of novel structured platforms exhibiting interesting properties is targeted.
Collapse
Affiliation(s)
- Madalina Handrea-Dragan
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Str. 400271 Cluj-Napoca, Romania;
- Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Str. 400084 Cluj-Napoca, Romania
| | - Ioan Botiz
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Str. 400271 Cluj-Napoca, Romania;
| |
Collapse
|