1
|
Shukla S, Bagchi D, Divya, Khushi, Manohara Reddy YV, Park JP. Multifunctional metal-organic frameworks in breast cancer therapy: Advanced nanovehicles for effective treatment. Eur J Med Chem 2025; 289:117424. [PMID: 39999692 DOI: 10.1016/j.ejmech.2025.117424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025]
Abstract
Breast cancer is the second-most common cause of cancer-related death among women worldwide, with a gradual annual increase of 0.5 % in its occurrence rate in recent years. This complex ailment exhibits considerable diversity, with a mortality rate of 2.5 %. One promising area of research for its treatment is the development of MOFs, which are intricate three-dimensional (3D) structures constructed from metal ions or clusters joined with organic ligands through coordinate bonds. MOFs have emerged as versatile platform overcoming the limitations of conventional chemotherapeutics including poor drug solubility, non-specific targeting, and multidrug resistance. These applications are attributed to their adjustable porosity, chemical makeup, dimensions, straightforward surface customization capabilities, biocompatibility, nontoxicity etc. These properties position MOFs as excellent candidates for diverse regimes of cancer therapeutics including innovative approaches such as phototherapy, chemotherapy, immunotherapy, gene therapy, sonodynamic therapy, and various combination therapies. The article emphasizes the functionalization and applications of MOFs, with a primary focus on their therapeutic capabilities, synergistic approaches, and theranostic strategies that integrate diagnostic and therapeutic functions. Strategies to improve MOF biocompatibility and stability, such as surface modifications and biocompatible coatings are also discussed. Insights on various challenges and future prospects are provided to address current limitations and inspire further research, paving the way for clinical translation of MOF-based breast cancer therapies.
Collapse
Affiliation(s)
- Shefali Shukla
- Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi, India.
| | - Dipankar Bagchi
- Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Divya
- Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Khushi
- Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Y Veera Manohara Reddy
- Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi, India.
| | - Jong Pil Park
- Department of Food Science and Technology, GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
2
|
Serag E, El-Fakharany EM, Hammad SF, El-Khouly ME. Metal-organic framework MIL-101(Fe) functionalized with folic acid as a multifunctional nanocarrier for targeted chemotherapy-photodynamic therapy. Biomater Sci 2025. [PMID: 40099560 DOI: 10.1039/d4bm01738b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
A novel folic acid-conjugated, iron-based MOF (MIL-101(Fe)) loaded with 1,8-acridinediones (DO8) was developed for targeted photodynamic therapy (PDT) of HepG-2 cells. This composite aims to trigger an anticancer response through sequential PDT and chemotherapy. The nanocomposite exhibited high stability in a physiological environment with a pH of 7.4. It was also able to release DO8 continuously in an acidic environment with a pH of 5, which shows that it can adapt to the conditions in the tumor microenvironment. The MIL-101(Fe)MOF-FA@DO8 nanoparticles (NPs) with 30% and 50% DO8 have been studied in vitro under different conditions (light and dark) and have been shown to be compatible with living tissues and specifically target HepG-2 cells. The IC50 values of 50% DO8 and 30% DO8 loaded MOF-FA were found to be 88.67 and 105.9 μg mL-1 under dark conditions, respectively. Under light conditions, they demonstrated the highest efficacy in inhibiting tumor cell growth. The IC50 values were found to be 8.94 and 11.78 μg mL-1. Flow cytometry analysis of annexin V/PI-stained apoptotic and necrotic cells in HepG-2 cells treated with the modified MIL-101-FA@50% DO8 NPs at IC50 doses under both dark and light conditions indicates that the primary mechanism of cell death is necrosis, likely due to the enhanced formation of reactive oxygen species (ROS) under light conditions compared to that under dark conditions. This increased reactive oxygen species (ROS) generation leads to extensive membrane rupture, resulting in significant cell damage after treatment with the modified MIL-101-FA@50% DO8 NPs. These findings underscore the potential of this nanocomposite as an effective PDT agent for targeted cancer therapy.
Collapse
Affiliation(s)
- Eman Serag
- Nanoscience Program, Institute of Basic and Applied Science, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, Egypt.
- Marine Pollution Department, Environmental Division, National Institute of Oceanography and Fisheries, Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria 21934, Egypt
- Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt
- Pharos University in Alexandria; Canal El Mahmoudia Street, Beside Green Plaza Complex 21648, Alexandria, Egypt
| | - Sherif F Hammad
- PharmD program, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, Egypt
| | - Mohamed E El-Khouly
- Nanoscience Program, Institute of Basic and Applied Science, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, Egypt.
| |
Collapse
|
3
|
Sivasubramanian PD, Unnikrishnan G, Kolanthai E, Muthuswamy S. Engineered nanoparticle systems: A review on emerging strategies for enhanced cancer therapeutics. NEXT MATERIALS 2025; 6:100405. [DOI: 10.1016/j.nxmate.2024.100405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Safarpour R, Pooresmaeil M, Namazi H. Folic acid functionalized Ag@MOF(Ag) decorated carboxymethyl starch nanoparticles as a new doxorubicin delivery system with inherent antibacterial activity. Int J Biol Macromol 2024; 282:137096. [PMID: 39486742 DOI: 10.1016/j.ijbiomac.2024.137096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Considering the benefits of controlled drug delivery in cancer treatment, as well as the importance of biological macromolecules in this area, herein, the pre-synthesized carboxymethyl starch (CMS) was converted to CMS nanoparticles (CMS NPs) in one easy nanoprecipitation way. Thereafter, the Ag@MOF(Ag) was in situ synthesized in the presence of pre-prepared CMS NPs (CMS NPs/Ag@MOF(Ag)). Eventually, the functionalization with folic acid (FA) obtained the CMS NPs/Ag@MOF(Ag)-FA. The success of the accomplished process was approved by doing several techniques, including FT-IR, XRD, EDX, AFM, etc. The SEM analysis showed a combination of rod-like and spherical-like morphology for the fabricated bio-nanocomposite. The generated CMS NPs/Ag@MOF(Ag)-FA with a surface area of 10.595 m2/g displayed a pore size of 13.666 nm and 82.99 % of doxorubicin (DOX) loading efficiency (DOX@CMS NPs/Ag@MOF(Ag)-FA). The 38.46 % and 58.19 % of loaded DOX were released respectively within 240 h at pH 7.4 and pH 5.0, referring to the pH-responsivity of the constructed system. 27.25 % of inhibitory effects on HeLa cells were obtained for the drug-loaded bio-nanocomposite. The CMS NPs/Ag@MOF(Ag)-FA also displayed an inherent antibacterial activity towards two common gram-negative and gram-positive bacteria. All of these results can contribute to developing polysaccharide-based porous systems in controlled cancer therapy.
Collapse
Affiliation(s)
- Rahim Safarpour
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Malihe Pooresmaeil
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
5
|
Hashemi A, Rezaei N, Shirkavand F, Gholizadeh F, Baghbani-Arani F. Novel Metal-Organic Framework Nanoparticle for Letrozole Delivery: A New Advancement in Breast Cancer Treatment. J Pharm Sci 2024; 113:2245-2257. [PMID: 38492847 DOI: 10.1016/j.xphs.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Water-stable metal-organic frameworks based on UIO-66@NH2 were synthesized to transport Letrozole into breast cancer cells. The UIO-66@NH2 nanoparticles had a spherical shape and triangular base pyramid morphology, with a size range of 100-200 nm. Fourier transform infrared spectroscopy confirmed the efficient adsorption of Letrozole on UIO-66@NH2. The drug release profile showed a gradual, pH-dependent release of Letrozole from the nanoparticles, with a significant increase in acidic environments, indicating the adaptable release potential of UIO-66@NH2@Let in the breast cancer microenvironment. The size and entrapment efficiency were more stable at 4 °C than at 25 °C. To evaluate the cytotoxic effects of UIO-66@NH2@Let, MTT assay, gene expression analysis, flow cytometry, reactive oxygen species generation, migration assay, and DAPI staining were performed. Moreover, according to IC50 results, the incorporation of Letrozole into UIO-66@NH2 significantly improved its anticancer activity. The results also showed that the developed formulations induced apoptosis through both intrinsic and extrinsic pathways and inhibited cancer progression. The efficacy of the formulations in inducing apoptosis was validated by DAPI staining microscopy and flow cytometry analysis. Therefore, the Letrozole-loaded UIO-66@NH2 MOFs developed in this study can be considered as a unique and sophisticated anticancer delivery nanosystem with promising in vitro anticancer properties.
Collapse
Affiliation(s)
- Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, P. O. Box 14155-6153, Tehran, Iran
| | - Niloufar Rezaei
- Department of Chemical Engineering, College of Engineering, University of Tehran, P. O. Box 11155-4563, Tehran, Iran
| | - Fatemeh Shirkavand
- Department of Genetics and Biotechnology, School of Biological Science, Varamin-Pishva Branch, Islamic Azad University, P. O. Box 33817-74895, Varamin, Iran
| | - Fatemeh Gholizadeh
- Department of Genetics and Biotechnology, School of Biological Science, Varamin-Pishva Branch, Islamic Azad University, P. O. Box 33817-74895, Varamin, Iran
| | - Fahimeh Baghbani-Arani
- Department of Genetics and Biotechnology, School of Biological Science, Varamin-Pishva Branch, Islamic Azad University, P. O. Box 33817-74895, Varamin, Iran.
| |
Collapse
|
6
|
Rahmani Khalili N, Banitalebi Dehkordi A, Amiri A, Mohammadi Ziarani G, Badiei A, Cool P. Tailored Covalent Organic Framework Platform: From Multistimuli, Targeted Dual Drug Delivery by Architecturally Engineering to Enhance Photothermal Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28245-28262. [PMID: 38770930 DOI: 10.1021/acsami.4c05989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Engineering bulk covalent organic frameworks (COFs) to access specific morphological structures holds paramount significance in boosting their functions in cancer treatment; nevertheless, scant effort has been dedicated to exploring this realm. Herein, silica core-shell templates and multifunctional COF-based reticulated hollow nanospheres (HCOFs) are novelly designed as a versatile nanoplatform to investigate the simultaneous effect of dual-drug chemotherapy and photothermal ablation. Taking advantage of the distinct structural properties of the template, the resulting two-dimensional (2D) HCOF, featuring large internal voids and a peripheral interconnected mesoporous shell, presents intriguing benefits over its bulk counterparts for cancer treatment, including a well-defined morphology, an outstanding drug loading capability (99.6%) attributed to its ultrahigh surface area (2087 m2/g), great crystallinity, improved tumor accumulation, and an adjustable drug release profile. After being loaded with hydrophilic doxorubicin with a remarkable loading capacity, the obtained drug-loaded HCOFs were coated with gold nanoparticles (Au NPs) to confer them with three properties, including pore entrance blockage, active-targeting capability, and improved biocompatibility via secondary modification, besides high near infrared (NIR) absorption for efficient photothermal hyperthermia cancer suppression. The resultant structure was functionalized with mono-6-thio-β-cyclodextrin (β-CD) as a second pocket to load docetaxel as the hydrophobic anticancer agent (combination index = 0.33). The dual-drug-loaded HCOF displayed both pH- and near-infrared-responsive on-demand drug release. In vitro and in vivo evaluations unveiled the prominent synergistic performance of coloaded HCOF in cancer elimination upon NIR light irradiation. This work opens up a new avenue for exciting applications of structurally engineered HCOFs as hydrophobic/hydrophilic drug carriers as well as multimodal treatment agents.
Collapse
Affiliation(s)
| | - Ali Banitalebi Dehkordi
- Laboratory of Adsorption and Catalysis, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Ahmad Amiri
- School of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Ghodsi Mohammadi Ziarani
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran 19938-93973, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Pegie Cool
- Laboratory of Adsorption and Catalysis, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| |
Collapse
|
7
|
Oryani MA, Nosrati S, Javid H, Mehri A, Hashemzadeh A, Karimi-Shahri M. Targeted cancer treatment using folate-conjugated sponge-like ZIF-8 nanoparticles: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1377-1404. [PMID: 37715816 DOI: 10.1007/s00210-023-02707-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/02/2023] [Indexed: 09/18/2023]
Abstract
ZIF-8 (zeolitic imidazolate framework-8) is a potential drug delivery system because of its unique properties, which include a large surface area, a large pore capacity, a large loading capacity, and outstanding stability under physiological conditions. ZIF-8 nanoparticles may be readily functionalized with targeting ligands for the identification and absorption of particular cancer cells, enhancing the efficacy of chemotherapeutic medicines and reducing adverse effects. ZIF-8 is also pH-responsive, allowing medication release in the acidic milieu of cancer cells. Because of its tunable structure, it can be easily functionalized to design cancer-specific targeted medicines. The delivery of ZIF-8 to cancer cells can be facilitated by folic acid-conjugation. Hence, it can bind to overexpressed folate receptors on the surface of cancer cells, which holds the promise of reducing unwanted deliveries. As a result of its importance in cancer treatment, the folate-conjugated ZIF-8 was the major focus of this review.
Collapse
Affiliation(s)
- Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shamim Nosrati
- Department of Clinical Biochemistry, Faculty of Medicine, Azad Shahroud University, Shahroud, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ali Mehri
- Endoscopic and Minimally Invasive Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
8
|
Pantwalawalkar J, Mhettar P, Nangare S, Mali R, Ghule A, Patil P, Mohite S, More H, Jadhav N. Stimuli-Responsive Design of Metal-Organic Frameworks for Cancer Theranostics: Current Challenges and Future Perspective. ACS Biomater Sci Eng 2023; 9:4497-4526. [PMID: 37526605 DOI: 10.1021/acsbiomaterials.3c00507] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Scientific fraternity revealed the potential of stimuli-responsive nanotherapeutics for cancer treatment that aids in tackling the major restrictions of traditionally reported drug delivery systems. Among stimuli-responsive inorganic nanomaterials, metal-organic frameworks (MOFs) have transpired as unique porous materials displaying resilient structures and diverse applications in cancer theranostics. Mainly, it demonstrates tailorable porosity, versatile chemical configuration, tunable size and shape, and feasible surface functionalization, etc. The present review provides insights into the design of stimuli-responsive multifunctional MOFs for targeted drug delivery and bioimaging for effective cancer therapy. Initially, the concept of cancer, traditional cancer treatment, background of MOFs, and approaches for MOFs synthesis have been discussed. After this, applications of stimuli-responsive multifunctional MOFs-assisted nanostructures that include pH, light, ions, temperature, magnetic, redox, ATP, and others for targeted drug delivery and bioimaging in cancer have been thoroughly discussed. As an outcome, the designed multifunctional MOFs showed an alteration in properties due to the exogenous and endogenous stimuli that are beneficial for drug release and bioimaging. The several reported types of stimuli-responsive surface-modified MOFs revealed good biocompatibility to normal cells, promising drug loading capability, target-specific delivery of anticancer drugs into cancerous cells, etc. Despite substantial progress in this field, certain crucial issues need to be addressed to reap the clinical benefits of multifunctional MOFs. Specifically, the toxicological compatibility and biodegradability of the building blocks of MOFs demand a thorough evaluation. Moreover, the investigation of sustainable and greener synthesis methods is of the utmost importance. Also, the low flexibility, off-target accumulation, and compromised pharmacokinetic profile of stimuli-responsive MOFs have attracted keen attention. In conclusion, the surface-modified nanosized design of inorganic diverse stimuli-sensitive MOFs demonstrated great potential for targeted drug delivery and bioimaging in different kinds of cancers. In the future, the preference for stimuli-triggered MOFs will open a new frontier for cancer theranostic applications.
Collapse
Affiliation(s)
- Jidnyasa Pantwalawalkar
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, 416013, Kolhapur Maharashtra, India
| | - Prachi Mhettar
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, 416013, Kolhapur Maharashtra, India
| | - Sopan Nangare
- Department of Pharmaceutical Chemistry, H. R Patel Institute of Pharmaceutical Education and Research, 425405 Shirpur, Maharashtra, India
| | - Rushikesh Mali
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, 400056 Mumbai, Maharashtra, India
| | - Anil Ghule
- Department of Chemistry, Shivaji University, 416013, Kolhapur Maharashtra, India
| | - Pravin Patil
- Department of Pharmaceutical Chemistry, H. R Patel Institute of Pharmaceutical Education and Research, 425405 Shirpur, Maharashtra, India
| | - Suhas Mohite
- Bharati Vidyapeeth Deemed University, Yashwantrao Mohite Arts, Science and Commerce College, 411038 Pune, Maharashtra, India
| | - Harinath More
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, 416013 Kolhapur, Maharashtra, India
| | - Namdeo Jadhav
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, 416013, Kolhapur Maharashtra, India
| |
Collapse
|
9
|
Hu Y, Abazari R, Sanati S, Nadafan M, Carpenter-Warren CL, Slawin AMZ, Zhou Y, Kirillov AM. A Dual-Purpose Ce(III)-Organic Framework with Amine Groups and Open Metal Sites: Third-Order Nonlinear Optical Activity and Catalytic CO 2 Fixation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37300-37311. [PMID: 37497576 DOI: 10.1021/acsami.3c04506] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The present work focuses on the synthesis and properties of a novel multifunctional cerium(III) MOF, [Ce2(data)3(DMF)4]·DMF (data2-: 2,5-diaminoterephthalate), abbreviated as NH2-Ce-MUM-2. Its crystal structure reveals an intricate 3D 4,5-connected framework with a xah topology. This MOF features unique properties, such as open metal sites, presence of free amino groups, and high stability. Two main applications of NH2-Ce-MUM-2 were investigated: (i) as a heterogeneous catalyst in the CO2 fixation into cyclic carbonates and (ii) as a material with third-order nonlinear optical activity. As a model reaction, the cycloaddition of CO2 to propylene oxide to give the corresponding cyclic carbonate was explored under mild conditions, at the atmospheric pressure of carbon dioxide and in the absence of cocatalyst and added solvent. Various reaction parameters were investigated toward optimization and exploration of substrate scope, revealing up to 99% product yields of cyclic carbonate products. Besides, the structure of NH2-Ce-MUM-2 is highly stable, permitting its recyclability and reusability in further catalytic experiments. The significant contributions of free amino groups and open metal sites within this catalyst were particularly considered when proposing a potential mechanism for the reaction. Z-Scan measurements were used to evaluate the nonlinear optical (NLO) properties of NH2-Ce-MUM-2 at various laser intensities. A high two-photon absorption (TPA) under greater incident intensities shows that NH2-Ce-MUM-2 might be applicable in optical switching devices. Besides, the self-focusing effects of NH2-Ce-MUM-2 under various incident intensities were highlighted by the nonlinear index of refraction (n2). By reporting the synthesis and characterization of a novel MOF, along with its highly promising catalytic and NLO behavior, the current study introduces an additional example of multifunctional material into a growing family of metal-organic frameworks.
Collapse
Affiliation(s)
- Yaxuan Hu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, China
| | - Reza Abazari
- Department of Chemistry, Faculty of Science, University of Maragheh, 55181-83111, Maragheh, Iran
| | - Soheila Sanati
- Department of Chemistry, Faculty of Science, University of Maragheh, 55181-83111, Maragheh, Iran
| | - Marzieh Nadafan
- Department of Physics, Shahid Rajaee Teacher Training University, 16788-15811, Tehran, Iran
| | | | - Alexandra M Z Slawin
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, U.K
| | - Yingtang Zhou
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, China
| | - Alexander M Kirillov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
10
|
Wang Y, Qi Y, Guo X, Zhang K, Yu B, Xu FJ. Mannose-functionalized star polycation mediated CRISPR/Cas9 delivery for lung cancer therapy. J Mater Chem B 2023; 11:4121-4130. [PMID: 37114454 DOI: 10.1039/d2tb02274e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The survivin gene, highly expressed in most cancer cells, is closely associated with inhibiting apoptosis. Therefore, gene editing for the survivin gene has great potential in tumor therapy. However, it is difficult for plasmid DNA (pDNA) to be taken up directly by cells, and thus the construction of gene vectors is a key step for successful gene editing. Ethanolamine-functionalized polyglycidyl methacrylate (PGEA) has been proved to facilitate the transfection of pDNA into cells in both in vivo and in vitro experiments. However, PGEA does not specifically recognize tumor cells. Some tumor cells express more mannose receptor (MR) than healthy cells. To achieve efficient target and transfection, we designed mannose-functionalized four-arm PGEA cationic polymers (P(GEA-co-ManMA), GM) with different molecular weights. GM was combined with pCas9-survivin. The mannose unit of GM/pCas9-survivin was identified by MR to selectively enter lung cancer cells. In vitro experiments showed that GM not only had excellent biocompatibility, gene transfection performance, and targeted ability, but also significantly inhibited the proliferation of tumor cells when used in combination with pCas9-survivin. At the same time, we also studied the relationship between the molecular weight and therapeutic effect.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yu Qi
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Xindong Guo
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Kai Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
11
|
Chen W, Liu M, Yang H, Nezamzadeh-Ejhieh A, Lu C, Pan Y, Liu J, Bai Z. Recent Advances of Fe(III)/Fe(II)-MPNs in Biomedical Applications. Pharmaceutics 2023; 15:pharmaceutics15051323. [PMID: 37242566 DOI: 10.3390/pharmaceutics15051323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Metal-phenolic networks (MPNs) are a new type of nanomaterial self-assembled by metal ions and polyphenols that have been developed rapidly in recent decades. They have been widely investigated, in the biomedical field, for their environmental friendliness, high quality, good bio-adhesiveness, and bio-compatibility, playing a crucial role in tumor treatment. As the most common subclass of the MPNs family, Fe-based MPNs are most frequently used in chemodynamic therapy (CDT) and phototherapy (PTT), where they are often used as nanocoatings to encapsulate drugs, as well as good Fenton reagents and photosensitizers to improve tumor therapeutic efficiency substantially. In this review, strategies for preparing various types of Fe-based MPNs are first summarized. We highlight the advantages of Fe-based MPNs under the different species of polyphenol ligands for their application in tumor treatments. Finally, some current problems and challenges of Fe-based MPNs, along with a future perspective on biomedical applications, are discussed.
Collapse
Affiliation(s)
- Weipeng Chen
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523700, China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Miao Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Hanping Yang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | | | - Chengyu Lu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Ying Pan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523700, China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Jianqiang Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524013, China
| | - Zhi Bai
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523700, China
| |
Collapse
|
12
|
Feng H, Zhao L, Bai Z, Xin Z, Wang C, Liu L, Song J, Zhang H, Bai Y, Feng F. Aptamer modified Zr-based porphyrinic nanoscale metal-organic frameworks for active-targeted chemo-photodynamic therapy of tumors. RSC Adv 2023; 13:11215-11224. [PMID: 37056970 PMCID: PMC10087063 DOI: 10.1039/d3ra00753g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023] Open
Abstract
Active-targeted nanoplatforms could specifically target tumors compared to normal cells, making them a promising therapeutic agent. The aptamer is a kind of short DNA or RNA sequence that can specifically bind to target molecules, and could be widely used as the active targeting agents of nanoplatforms to achieve active-targeted therapy of tumors. Herein, an aptamer modified nanoplatform DOX@PCN@Apt-M was designed for active-targeted chemo-photodynamic therapy of tumors. Zr-based porphyrinic nanoscale metal organic framework PCN-224 was synthesized through a one-pot reaction, which could produce cytotoxic 1O2 for efficient treatment of tumor cells. To improve the therapeutic effect of the tumor, the anticancer drug doxorubicin (DOX) was loaded into PCN-224 to form DOX@PCN-224 for tumor combination therapy. Active-targeted combination therapy achieved by modifying the MUC1 aptamer (Apt-M) onto DOX@PCN-224 surface can not only further reduce the dosage of therapeutic agents, but also reduce their toxic and side effects on normal tissues. In vitro, experimental results indicated that DOX@PCN@Apt-M exhibited enhanced combined therapeutic effect and active targeting efficiency under 808 nm laser irradiation for MCF-7 tumor cells. Based on PCN-224 nanocarriers and aptamer MUC1, this work provides a novel strategy for precisely targeting MCF-7 tumor cells.
Collapse
Affiliation(s)
- Haidi Feng
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University Datong 037009 P. R. China
| | - Lu Zhao
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University Datong 037009 P. R. China
| | - Zhiqiang Bai
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University Datong 037009 P. R. China
- School of Chemistry and Material Science, Shanxi Normal University Linfen 041004 P. R. China
| | - Zhihui Xin
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University Datong 037009 P. R. China
- School of Chemistry and Material Science, Shanxi Normal University Linfen 041004 P. R. China
| | - Chaoyu Wang
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University Datong 037009 P. R. China
| | - Lizhen Liu
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University Datong 037009 P. R. China
| | - Jinping Song
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University Datong 037009 P. R. China
| | - Haifei Zhang
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Yunfeng Bai
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University Datong 037009 P. R. China
| | - Feng Feng
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University Datong 037009 P. R. China
- School of Chemistry and Material Science, Shanxi Normal University Linfen 041004 P. R. China
- School Department of Energy Chemistry and Materials Engineering, Shanxi Institute P. R. China
| |
Collapse
|
13
|
Elmehrath S, Nguyen HL, Karam SM, Amin A, Greish YE. BioMOF-Based Anti-Cancer Drug Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:953. [PMID: 36903831 PMCID: PMC10005089 DOI: 10.3390/nano13050953] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/19/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
A variety of nanomaterials have been developed specifically for biomedical applications, such as drug delivery in cancer treatment. These materials involve both synthetic and natural nanoparticles and nanofibers of varying dimensions. The efficacy of a drug delivery system (DDS) depends on its biocompatibility, intrinsic high surface area, high interconnected porosity, and chemical functionality. Recent advances in metal-organic framework (MOF) nanostructures have led to the achievement of these desirable features. MOFs consist of metal ions and organic linkers that are assembled in different geometries and can be produced in 0, 1, 2, or 3 dimensions. The defining features of MOFs are their outstanding surface area, interconnected porosity, and variable chemical functionality, which enable an endless range of modalities for loading drugs into their hierarchical structures. MOFs, coupled with biocompatibility requisites, are now regarded as highly successful DDSs for the treatment of diverse diseases. This review aims to present the development and applications of DDSs based on chemically-functionalized MOF nanostructures in the context of cancer treatment. A concise overview of the structure, synthesis, and mode of action of MOF-DDS is provided.
Collapse
Affiliation(s)
- Sandy Elmehrath
- Department of Chemistry, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Ha L. Nguyen
- Department of Chemistry University of California—Berkeley, Kavli Energy Nanoscience Institute at UC Berkeley, and Berkeley Global Science Institute, Berkeley, CA 94720, USA
- Joint UAEU−UC Berkeley Laboratories for Materials Innovations, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Sherif M. Karam
- Department of Anatomy, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Amr Amin
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Department of Biology, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Yaser E. Greish
- Department of Chemistry, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Joint UAEU−UC Berkeley Laboratories for Materials Innovations, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| |
Collapse
|
14
|
Tan X, Wang S, Han N. Metal organic frameworks derived functional materials for energy and environment related sustainable applications. CHEMOSPHERE 2023; 313:137330. [PMID: 36410510 DOI: 10.1016/j.chemosphere.2022.137330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/30/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
With the vigorous development of industrial economy, energy and environmental problems have become the most serious issues affecting people's production and life. Therefore, the demand for clean energy production, effective separation and storage is growing. Metal-organic frameworks (MOFs), as a kind of porous crystalline materials with large surface area and porosity, which is self-assembled by metal ions or clusters and organic ligands through coordination bonds. Thanks to a number of unique characteristics such as adjustable pore environment, homogeneous void structure, abundant active sites, unprecedented chemical composition tunability and functional versatility, it has been widely studied, especially for the clean energy conversion in catalysis. In this review, we focus on the research progress of clean energy in catalysis based on MOFs. Emphasis is placed on MOFs with different structures of compositions and their applications in catalytic for clean energy conversion, such as CO oxidation, CO2 reduction and H2 evolution. In addition, the situation of MOFs assisting environmental remediation is also briefly described. Finally, the prospects and challenges of MOFs in clean energy and the remaining issues in this field are presented.
Collapse
Affiliation(s)
- Xihan Tan
- Department of Chemistry and Chemical Engineering, Lyuliang University, Lyuliang, 033001, China
| | - Shuo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China.
| | - Ning Han
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium.
| |
Collapse
|
15
|
Le BQG, Doan TLH. Trend in biodegradable porous nanomaterials for anticancer drug delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1874. [PMID: 36597015 DOI: 10.1002/wnan.1874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023]
Abstract
In recent years, biodegradable nanomaterials have exhibited remarkable promise for drug administration to tumors due to their high drug-loading capacity, biocompatibility, biodegradability, and clearance. This review will discuss and summarize the trends in utilizing biodegradable nanomaterials for anticancer drug delivery, including biodegradable periodic mesoporous organosilicas (BPMOs) and metal-organic frameworks (MOFs). The distinct structure and features of BPMOs and MOFs will be initially evaluated, as well as their use as delivery vehicles for anticancer drug delivery applications. Then, the themes for the development of each material will be utilized to illustrate their drug delivery performance. Finally, the current obstacles and potential for future development as efficient drug delivery systems will be thoroughly reviewed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Bao Quang Gia Le
- Center for Innovative Materials and Architectures, Ho Chi Minh City, Vietnam.,Vietnam National University-Ho Chi Minh City, Ho Chi Minh City, Vietnam.,Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Tan Le Hoang Doan
- Center for Innovative Materials and Architectures, Ho Chi Minh City, Vietnam.,Vietnam National University-Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
16
|
Masoudifar R, Pouyanfar N, Liu D, Ahmadi M, Landi B, Akbari M, Moayeri-Jolandan S, Ghorbani-Bidkorpeh F, Asadian E, Shahbazi MA. Surface engineered metal-organic frameworks as active targeting nanomedicines for mono- and multi-therapy. APPLIED MATERIALS TODAY 2022; 29:101646. [DOI: 10.1016/j.apmt.2022.101646] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
17
|
Sun S, Zhao Y, Wang J, Pei R. Lanthanide-based MOFs: synthesis approaches and applications in cancer diagnosis and therapy. J Mater Chem B 2022; 10:9535-9564. [PMID: 36385652 DOI: 10.1039/d2tb01884e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Metal-organic frameworks (MOFs) have attracted considerable attention as emerging nanomaterials. Based on their tunable size, high porosity, and large specific surface area, MOFs have a wide range of applications in the fields of chemistry, energy, and biomedicine. However, the MOF materials obtained from lanthanides with a unique electronic configuration as inorganic building units have unique properties such as optics, magnetism, and radioactivity. In this study, various synthetic methods for preparing MOF materials using lanthanides as inorganic building units are described. Combined with the characteristics of lanthanides, their application prospects of lanthanide-based MOFs in tumor diagnosis and treatment are emphasized. The authors hope to provide methodological reference for the construction of MOF materials of rare-earth elements, and to provide ideas and inspiration for their practical applications in the field of biomedicine.
Collapse
Affiliation(s)
- Shengkai Sun
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yuewu Zhao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Jine Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China. .,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China. .,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
18
|
Chen J, Abazari R, Adegoke KA, Maxakato NW, Bello OS, Tahir M, Tasleem S, Sanati S, Kirillov AM, Zhou Y. Metal–organic frameworks and derived materials as photocatalysts for water splitting and carbon dioxide reduction. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214664] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Sun XY, Zhang HJ, Sun Q, Gao EQ. Two cationic iron-based crystalline porous materials for encapsulation and sustained release of 5-fluorouracil. Dalton Trans 2022; 51:13263-13271. [PMID: 35979932 DOI: 10.1039/d2dt01854c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Iron-based crystalline porous materials (CPMs) emerged as a new class of biodegradable and non-toxic materials of high interest for drug delivery systems (DDSs) due to their high loading capacity and controllable structures. This work constructed two kinds of Fe-CPM coordination polymers (CPM-83 and CPM-85) from typical oxo-centered trimers of the iron octahedra cluster [Fe3O(RCOO)3(TPT)] with two functional modules. The tri-topic pyridine ligand (TPT) occupied the open metal sites of the trinuclear cluster, precluding the attachment of neutralizing anions, leading to three-dimensional frameworks with a positive charge and higher stability. Moreover, the triazine ligand TPT divides the original columnar channel into small domains, improving the adsorption efficiency and maximizing the host-guest interaction. Hence, the suitable pore size and electrostatic force make the materials highly adsorption selective for the anticancer drug 5-fluorouracil (5-Fu). We show that Fe-CPM-83 and Fe-CPM-85 loaded with 5-Fu are efficient drug delivery vehicles with loading content as high as 60.5 (wt%) and 32.8 (wt%) within 2-5 h of loading time. Simultaneously, their sustained release kinetics can be up to 96 hours with a completely different pH-responsive controlled release. The released content is 77% or 85% for each complex, significantly prolonging the release process and decreasing the plasma concentration. The MTT assay was performed on mouse fibroblasts (L929) to demonstrate the satisfactory biocompatibility of the matrix. This work has momentous research significance and application value for developing novel drug-delivery materials.
Collapse
Affiliation(s)
- Xi-Yu Sun
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
| | - Hong-Jing Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
| | - Qian Sun
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
| | - En-Qing Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
20
|
Khorshid S, Montanari M, Benedetti S, Moroni S, Aluigi A, Canonico B, Papa S, Tiboni M, Casettari L. A microfluidic approach to fabricate sucrose decorated liposomes with increased uptake in breast cancer cells. Eur J Pharm Biopharm 2022; 178:53-64. [DOI: 10.1016/j.ejpb.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/04/2022]
|
21
|
Rao C, Liao D, Pan Y, Zhong Y, Zhang W, Ouyang Q, Nezamzadeh-Ejhieh A, Liu J. Novel formulations of metal-organic frameworks for controlled drug delivery. Expert Opin Drug Deliv 2022; 19:1183-1202. [PMID: 35426756 DOI: 10.1080/17425247.2022.2064450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Congying Rao
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
- These authors have equal contributions
| | - Donghui Liao
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
- These authors have equal contributions
| | - Ying Pan
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
- These authors have equal contributions
| | - Yuyu Zhong
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Wenfeng Zhang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Qin Ouyang
- Department of general surgery, Dalang Hospital, Dongguan, 523800, China
| | | | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
| |
Collapse
|
22
|
Liu D, Ding X, Ding J, Sun J. Polypeptoid-Assisted Formation of Supramolecular Architectures from Folic Acid for Targeted Cancer Therapy with Enhanced Efficacy. Biomacromolecules 2022; 23:2793-2802. [DOI: 10.1021/acs.biomac.2c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dandan Liu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiangmin Ding
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jian Ding
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
23
|
Merlin JPJ, Li X. Role of Nanotechnology and Their Perspectives in the Treatment of Kidney Diseases. Front Genet 2022; 12:817974. [PMID: 35069707 PMCID: PMC8766413 DOI: 10.3389/fgene.2021.817974] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) are differing in particle size, charge, shape, and compatibility of targeting ligands, which are linked to improved pharmacologic characteristics, targetability, and bioavailability. Researchers are now tasked with developing a solution for enhanced renal treatment that is free of side effects and delivers the medicine to the active spot. A growing number of nano-based medication delivery devices are being used to treat renal disorders. Kidney disease management and treatment are currently causing a substantial global burden. Renal problems are multistep processes involving the accumulation of a wide range of molecular and genetic alterations that have been related to a variety of kidney diseases. Renal filtration is a key channel for drug elimination in the kidney, as well as a burgeoning topic of nanomedicine. Although the use of nanotechnology in the treatment of renal illnesses is still in its early phases, it offers a lot of potentials. In this review, we summarized the properties of the kidney and characteristics of drug delivery systems, which affect a drug’s ability should focus on the kidney and highlight the possibilities, problems, and opportunities.
Collapse
Affiliation(s)
- J P Jose Merlin
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
24
|
Chiral metal–organic frameworks based on asymmetric synthetic strategies and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214083] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Huang WY, Lai CH, Peng SL, Hsu CY, Hsu PH, Chu PY, Feng CL, Lin YH. Targeting Tumor Cells with Nanoparticles for Enhanced Co-Drug Delivery in Cancer Treatment. Pharmaceutics 2021; 13:1327. [PMID: 34575403 PMCID: PMC8465501 DOI: 10.3390/pharmaceutics13091327] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Gastric cancer (GC) is a fatal malignant tumor, and effective therapies to attenuate its progression are lacking. Nanoparticle (NP)-based solutions may enable the design of novel treatments to eliminate GC. Refined, receptor-targetable NPs can selectively target cancer cells and improve the cellular uptake of drugs. To overcome the current limitations and enhance the therapeutic effects, epigallocatechin-3-gallate (EGCG) and low-concentration doxorubicin (DX) were encapsulated in fucoidan and d-alpha-tocopherylpoly (ethylene glycol) succinate-conjugated hyaluronic acid-based NPs for targeting P-selectin-and cluster of differentiation (CD)44-expressing gastric tumors. The EGCG/DX-loaded NPs bound to GC cells and released bioactive combination drugs, demonstrating better anti-cancer effects than the EGCG/DX combination solution. In vivo assays in an orthotopic gastric tumor mouse model showed that the EGCG/DX-loaded NPs significantly increased the activity of gastric tumors without inducing organ injury. Overall, our EGCG/DX-NP system exerted a beneficial effect on GC treatment and may facilitate the development of nanomedicine-based combination chemotherapy against GC in the future.
Collapse
Affiliation(s)
- Wen-Ying Huang
- Department of Applied Cosmetology, Hung-Kuang University, Taichung 433304, Taiwan;
| | - Chih-Ho Lai
- Molecular Infectious Disease Research Center, Department of Microbiology and Immunology, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan 333323, Taiwan;
| | - Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 404, Taiwan;
| | - Che-Yu Hsu
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (C.-Y.H.); (P.-Y.C.)
| | - Po-Hung Hsu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Pei-Yi Chu
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (C.-Y.H.); (P.-Y.C.)
| | - Chun-Lung Feng
- Division of Hepatogastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung 404332, Taiwan;
| | - Yu-Hsin Lin
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (C.-Y.H.); (P.-Y.C.)
- Center for Advanced Pharmaceutics and Drug Delivery Research, Department and Institute of Pharmacology, Institute of Biopharmaceutical Sciences, Faculty of Pharmacy, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404333, Taiwan
| |
Collapse
|
26
|
Bryant MR, Cunynghame T, Hunter SO, Telfer SG, Richardson C. Trisequential Postsynthetic Modification of a Tagged IRMOF-9 Framework. Inorg Chem 2021; 60:11711-11719. [PMID: 34152749 DOI: 10.1021/acs.inorgchem.1c00862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tailoring the pore environments of metal-organic frameworks (MOFs) is key to improving their performance and expanding their applicability. Postsynthetic methods, wherein an already synthesized MOF undergoes further chemical reactions, present many advantages for such tailoring and lead to much interesting new chemistry. However, this method has seldom been pushed farther than two reaction steps on the organic component. Here we report a three-step sequence starting from an alkenyl group on the biphenyl backbone of an IRMOF-9 analogue. The alkene is converted to an oxirane group and subsequently to a 1,2-azidoalcohol. The ultimate product is a framework functionalized with an aziridine ring. The reaction efficiency of each step is high, which suppresses the formation of undesired functional groups and the buildup of unintended multivariate frameworks. The synthesis of each framework was attempted via a direct synthetic method employing the appropriately functionalized biphenyldicarboxylate ligand. In general, this met with failure, which demonstrates the power and utility of postsynthetic methods for preparing new materials.
Collapse
Affiliation(s)
- Macguire R Bryant
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Trent Cunynghame
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Sally O Hunter
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Shane G Telfer
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Christopher Richardson
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
27
|
Alves RC, Schulte ZM, Luiz MT, Bento da Silva P, Frem RCG, Rosi NL, Chorilli M. Breast Cancer Targeting of a Drug Delivery System through Postsynthetic Modification of Curcumin@N 3-bio-MOF-100 via Click Chemistry. Inorg Chem 2021; 60:11739-11744. [PMID: 34101467 DOI: 10.1021/acs.inorgchem.1c00538] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metal-organic frameworks (MOFs) offer many opportunities for applications across biology and medicine. Their wide range of chemical composition makes toxicologically acceptable formulation possible, and their high level of functionality enables possible applications as delivery systems for therapeutics agents. Surface modifications have been used in drug delivery systems to minimize their interaction with the bulk, improving their specificity as targeted carriers. Herein, we discuss a strategy to achieve a tumor-targeting drug-loaded MOF using "click" chemistry to anchor functional folic acid (FA) molecules on the surface of N3-bio-MOF-100. Using curcumin (CCM) as an anticancer drug, we observed drug loading encapsulation efficiencies (DLEs) of 24.02 and 25.64% after soaking N3-bio-MOF-100 in CCM solutions for 1 day and 3 days, respectively. The success of postsynthetic modification of FA was confirmed by 1H NMR spectroscopy, Fourier transform infrared spectroscopy (FTIR), and liquid chromatography-mass spectrometry (LC-MS). The stimuli-responsive drug release studies demonstrated an increase of CCM released under acidic microenvironments. Moreover, the cell viability assay was performed on the 4T1 (breast cancer) cell line in the presence of CCM@N3-bio-MOF-100 and CCM@N3-bio-MOF-100/FA carriers to confirm its biological compatibility. In addition, a cellular uptake study was conducted to evaluate the targeting of tumor cells.
Collapse
Affiliation(s)
- Renata C Alves
- Department of Drugs and Medicines, School of Pharmaceutical Sciences of São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01 - s/n - Campos Ville, 14800-903 Araraquara, São Paulo, Brazil
| | - Zachary M Schulte
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 1560, United States
| | - Marcela T Luiz
- Department of Pharmaceutical Sciences, School of Pharmaceutical Science of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n - Campus da USP, 14040-903 Ribeirão Preto, Sao Paulo, Brazil
| | - Patrícia Bento da Silva
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia (UnB), Campus Universitario Darcy Ribeiro - Asa Norte, 70910-900 Brasilia, Federal District, Brazil
| | - Regina C G Frem
- Institute of Chemistry, São Paulo State University (UNESP), Prof. Francisco Degni 55, PO Box 355, 14800-970 Araraquara, São Paulo, Brazil
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 1560, United States
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences of São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01 - s/n - Campos Ville, 14800-903 Araraquara, São Paulo, Brazil
| |
Collapse
|
28
|
Demir Duman F, Forgan RS. Applications of nanoscale metal-organic frameworks as imaging agents in biology and medicine. J Mater Chem B 2021; 9:3423-3449. [PMID: 33909734 DOI: 10.1039/d1tb00358e] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanoscale metal-organic frameworks (NMOFs) are an interesting and unique class of hybrid porous materials constructed by the self-assembly of metal ions/clusters with organic linkers. The high storage capacities, facile synthesis, easy surface functionalization, diverse compositions and excellent biocompatibilities of NMOFs have made them promising agents for theranostic applications. By combination of a large variety of metal ions and organic ligands, and incorporation of desired molecular functionalities including imaging modalities and therapeutic molecules, diverse MOF structures with versatile functionalities can be obtained and utilized in biomedical imaging and drug delivery. In recent years, NMOFs have attracted great interest as imaging agents in optical imaging (OI), magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET) and photoacoustic imaging (PAI). Furthermore, the significant porosity of MOFs allows them to be loaded with multiple imaging agents and therapeutics simultaneously and applied for multimodal imaging and therapy as a single entity. In this review, which is intended as an introduction to the use of MOFs in biomedical imaging for a reader entering the subject, we summarize the up-to-date progress of NMOFs as bioimaging agents, giving (i) a broad perspective of the varying imaging techniques that MOFs can enable, (ii) the different routes to manufacturing functionalised MOF nanoparticles and hybrids, and (iii) the integration of imaging with differing therapeutic techniques. The current challenges and perspectives of NMOFs for their further clinical translation are also highlighted and discussed.
Collapse
Affiliation(s)
- Fatma Demir Duman
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK.
| | | |
Collapse
|
29
|
Jafarizadeh T, Hayati P, Neyrizi HZ, Mehrabadi Z, Farjam MH, Gutiérrez A, Adarsh NN. Synthesis and structural characterization of a novel Zn(II) metal organic complex (Zn-MOC) and elimination of highly consumed antibiotic; tetracycline from aqueous solution by their nanostructures photocatalyst under visible light. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Wang XL, Tian JY, Guo XC, Zhang FQ, Liang L, Zhang XM. Cd-Based Metal-Organic Framework for Selective Turn-On Fluorescent DMSO Residual Sensing. Chemistry 2021; 27:3753-3760. [PMID: 33145861 DOI: 10.1002/chem.202004111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/18/2020] [Indexed: 11/11/2022]
Abstract
Dimethyl sulfoxide (DMSO) is a universally used solvent in various synthetic reactions, and trace amounts of DMSO residual are often seen on the surface of chemical product. It is difficult to quickly determine whether the residual DMSO is washed completely. This work reports a CdII metal-organic framework (MOF) SXU-4 which can detect trace amounts of DMSO in various solvents. Fluorescence experiments reveal its turn-on fluorescence effect toward DMSO with high selectivity and sensitivity, indicating that it can be used as an effective luminescent probe for rapid chemical product purity detection by testing the washing solution. Crystallographically characterized DMSO loaded SXU-4 (DMSO@SXU-4), in combination with computational results uncover that the enhanced DMSO-MOF conjugation through multiple DMSO-MOF supramolecule interactions and charge rearrangement are the main causes of fluorescence intensification.
Collapse
Affiliation(s)
- Xiao-Lu Wang
- Institute of Crystalline Materials, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Jia-Yue Tian
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, China
| | - Xuan-Chen Guo
- Institute of Crystalline Materials, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Fu-Qiang Zhang
- School of Chemistry and Materials Science, Shanxi Normal University, Linfen, 041001, Shanxi, China
| | - Linfeng Liang
- Institute of Crystalline Materials, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Xian-Ming Zhang
- Institute of Crystalline Materials, Shanxi University, Taiyuan, 030006, Shanxi, China.,School of Chemistry and Materials Science, Shanxi Normal University, Linfen, 041001, Shanxi, China
| |
Collapse
|
31
|
Abazari R, Sanati S, Morsali A, Kirillov AM, Slawin AMZ, Carpenter-Warren CL. Simultaneous Presence of Open Metal Sites and Amine Groups on a 3D Dy(III)-Metal–Organic Framework Catalyst for Mild and Solvent-Free Conversion of CO2 to Cyclic Carbonates. Inorg Chem 2021; 60:2056-2067. [DOI: 10.1021/acs.inorgchem.0c03634] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Reza Abazari
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14115-175, Iran
| | - Soheila Sanati
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14115-175, Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14115-175, Iran
| | - Alexander M. Kirillov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenido Rovisco Pais, 1049-001 Lisbon, Portugal
- Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya strasse, Moscow 117198, Russia
| | - Alexandra M. Z. Slawin
- School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 9ST, United Kingdom
| | | |
Collapse
|
32
|
Choudhury H, Pandey M, Wen LP, Cien LK, Xin H, Yee ANJ, Lee NJ, Gorain B, Amin MCIM, Pichika MR. Folic Acid Conjugated Nanocarriers for Efficient Targetability and Promising Anticancer Efficacy for Treatment of Breast Cancer: A Review of Recent Updates. Curr Pharm Des 2020; 26:5365-5379. [DOI: 10.2174/1381612826666200721000958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023]
Abstract
Breast cancer (BC) is the commonest cause of cancer deaths among Women. It is known to be
caused due to mutations in certain receptors, viz. estrogens or progesterones. The most frequently used conventional
treatment strategies against BC include chemotherapy, radiation therapy, and partial or entire mastectomy,
however, these strategies are often associated with multiple adverse effects, thus reducing patient compliance.
Advancement of nanotechnology in the medical application has been made to enhance the therapeutic
effectiveness with a significant reduction in the unintended side-effects associated with incorporated anticancer
drugs against cancer. The surface engineering technology of the nanocarriers is more pronounced in delivering
the therapeutics specifically to target cells. Consequently, folic acid, a small molecular ligand for the folate receptor
overexpressed cells, has shown immense response in treating BC cells. Folic acid conjugated nanocarriers
have shown remarkable efficiency in targeting overexpressed folate receptors on the surface of BC cells.
Binding of these target-specific folate-conjugated nanocarriers substantially improves the internalization of chemotherapeutics
in BC cells, without much exposing the other parts of the body. Simultaneously, these folate--
conjugated nanocarriers provide imaging for regular monitoring of targeted drug delivery systems and their responses
to an anticancer therapy. Therefore, this review demonstrates the potential of folate-conjugated nanotherapeutics
for the treatment and theranostic approaches against BC along with the significant challenges to anticancer
therapy, and the prospective insights into the clinical importance and effectiveness of folate conjugate
nanocarriers.
Collapse
Affiliation(s)
- Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Lee Pei Wen
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Ling Kah Cien
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Ho Xin
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Alvina Ng Jia Yee
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Ng Joo Lee
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Mallikarjuna Rao Pichika
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
33
|
Sanati S, Abazari R, Albero J, Morsali A, García H, Liang Z, Zou R. Metal–Organic Framework Derived Bimetallic Materials for Electrochemical Energy Storage. Angew Chem Int Ed Engl 2020; 60:11048-11067. [DOI: 10.1002/anie.202010093] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/09/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Soheila Sanati
- Department of Chemistry Faculty of Basic Sciences Tarbiat Modares University Tehran 14115-175 Iran
| | - Reza Abazari
- Department of Chemistry Faculty of Basic Sciences Tarbiat Modares University Tehran 14115-175 Iran
| | - Josep Albero
- Dep. Instituto Universitario de Tecnología Química (CSIC-UPV) Universitat Politècnica de València València 46022 Spain
| | - Ali Morsali
- Department of Chemistry Faculty of Basic Sciences Tarbiat Modares University Tehran 14115-175 Iran
| | - Hermenegildo García
- Dep. Instituto Universitario de Tecnología Química (CSIC-UPV) Universitat Politècnica de València València 46022 Spain
| | - Zibin Liang
- Beijing Key Lab of Theory and Technology for Advanced Battery Materials Department of Materials Science and Engineering College of Engineering Peking University Beijing 100871 China
| | - Ruqiang Zou
- Beijing Key Lab of Theory and Technology for Advanced Battery Materials Department of Materials Science and Engineering College of Engineering Peking University Beijing 100871 China
| |
Collapse
|
34
|
Sanati S, Abazari R, Albero J, Morsali A, García H, Liang Z, Zou R. Metal–Organic Framework Derived Bimetallic Materials for Electrochemical Energy Storage. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Soheila Sanati
- Department of Chemistry Faculty of Basic Sciences Tarbiat Modares University Tehran 14115-175 Iran
| | - Reza Abazari
- Department of Chemistry Faculty of Basic Sciences Tarbiat Modares University Tehran 14115-175 Iran
| | - Josep Albero
- Dep. Instituto Universitario de Tecnología Química (CSIC-UPV) Universitat Politècnica de València València 46022 Spain
| | - Ali Morsali
- Department of Chemistry Faculty of Basic Sciences Tarbiat Modares University Tehran 14115-175 Iran
| | - Hermenegildo García
- Dep. Instituto Universitario de Tecnología Química (CSIC-UPV) Universitat Politècnica de València València 46022 Spain
| | - Zibin Liang
- Beijing Key Lab of Theory and Technology for Advanced Battery Materials Department of Materials Science and Engineering College of Engineering Peking University Beijing 100871 China
| | - Ruqiang Zou
- Beijing Key Lab of Theory and Technology for Advanced Battery Materials Department of Materials Science and Engineering College of Engineering Peking University Beijing 100871 China
| |
Collapse
|
35
|
Li X, Sun X, Li M. Detection of Sudan I in Foods by a MOF‐5/MWCNT Modified Electrode. ChemistrySelect 2020. [DOI: 10.1002/slct.202003559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Xueyan Li
- Anhui Key Laboratory of Chemo-Biosensing, School of Chemistry and Materials Science Anhui Normal University 189 Huajin South Road Wuhu 241000 P.R. China
| | - Xiuxiu Sun
- Anhui Key Laboratory of Chemo-Biosensing, School of Chemistry and Materials Science Anhui Normal University 189 Huajin South Road Wuhu 241000 P.R. China
| | - Maoguo Li
- Anhui Key Laboratory of Chemo-Biosensing, School of Chemistry and Materials Science Anhui Normal University 189 Huajin South Road Wuhu 241000 P.R. China
| |
Collapse
|
36
|
Functional metal–organic frameworks constructed from triphenylamine-based polycarboxylate ligands. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213354] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Effective toluene adsorption over defective UiO-66-NH2: An experimental and computational exploration. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113812] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Wu S, Sun Z, Peng Y, Han Y, Li J, Zhu S, Yin Y, Li G. Peptide-functionalized metal-organic framework nanocomposite for ultrasensitive detection of secreted protein acidic and rich in cysteine with practical application. Biosens Bioelectron 2020; 169:112613. [PMID: 32956904 DOI: 10.1016/j.bios.2020.112613] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/31/2020] [Accepted: 09/12/2020] [Indexed: 01/17/2023]
Abstract
In this work, we have prepared peptide-functionalized metal-organic frameworks (MOFs) as signal-amplifying tags for the detection of secreted protein acidic and rich in cysteine (SPARC). Furthermore, enzyme-MOF nanocomposites are fabricated via a coprecipitation strategy between horse radish peroxidase (HRP) and ZIF-90, where ZIF-90 is used as a protective support for HRP immobilization. Meanwhile, the peptide sequence has been designed as SPARC-binding peptide, which imparts biorecognition functionality to HRP@ZIF-90 for performing a colorimetric sensor. Therefore, during the test, HRP molecules can be quickly released from nanocomposites by acidic condition to catalyze chromogenic reaction, enabling the ultrasensitive detection of SPARC with a low detection limit of 30 fg/mL. Moreover, the content of SPARC in colon cancer tissues with different degrees of differentiation can be determined with this sensor, demonstrating that the expression of SPARC is closely related to the occurrence, invasion and metastasis of human colon cancer. These results may show the potential applications of this biosensor in SPARC fundamental research as well as clinical diagnosis in the future.
Collapse
Affiliation(s)
- Shuai Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Zhaowei Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Ying Peng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Yiwei Han
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Jinlong Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Southeast University, Nanjing, 210003, PR China
| | - Sha Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China.
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China; Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
39
|
Shi ZQ, Ji NN, Hu HL. Luminescent triphenylamine-based metal-organic frameworks: recent advances in nitroaromatics detection. Dalton Trans 2020; 49:12929-12939. [PMID: 32902551 DOI: 10.1039/d0dt02213f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Luminescent metal-organic frameworks (LMOFs), as one branch of MOFs, have attracted considerable attention in recent years due to their good crystallinity, structural diversity, tunable porosity and easily induced fluorescence emission. Importantly, their photoluminescence (PL) properties can be adjusted by altering metal ions or metal clusters and organic ligands in one hybrid system. Among the various sensing applications, using LMOFs as chemical sensors to detect the explosive and environment pollution causing nitroaromatic compounds (NACs) is an important topic. In this account, we describe the recent advancements in the field of NAC detection by LMOFs based on the triphenylamine (TPA) unit as the π-conjugated fluorophore.
Collapse
Affiliation(s)
- Zhi-Qiang Shi
- College of Chemistry and Chemical Engineering, Taishan University, Taian 271021, P. R. China.
| | | | | |
Collapse
|
40
|
|
41
|
Sun PP, Zhang YH, Yu X, Shi Q, Tian B, Gao J, Shi FN. Cu powder decorated 3D Mn-MOF with excellent electrochemical properties for supercapacitors. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119629] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Chen Z, Peng H, Zhang C. Advances in kidney-targeted drug delivery systems. Int J Pharm 2020; 587:119679. [PMID: 32717283 DOI: 10.1016/j.ijpharm.2020.119679] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/28/2020] [Accepted: 07/18/2020] [Indexed: 12/19/2022]
Abstract
The management and treatment of kidney diseases currently have caused a huge global burden. Although the application of nanotechnology for the therapy of kidney diseases is still at an early stages, it has profound potential of development. More and more nano-based drug delivery systems provide novel solutions for the treatment of kidney diseases. This article summarizes the physiological and anatomical properties of the kidney and the biological and physicochemical characters of drug delivery systems, which affects the ability of drug to target the kidney, and highlights the prospects, opportunities, and challenges of nanotechnology in the therapy of kidney diseases.
Collapse
Affiliation(s)
- Zhong Chen
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, 1 Xinyang Rd, Daqing 163319, China
| | - Haisheng Peng
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, 1 Xinyang Rd, Daqing 163319, China.
| | - Changmei Zhang
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, 1 Xinyang Rd, Daqing 163319, China.
| |
Collapse
|
43
|
Hao L, Song H, Zhan Z, Lv Y. Multifunctional Reduced Graphene Oxide-Based Nanoplatform for Synergistic Targeted Chemo-Photothermal Therapy. ACS APPLIED BIO MATERIALS 2020; 3:5213-5222. [PMID: 35021696 DOI: 10.1021/acsabm.0c00614] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Liying Hao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongjie Song
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Zixuan Zhan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
44
|
Sanati S, Abazari R, Morsali A. Enhanced electrochemical oxygen and hydrogen evolution reactions using an NU-1000@NiMn-LDHS composite electrode in alkaline electrolyte. Chem Commun (Camb) 2020; 56:6652-6655. [DOI: 10.1039/d0cc01146k] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A well-designed NU-1000@NiMn-LDHS (NU@LDHS) composite can offer efficient electrocatalytic performance with ultralow HER and OER overpotentials of 93 and 129 mV, respectively, at a current density of 10 mA cm−2 in 2 M KOH.
Collapse
Affiliation(s)
- Soheila Sanati
- Department of Chemistry
- Faculty of Basic Sciences
- Tarbiat Modares University
- Tehran
- Iran
| | - Reza Abazari
- Department of Chemistry
- Faculty of Basic Sciences
- Tarbiat Modares University
- Tehran
- Iran
| | - Ali Morsali
- Department of Chemistry
- Faculty of Basic Sciences
- Tarbiat Modares University
- Tehran
- Iran
| |
Collapse
|
45
|
Abazari R, Morsali A, Dubal DP. An advanced composite with ultrafast photocatalytic performance for the degradation of antibiotics by natural sunlight without oxidizing the source over TMU-5@Ni–Ti LDH: mechanistic insight and toxicity assessment. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00050g] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pharmaceuticals are considered as emerging organic contaminants that have become a serious environmental problem, which endanger human health and environmental bio-diversity.
Collapse
Affiliation(s)
- Reza Abazari
- Department of Chemistry
- Tarbiat Modares University
- Tehran
- Iran
| | - Ali Morsali
- Department of Chemistry
- Tarbiat Modares University
- Tehran
- Iran
| | - Deepak P. Dubal
- Centre for Materials Science
- Queensland University of Technology (QUT)
- Brisbane
- Australia
- School of Chemistry and Physics
| |
Collapse
|