1
|
Song Y, Zhou Y, Zhang K, Fan Z, Zhang F, Wei M. Microfluidic programmable strategies for channels and flow. LAB ON A CHIP 2024; 24:4483-4513. [PMID: 39120605 DOI: 10.1039/d4lc00423j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
This review summarizes programmable microfluidics, an advanced method for precise fluid control in microfluidic technology through microchannel design or liquid properties, referring to microvalves, micropumps, digital microfluidics, multiplexers, micromixers, slip-, and block-based configurations. Different microvalve types, including electrokinetic, hydraulic/pneumatic, pinch, phase-change and check valves, cater to diverse experimental needs. Programmable micropumps, such as passive and active micropumps, play a crucial role in achieving precise fluid control and automation. Due to their small size and high integration, microvalves and micropumps are widely used in medical devices and biological analysis. In addition, this review provides an in-depth exploration of the applications of digital microfluidics, multiplexed microfluidics, and mixer-based microfluidics in the manipulation of liquid movement, mixing, and splitting. These methodologies leverage the physical properties of liquids, such as capillary forces and dielectric forces, to achieve precise control over fluid dynamics. SlipChip technology, which branches into rotational SlipChip and translational SlipChip, controls fluid through sliding motion of the microchannel. On the other hand, innovative designs in microfluidic systems pursue better modularity, reconfigurability and ease of assembly. Different assembly strategies, from one-dimensional assembly blocks and two-dimensional Lego®-style blocks to three-dimensional reconfigurable modules, aim to enhance flexibility and accessibility. These technologies enhance user-friendliness and accessibility by offering integrated control systems, making them potentially usable outside of specialized technical labs. Microfluidic programmable strategies for channels and flow hold promising applications in biomedical research, chemical analysis and drug screening, providing theoretical and practical guidance for broader utilization in scientific research and practical applications.
Collapse
Affiliation(s)
- Yongxian Song
- School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing, Jiangsu 211171, China.
| | - Yijiang Zhou
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Kai Zhang
- School of Automation, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Zhaoxuan Fan
- Research Institute of Chemical Defence, Beijing 102205, China.
| | - Fei Zhang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Mingji Wei
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
2
|
Bo W, Xueqin Z, Bingkun L, Yijie L, Chenguang Y, Yujun G, Song X, Wenfu W, Guoqiang G, Guangning W. Advances in superhydrophobic material research: from preparation to electrified railway protection. RSC Adv 2024; 14:12204-12217. [PMID: 38628488 PMCID: PMC11019352 DOI: 10.1039/d3ra08180j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
Freezing is a serious problem that affects the power, transport, and transmission industries and is a major concern for the national economy and safety. Currently, several engineering de-icing methods, such as thermal, mechanical, and chemical de-icing, have shown problems related to energy consumption, efficiency, and the environment. Superhydrophobic materials have high droplet contact and roll angles, which can reduce the droplet residence and ice adhesion on their surfaces and have unique advantages in the self-cleaning and anti-icing fields. This paper introduces the development of infiltration theory and superhydrophobic materials and their principles of anti-icing and de-icing. Herein, the preparation and coating methods of superhydrophobic materials in applications are summarised, the performance and lifetime issues of superhydrophobic materials in applications are clarified, and the research progress on superhydrophobic materials in different fields is reviewed. Prospects for the application of superhydrophobic materials in electrified railways are also presented. A feasibility study was conducted to solve some of the existing problems of electrified railways, providing a theoretical basis for the development of electrified railways.
Collapse
Affiliation(s)
- Wang Bo
- School of Electrical Engineering, Southwest Jiaotong University Chengdu China
| | - Zhang Xueqin
- School of Electrical Engineering, Southwest Jiaotong University Chengdu China
| | - Li Bingkun
- School of Electrical Engineering, Southwest Jiaotong University Chengdu China
| | - Liu Yijie
- School of Materials Engineering, Shanghai Jiaotong University Shanghai China
| | - Yang Chenguang
- School of Electrical Engineering, Southwest Jiaotong University Chengdu China
| | - Guo Yujun
- School of Electrical Engineering, Southwest Jiaotong University Chengdu China
| | - Xiao Song
- School of Electrical Engineering, Southwest Jiaotong University Chengdu China
| | - Wei Wenfu
- School of Electrical Engineering, Southwest Jiaotong University Chengdu China
| | - Gao Guoqiang
- School of Electrical Engineering, Southwest Jiaotong University Chengdu China
| | - Wu Guangning
- School of Electrical Engineering, Southwest Jiaotong University Chengdu China
| |
Collapse
|
3
|
Liu S, Ma Y, Long J, Li J, Li N, Wang N, Wang M, Ruan S. Patterned Manipulated Surface Based on Femtosecond Laser with Adjustable Wetting Speed and Directional Fluid Delivery. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11973-11983. [PMID: 38394214 DOI: 10.1021/acsami.3c15626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Recently, due to the crucial roles of multifunctional liquid manipulation surfaces in biomedical transportation, microfluidics, and chemical engineering, the demand for controllable and functional aspects of directed liquid transportation has increased significantly. However, designing an intelligent manipulation surface that is easy to manufacture and fully functional remains an immense challenge. To address this challenge, a smart surface that can regulate the rate of liquid transport within a patterned channel by temperature is reported. A synergistically controlled approach of poly(N-isopropylacrylamide) and micropillar shape-memory polymers (SMPs) was used to modulate the wetting rate of liquids on surfaces. By femtosecond laser direct writing, temperature-responsive composite surfaces are embedded in the microstructure of shape-memory polymers (SMPs) in a patterned manner, resulting in the preparation of novel programmable liquid manipulation surfaces incorporating boundaries possessing asymmetric wettability. Since the smart surface is based on SMP, the superhydrophobic part in the superhydrophobic/controllable wettability patterning platform is also programmed for droplet directional transport, which takes advantage of the difference in wettability between the rewritable indentation track and the periphery to allow droplets to flow into the temperature-controlled velocity track, enriching the functionality of the surface. In addition, based on its excellent controllability and patterning, the surface has been shown to be used in microfluidic circuit chips with self-cleaning properties, which provides new ideas for circuit timing control. This study provides promising prospects for the effective development of multifunctional liquid steering surfaces, lab-on-a-chip, and microfluidic devices.
Collapse
Affiliation(s)
- Shengkai Liu
- Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Yaning Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jiazhao Long
- College of Design and Engineering, National University of Singapore, 119077 Singapore
| | - Jiyu Li
- Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Nana Li
- Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Ning Wang
- Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Meng Wang
- Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Shuangchen Ruan
- Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| |
Collapse
|
4
|
Wang Q, Xie D, Li FY, Liu HL, Chen GX, Yu MG. Aqueous construction of raspberry-like ZIF-8 hierarchical structures with enhanced superhydrophobic performance. NANOSCALE 2022; 14:13308-13314. [PMID: 36063419 DOI: 10.1039/d2nr03377a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Materials with super-wetting ability have attracted wide attention from both academia and industry due to their great potential applications. A straightforward and versatile route was proposed for the large-scale synthesis of a monodisperse raspberry-like metal-organic framework (ZIF-8) using zinc nitrate as a zinc source and dimethylimidazole as an organic ligand in aqueous solution. After hydrophobic treatment with hexadecyltrimethoxysilane, the ethanolic suspension of three-dimensional raspberry-like ZIF-8 showed excellent superhydrophobic properties. Furthermore, commercial adhesives were used to blend with the suspension to improve the bonding strength to different substrates. These surfaces retained their water resistance after 50 finger-wipe cycles, 40 sandpaper abrasions and knife scratches. Moreover, the prepared hydrophobic surface can withstand the impact of water flow for 10 minutes. The formulations developed can be used for superhydrophobic coating applications on different substrate surfaces such as aluminum foil, glass, paper and cotton.
Collapse
Affiliation(s)
- Q Wang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangdong Biomaterials Engineering Technology Research Center, Guangzhou 510316, China.
| | - D Xie
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangdong Biomaterials Engineering Technology Research Center, Guangzhou 510316, China.
| | - F Y Li
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangdong Biomaterials Engineering Technology Research Center, Guangzhou 510316, China.
| | - H L Liu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangdong Biomaterials Engineering Technology Research Center, Guangzhou 510316, China.
| | - G X Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - M G Yu
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| |
Collapse
|
5
|
Chen H, Li X, Li D. Superhydrophilic–superhydrophobic patterned surfaces: From simplified fabrication to emerging applications. NANOTECHNOLOGY AND PRECISION ENGINEERING 2022. [DOI: 10.1063/10.0013222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Superhydrophilic–superhydrophobic patterned surfaces constitute a branch of surface chemistry involving the two extreme states of superhydrophilicity and superhydrophobicity combined on the same surface in precise patterns. Such surfaces have many advantages, including controllable wettability, enrichment ability, accessibility, and the ability to manipulate and pattern water droplets, and they offer new functionalities and possibilities for a wide variety of emerging applications, such as microarrays, biomedical assays, microfluidics, and environmental protection. This review presents the basic theory, simplified fabrication, and emerging applications of superhydrophilic–superhydrophobic patterned surfaces. First, the fundamental theories of wettability that explain the spreading of a droplet on a solid surface are described. Then, the fabrication methods for preparing superhydrophilic–superhydrophobic patterned surfaces are introduced, and the emerging applications of such surfaces that are currently being explored are highlighted. Finally, the remaining challenges of constructing such surfaces and future applications that would benefit from their use are discussed.
Collapse
Affiliation(s)
- Hao Chen
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Xiaoping Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Dachao Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Rong X, Chen X, Li P, Zhao C, Peng S, Ma H, Qu H. Mechanically durable anti-bacteria non-fluorinated superhydrophobic sponge for highly efficient and fast microplastic and oil removal. CHEMOSPHERE 2022; 299:134493. [PMID: 35385765 DOI: 10.1016/j.chemosphere.2022.134493] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 05/06/2023]
Abstract
Microplastics (MPs) pollution evolves into a global environmental problem to be solved urgently. Although many studies are exploring ways to remove MPs from water environment, most of them are lack of selectivity and low efficiency. Herein, considering the fascinating absorption selectivity of superwetting materials, a robust magnetic-responsive superhydrophobic and superoleophilic sponge was firstly used to quickly eliminate MPs from water with very high efficiency. The functional sponge was fabricated by a non-fluorinated coating technique that consisted of polydimethylsiloxane (PDMS) grafted Fe3O4 particle, PDMS grafted halloysite nanotubes, and PDMS binder. The coated sponge achieved excellent mechanically durable and chemically stable superhydrophobicity that resisted a series of severe treatments. It was unquestionable to show very fast oil absorption. What's more, it especially showed very high adsorption capacity (24.3-48.2 mg/g) and could quickly adsorb almost 100% MPs (polypropylene, polyvinyl chloride, and polyethylene) from aqueous suspensions. Moreover, the removal rates remained almost 100% for these MPs after 50 cycles. Besides, the coated sponge had excellent salt tolerance and antibacterial activity to Escherichia coli (E. coli) (99.91%) and Staphylococcus aureus (S. aureus) (90.46%). The adsorption mechanism of the coating was discussed from the perspectives of molecular structure, electronic effect, steric hindrance, and size-scale effect. The absorption driving force mainly derived from the intra-particle diffusion under capillary attraction, whilst slight electrostatic interaction, hydrogen bond interaction, and σ-p (or p-p) conjugation between PDMS and MPs. This functional sponge was destined to be a new strategy in the removal of MPs and other solid pollutants, especially in the high-salinity and rich-microorganism water environment.
Collapse
Affiliation(s)
- Xin Rong
- College of Chemistry and Environmental Science, China; College of Eco-Environment, China.
| | - Xiaoxin Chen
- College of Chemistry and Environmental Science, China; College of Eco-Environment, China.
| | - Pan Li
- College of Chemistry and Environmental Science, China.
| | - Chenyang Zhao
- College of Chemistry and Environmental Science, China.
| | - Shan Peng
- College of Chemistry and Environmental Science, China; Engineering Technology Research Center for Flame Retardant Materials and Processing Technology of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, 071002, China.
| | - Haiyun Ma
- College of Chemistry and Environmental Science, China; Engineering Technology Research Center for Flame Retardant Materials and Processing Technology of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, 071002, China.
| | - Hongqiang Qu
- College of Chemistry and Environmental Science, China; Engineering Technology Research Center for Flame Retardant Materials and Processing Technology of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, 071002, China.
| |
Collapse
|
7
|
Guler MT, Inal M, Bilican I. CO2 laser machining for microfluidics mold fabrication from PMMA with applications on viscoelastic focusing, electrospun nanofiber production, and droplet generation. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Remote, selective, and in situ manipulation of liquid droplets on a femtosecond laser-structured superhydrophobic shape-memory polymer by near-infrared light. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9940-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Wang H, Chi G, Li L, Gong S, Zhu J, Tian C, Wang Y, Wang Z. Numerical Calculation of Apparent Contact Angles on the Hierarchical Surface with Array Microstructures by Wire Electrical Discharge Machining. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1768-1778. [PMID: 33494604 DOI: 10.1021/acs.langmuir.0c03033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It is necessary to theoretically research wettability in superhydrophobic surface fabrication. Here, a numerical calculation approach is proposed for determining the contact angle of the water droplets on array micropillars by wire electrical discharge machining (WEDM). A hierarchical model is employed for these array microstructures, including mechanical analysis for a water droplet placed on a smooth array and wettability evaluation on the morphology of the WEDM surface. On pillars, equations are listed to solve the apparent contact angle according to force balance of gravity, tension, and pressure. As for the WEDM morphology, temperature simulation and measurement are carried out, and then the effect of roughness on surface wettability is studied. Constructed formulas predict the contact angle, and then the effect of geometric dimensions is obtained. In order to verify the assumption, array micropillars with different cross-profiles are prepared using high-speed WEDM on the Al alloy surface. Through the results of contact angle determination, the numerical calculation is carried out. This theoretical prediction is beneficial for improving the fabrication of the superhydrophobic surface by WEDM.
Collapse
Affiliation(s)
- Han Wang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 Heilongjiang, China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin, 150001 Heilongjiang, China
| | - Guanxin Chi
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 Heilongjiang, China
| | - Lei Li
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 Heilongjiang, China
| | - Sirui Gong
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 Heilongjiang, China
| | - Jialei Zhu
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 Heilongjiang, China
| | - Chuan Tian
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 Heilongjiang, China
| | - Yukui Wang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 Heilongjiang, China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin, 150001 Heilongjiang, China
| | - Zhenlong Wang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 Heilongjiang, China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin, 150001 Heilongjiang, China
| |
Collapse
|
10
|
Lv L, Zhao W, Zhong X, Fu H. Fabrication of Magnetically Inorganic/Organic Superhydrophobic Fabrics and Their Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45296-45305. [PMID: 32931244 DOI: 10.1021/acsami.0c13229] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In order to solve the problem caused by oil spills and organic solvent contamination, novel magnetically inorganic/organic superhydrophobic fabrics are fabricated via a facile method. Cotton fabrics are immersed in a mixture of functionalized Co0.2Mg0.8Fe2O4 (FCMFO) nanoparticles, vinyl-terminated polydimethylsiloxane (VPDMS), trimethylolpropane triacrylate, and 2-hydroxy-2-methylpropiophenone before UV irradiation for 100 s to obtain the multifunctional superhydrophobic fabrics with magnetic property. The coated fabrics show excellent superhydrophobicity, and the water contact angle is 157.1° when the mass ratio of FCMFO nanoparticles to VPDMS is 0.3. These superhydrophobic fabrics have high oil/water separation efficiency (98.7% for dichloromethane/water) and high oil flux (71,506 L·m-2·h-1 for dichloromethane/water). Even after 20 separation cycles, oil/water separation efficiency and oil flux maintain 96.4% and 64,012 L·m-2·h-1, respectively. Furthermore, the magnetic property of these superhydrophobic fabrics could be used in the separation of oil from water. Moreover, the superhydrophobic fabrics possess exceptional self-cleaning performance, mechanical durability, chemical stability, and flame retardancy. These multifunctional superhydrophobic fabrics are potential for wide applications.
Collapse
Affiliation(s)
- Lizhang Lv
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wenjie Zhao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Ximing Zhong
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, P. R. China
| | - Heqing Fu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
11
|
Lai X, Shi Z, Pu Z, Zhang P, Zhang X, Yu H, Li D. A Rubik's microfluidic cube. MICROSYSTEMS & NANOENGINEERING 2020; 6:27. [PMID: 34567642 PMCID: PMC8433458 DOI: 10.1038/s41378-020-0136-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/10/2020] [Accepted: 01/31/2020] [Indexed: 05/04/2023]
Abstract
A Rubik's cube as a reconfigurable microfluidic system is presented in this work. Composed of physically interlocking microfluidic blocks, the microfluidic cube enables the on-site design and configuration of custom microfluidics by twisting the faces of the cube. The reconfiguration of the microfluidics could be done by solving an ordinary Rubik's cube with the help of Rubik's cube algorithms and computer programs. An O-ring-aided strategy is used to enable self-sealing and the automatic alignment of the microfluidic cube blocks. Owing to the interlocking mechanics of cube blocks, the proposed microfluidic cube exhibits good reconfigurability and robustness in versatile applications and proves to be a promising candidate for the rapid deployment of microfluidic systems in resource-limited settings.
Collapse
Affiliation(s)
- Xiaochen Lai
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072 China
| | - Zhi Shi
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072 China
| | - Zhihua Pu
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072 China
| | - Penghao Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072 China
| | - Xingguo Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072 China
| | - Haixia Yu
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin, 300072 China
| | - Dachao Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072 China
| |
Collapse
|