1
|
Sadan S, Svenum IH, Hanslin SØ, Akola J. Reaction modelling of hydrogen evolution on nickel phosphide catalysts: density functional investigation. Phys Chem Chem Phys 2024; 26:25957-25968. [PMID: 39365166 DOI: 10.1039/d4cp02760d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Nickel phosphides (NixPy), particularly Ni2P, are promising catalysts for the acidic hydrogen evolution reaction (HER). Using density functional theory (DFT), we model HER at the potential of zero charge (PZC), incorporating solvation effects via an explicit water cluster and implicit surrounding solvent. Comparing the Volmer, Tafel, and Heyrovsky steps under saturated hydrogen coverage on Ni2P(0001) terminations, we find that the Ni3P2 (pristine) surface termination prefers the Volmer-Volmer-Tafel (VVT) pathway with activation energy (Ea) of 0.57 eV. Conversely, the Ni3P2 + 4P (reconstructed) surface favors the Volmer-Heyrovsky (VH) pathway with Ea = 0.60 eV. For the pristine surface termination, the differential gas-phase hydrogen adsorption free energies (ΔGdiff) correlate with the Volmer and Tafel step reaction energies, and a linear Bell-Evans-Polanyi relationship for the calculated activation and reaction energies validates the usefulness of the ΔGdiff descriptor for the Volmer step under PZC conditions. Nickel atoms play a crucial role in H2 production on both pristine and reconstructed surfaces, suggesting that modifications of the Ni sites can be used for catalyst design. Our findings highlight the importance of considering surface reconstruction and solvation effects on the HER catalytic performance.
Collapse
Affiliation(s)
- Syam Sadan
- Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Ingeborg-Helene Svenum
- SINTEF Industry, Postboks 4760 Torgarden, NO-7465 Trondheim, Norway
- Department of Chemical Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Sander Ø Hanslin
- Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Jaakko Akola
- Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
- Computational Physics Laboratory, Tampere University, FI-33101 Tampere, Finland
| |
Collapse
|
2
|
Quan X, Ma J, Shao Q, Li H, Sun L, Huang G, Yan S, Hong Z, Wang Y, Wang X. Tungsten doped FeCoP 2 nanoparticles embedded into carbon for highly efficient oxygen evolution reaction. RSC Adv 2024; 14:16639-16648. [PMID: 38784417 PMCID: PMC11110020 DOI: 10.1039/d4ra02326a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Designing active and stable electrocatalysts with economic efficiency for oxygen evolution reaction (OER) is essential for developing water splitting process at an industrial scale. Herein, we rationally designed a tungsten doped iron cobalt phosphide incorporated with carbon (Wx-FeCoP2/C), prepared by a mechanochemical approach. X-ray photoelectron spectroscopy (XPS) revealed that the doping of W led to an increasing of Co3+/Co2+ and Fe3+/Fe2+ molar ratios, which contributed to the enhanced OER performance. As a result, a current density of 10 mA cm-2 was achieved in 1 M KOH at an overpotential of 264 mV on the optimized W0.1-FeCoP2/C. Moreover, at high current density of 100 mA cm-2, the overpotential value was 310 mV, and the corresponding Tafel slope was measured to be 48.5 mV dec-1, placing it among the best phosphide-based catalysts for OER. This work is expected to enlighten the design strategy of highly efficient phosphide-based OER catalysts.
Collapse
Affiliation(s)
- Xinyao Quan
- Institute of Agricultural Sciences in Taihu Lake District, Suzhou Academy of Agricultural Sciences Suzhou 215155 China
| | - Jiajia Ma
- Institute of Agricultural Sciences in Taihu Lake District, Suzhou Academy of Agricultural Sciences Suzhou 215155 China
| | - Qianshuo Shao
- Institute of Agricultural Sciences in Taihu Lake District, Suzhou Academy of Agricultural Sciences Suzhou 215155 China
| | - Haocong Li
- Institute of Agricultural Sciences in Taihu Lake District, Suzhou Academy of Agricultural Sciences Suzhou 215155 China
| | - Lingxiang Sun
- Institute of Agricultural Sciences in Taihu Lake District, Suzhou Academy of Agricultural Sciences Suzhou 215155 China
| | - Guili Huang
- Institute of Agricultural Sciences in Taihu Lake District, Suzhou Academy of Agricultural Sciences Suzhou 215155 China
| | - Su Yan
- Institute of Agricultural Sciences in Taihu Lake District, Suzhou Academy of Agricultural Sciences Suzhou 215155 China
| | - Zhanglian Hong
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Yuning Wang
- Institute of Agricultural Sciences in Taihu Lake District, Suzhou Academy of Agricultural Sciences Suzhou 215155 China
| | - Xiaoqing Wang
- College of Materials and Chemical Engineering, Chuzhou University 239000 Chuzhou China
| |
Collapse
|
3
|
Pundir V, Gaur A, Kaur R, Sharma J, Kumar R, Bagchi V. Synergistic modulation in a triphasic Ni 5P 4-Ni 2P@Ni 3S 2 system manifests remarkable overall water splitting. J Colloid Interface Sci 2023; 651:579-588. [PMID: 37562300 DOI: 10.1016/j.jcis.2023.07.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023]
Abstract
The potential for water splitting electrocatalysts with high efficiency paves the way for a sustainable future in hydrogen energy. However, this task is challenging due to the sluggish kinetics of the oxygen evolution reaction (OER), which has a significant impact on the hydrogen evolution reaction (HER). Herein multi-heterointerface of Ni5P4-Ni2P@Ni3S2 was fabricated by a two-step synthesis procedure that consist the development of Ni5P4-Ni2P nanosheets over nickel foam followed by the electrodeposition of Ni3S2. The HR-TEM analysis shows that the Ni5P4-Ni2P@Ni3S2 nanosheets array provide numerous well-exposed diverse heterointerfaces. The electrochemical investigations conducted on the Ni5P4-Ni2P@Ni3S2 nanosheets for complete water splitting indicate that they possess an overpotential of 73 mV and 230 mV in HER and OER respectively, enabling them to generate a current density of 10 and 50 mA cm-2. The nanosheets also demonstrate Tafel slope values of 95 mV dec-1 and 83 mV dec-1 for HER and OER, respectively. The HER stability of the catalyst was conducted for 45 h using chronoamperometric technique under a current density of 20 mA cm-1, while the stability test for OER was carried out at current densities of 100 and 200 mA cm-1 for 100 h each. Furthermore, in the overall water splitting, the catalyst exhibits a cell voltage of 1.47 V@10 mA cm-2 and displayed a stability operation for 100 h at a current density of 150 mA cm-1.
Collapse
Affiliation(s)
- Vikas Pundir
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Ashish Gaur
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Rajdeep Kaur
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Jatin Sharma
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Rajinder Kumar
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Vivek Bagchi
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India.
| |
Collapse
|
4
|
Wu D, Liu B, Li R, Chen D, Zeng W, Zhao H, Yao Y, Qin R, Yu J, Chen L, Zhang J, Li B, Mu S. Fe-Regulated Amorphous-Crystal Ni(Fe)P 2 Nanosheets Coupled with Ru Powerfully Drive Seawater Splitting at Large Current Density. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300030. [PMID: 37144430 DOI: 10.1002/smll.202300030] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/17/2023] [Indexed: 05/06/2023]
Abstract
Water electrolysis is an ideal method for industrial green hydrogen production. However, due to increasing scarcity of freshwater, it is inevitable to develop advanced catalysts for electrolyzing seawater especially at large current density. This work reports a unique Ru nanocrystal coupled amorphous-crystal Ni(Fe)P2 nanosheet bifunctional catalyst (Ru-Ni(Fe)P2 /NF), caused by partial substitution of Fe to Ni atoms in Ni(Fe)P2 , and explores its electrocatalytic mechanism by density functional theory (DFT) calculations. Owing to high electrical conductivity of crystalline phases, unsaturated coordination of amorphous phases, and couple of Ru species, Ru-Ni(Fe)P2 /NF only requires overpotentials of 375/295 and 520/361 mV to drive a large current density of 1 A cm-2 for oxygen/hydrogen evolution reaction (OER/HER) in alkaline water/seawater, respectively, significantly outperforming commercial Pt/C/NF and RuO2 /NF catalysts. In addition, it maintains stable performance at large current density of 1 A cm-2 and 600 mA cm-2 for 50 h in alkaline water and seawater, respectively. This work provides a new way for design of catalysts toward industrial-level seawater splitting.
Collapse
Affiliation(s)
- Dulan Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Bo Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Ruidong Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Weihao Zeng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Hongyu Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Youtao Yao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Rui Qin
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jun Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Lei Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jianan Zhang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Bei Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
5
|
Viswanathan P, Kim K. In Situ Surface Restructuring of Amorphous Ni-Doped CoMo Phosphate-Based Three-Dimensional Networked Nanosheets: Highly Efficient and Durable Electrocatalyst for Overall Alkaline Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16571-16583. [PMID: 36971241 DOI: 10.1021/acsami.2c18820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Developing cost-efficient bifunctional electrocatalysts with high efficiency and durability for the production of green hydrogen and oxygen is a demanding and challenging research area. Due to their high earth abundance, transition metal-based electrocatalysts are alternatives to noble metal-based water splitting electrocatalysts. Herein, binder-free three-dimensional (3D) networked nanosheets of Ni-doped CoMo ternary phosphate (Pi) were prepared using a facile electrochemical synthetic strategy on flexible carbon cloth without any high-temperature heat treatment or complicated electrode fabrication. The optimized CoMoNiPi electrocatalyst delivers admirable hydrogen (η10 = 96 mV) and oxygen (η10 = 272 mV) evolution performances in 1.0 M KOH electrolyte. For overall water splitting in a two-electrode system, the present catalyst demands only 1.59 and 1.90 V to reach current densities of 10 and 100 mA/cm2, respectively, which is lower than that of the Pt/C||RuO2 couple (1.61 V @ 10 mA/cm2, 2 V > @ 100 mA/cm2) and many other catalysts reported previously. Furthermore, the present catalyst delivers excellent long-term stability in a two-electrode system continuously over 100 h at a high current density of 100 mA/cm2, exhibiting nearly 100% faradic efficiency. The unique 3D amorphous structure with high porosity, a high active surface area, and lower charge transfer resistance provides excellent overall water splitting. Notably, the amorphous structure of the present catalyst favors the in situ surface reconstruction during electrolysis and generates very stable surface-active sites capable of long-term performance. The present work provides a route for the preparation of multimetallic-Pi nanostructures for various electrode applications that are easy to prepare and have superior activity, high stability, and low cost.
Collapse
Affiliation(s)
- Perumal Viswanathan
- Electrochemistry Laboratory for Sensors and Energy (ELSE), Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Kyuwon Kim
- Electrochemistry Laboratory for Sensors and Energy (ELSE), Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
6
|
Xu T, Jiao D, Liu M, Zhang L, Fan X, Zheng L, Zheng W, Cui X. Ni Center Coordination Reconstructed Nanocorals for Efficient Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205605. [PMID: 36382551 PMCID: PMC9896050 DOI: 10.1002/advs.202205605] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Efficient electrocatalytic reactions require a coordinated active center that may provide a properly reaction intermediates adsorption in water splitting. Herein, a Ni active center coordination reconstruction method achieved by multidimensional modulation of phase transition, iodine coordination, and vacancy defects is designed and implemented. This coordination reconstruction results in the successful synthesis of Ni5 P4- x Ix /Ni2 P nanocorals that show outstanding bifunctional catalytic activity due to deep optimization of the adsorption energy. The overpotentials of hydrogen evolution reaction and oxygen evolution reaction at 10 mA cm-2 are 46 and 163 mV, respectively. Only 1.46 V is required to drive alkaline overall water splitting. Novel coordination environment is investigated by electron paramagnetic resonance spectroscopy and extended X-ray absorption fine structure spectroscopy. A 4D integrated material design strategy of "thermodynamic stability-electronic properties-charge transfer-adsorption energy" for water-splitting catalysts is proposed. This coordination reconstruction concept and material design method provide new perspectives for the research of novel catalysts.
Collapse
Affiliation(s)
- Tianyi Xu
- State Key Laboratory of Automotive Simulation and ControlSchool of Materials Science and EngineeringKey Laboratory of Automobile Materials of MOEJilin Provincial International Cooperation Key Laboratory of High‐Efficiency Clean Energy MaterialsElectron Microscopy CenterJilin UniversityChangchun130012P. R. China
| | - Dongxu Jiao
- State Key Laboratory of Automotive Simulation and ControlSchool of Materials Science and EngineeringKey Laboratory of Automobile Materials of MOEJilin Provincial International Cooperation Key Laboratory of High‐Efficiency Clean Energy MaterialsElectron Microscopy CenterJilin UniversityChangchun130012P. R. China
| | - Manman Liu
- State Key Laboratory of Automotive Simulation and ControlSchool of Materials Science and EngineeringKey Laboratory of Automobile Materials of MOEJilin Provincial International Cooperation Key Laboratory of High‐Efficiency Clean Energy MaterialsElectron Microscopy CenterJilin UniversityChangchun130012P. R. China
| | - Lei Zhang
- College of ChemistryJilin University2699 Qianjin StreetChangchun130012P. R. China
| | - Xiaofeng Fan
- State Key Laboratory of Automotive Simulation and ControlSchool of Materials Science and EngineeringKey Laboratory of Automobile Materials of MOEJilin Provincial International Cooperation Key Laboratory of High‐Efficiency Clean Energy MaterialsElectron Microscopy CenterJilin UniversityChangchun130012P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation FacilityInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049P. R. China
| | - Weitao Zheng
- State Key Laboratory of Automotive Simulation and ControlSchool of Materials Science and EngineeringKey Laboratory of Automobile Materials of MOEJilin Provincial International Cooperation Key Laboratory of High‐Efficiency Clean Energy MaterialsElectron Microscopy CenterJilin UniversityChangchun130012P. R. China
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and ControlSchool of Materials Science and EngineeringKey Laboratory of Automobile Materials of MOEJilin Provincial International Cooperation Key Laboratory of High‐Efficiency Clean Energy MaterialsElectron Microscopy CenterJilin UniversityChangchun130012P. R. China
| |
Collapse
|
7
|
Alkaline Media Regulated NiFe-LDH-Based Nickel–Iron Phosphides toward Robust Overall Water Splitting. Catalysts 2023. [DOI: 10.3390/catal13010198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The search for low-cost, high-performance, and robust stability bifunctional electrocatalysts to substitute noble metals-based counterparts for overall water splitting to generate clean and sustainable hydrogen energy is of great significance and challenges. Herein, a high-efficient bi-functional nickel–iron phosphide on NiFe alloy foam (denoted as e-NFP/NFF) with 3D coral-like nanostructure was controllably constructed by means of alkali etching and the introduction of non-metallic atoms P. The unique superhydrophilic coral-like structure can not only effectively facilitate the exposure of catalytic active sites and increase the electroactive surface area, but also accelerate charge transport and bubble release. Furthermore, owing to the synergistic effect between the bicomponent of nickel–iron phosphides as well as the strong electronic interactions of the multiple metal sites, the as-fabricated catalyst behaves with excellent bifunctional performance for the hydrogen evolution reaction (overpotentials of 132 and 286 mV at 10 and 300 mA·cm−2, respectively) and oxygen evolution reaction (overpotentials of 181 and 303 mV at 10 and 300 mA·cm−2, respectively) in alkaline electrolytes. Impressively, cells with integrated e-NFP/NFF electrodes as a cathode and anode require only a low cell voltage (1.58 V) to drive a current density of 10 mA·cm−2 for overall water splitting, along with remarkable stability in long-term electrochemical durability tests. This study provides a tunable synthetic strategy for the development of efficient and durable non-noble metal bifunctional catalysts based on the construction of an elaborate structure framework and rational design of the electronic structure.
Collapse
|
8
|
Jiang L, Pan Y, Zhang J, Chen X, Ye X, Li Z, Li C, Sun Q. Mo propellant boosting the activity of Ni-P for efficient urea-assisted water electrolysis of hydrogen evolution. J Colloid Interface Sci 2022; 622:192-201. [DOI: 10.1016/j.jcis.2022.04.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 01/07/2023]
|
9
|
Bodhankar PM, Sarawade PB, Kumar P, Vinu A, Kulkarni AP, Lokhande CD, Dhawale DS. Nanostructured Metal Phosphide Based Catalysts for Electrochemical Water Splitting: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107572. [PMID: 35285140 DOI: 10.1002/smll.202107572] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Amongst various futuristic renewable energy sources, hydrogen fuel is deemed to be clean and sustainable. Electrochemical water splitting (EWS) is an advanced technology to produce pure hydrogen in a cost-efficient manner. The electrocatalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are the vital steps of EWS and have been at the forefront of research over the past decades. The low-cost nanostructured metal phosphide (MP)-based electrocatalysts exhibit unconventional physicochemical properties and offer very high turnover frequency (TOF), low over potential, high mass activity with improved efficiency, and long-term stability. Therefore, they are deemed to be potential electrocatalysts to meet practical challenges for supporting the future hydrogen economy. This review discusses the recent research progress in nanostructured MP-based catalysts with an emphasis given on in-depth understanding of catalytic activity and innovative synthetic strategies for MP-based catalysts through combined experimental (in situ/operando techniques) and theoretical investigations. Finally, the challenges, critical issues, and future outlook in the field of MP-based catalysts for water electrolysis are addressed.
Collapse
Affiliation(s)
- Pradnya M Bodhankar
- National Centre for Nanoscience and Nanotechnology, University of Mumbai, Vidyanagari, Santacruz, Mumbai, 400098, India
- Department of Physics, University of Mumbai, Vidyanagari, Santacruz, Mumbai, 400098, India
| | - Pradip B Sarawade
- National Centre for Nanoscience and Nanotechnology, University of Mumbai, Vidyanagari, Santacruz, Mumbai, 400098, India
- Department of Physics, University of Mumbai, Vidyanagari, Santacruz, Mumbai, 400098, India
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Aniruddha P Kulkarni
- Department of Chemical and Biological Engineering, Monash University, Victoria, 3800, Australia
| | - Chandrakant D Lokhande
- Centre for Interdisciplinary Research, D. Y. Patil Education Society, Kolhapur, 416 006, India
| | - Dattatray S Dhawale
- Centre for Interdisciplinary Research, D. Y. Patil Education Society, Kolhapur, 416 006, India
| |
Collapse
|
10
|
Oxygen vacancy-rich ultrafine CoP/Co3O4 nanoparticles as high-efficiency trifunctional electrocatalyst. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Wang M, Zhao H, Long Y, Zhang W, Wang L, Zhou D, Wang H, Wang X. AlP-regulated phosphorus vacancies over Ni-P compounds promoting efficient and durable hydrogen generation in acidic media. Dalton Trans 2022; 51:4033-4042. [PMID: 35174844 DOI: 10.1039/d1dt04346c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Engineered anion vacancy catalysts exhibit speedy activity in the field of electrocatalysis due to their tunable electronic structure and moderate free energy of adsorbed intermediates. Herein, we demonstrate a facile process of preparing multiphase phosphides with abundant phosphorus vacancies (PV) supported on nanoporous Ni(Al). X-ray diffraction (XRD), electron paramagnetic resonance (EPR) and high-resolution transmission electron microscopy (HRTEM) reveal that the as-obtained material has ample PV induced by the AlP phase. The optimized catalyst also equips with aligned nanoflakes grown in situ on np-Ni(Al) skeletons/ligaments, thereby exposing a large specific surface area for hydrogen evolution reactions (HERs) in acidic media. Benefitting from its unique hierarchical structure and sufficient PV, the PV-np-Ni(Al)-40 electrode displays a low overpotential of 36 mV at a cathodic current density of 10 mA cm-2 and an outstanding long-term operational stability for up to 94 h with a slight decay. Density functional theory (DFT) calculations confirm that PV could induce the redistribution of electrons and significantly reduce the Gibbs free energy (ΔGH*) of 2PV-NiP2 on the P site close to PV (-0.055 eV). Moreover, the PV is beneficial for enriching the electronic states nearby the Fermi level, thereby improving the conductivity of NiP2 to achieve superior HER activity. This finding skillfully utilizes Al elements to not only create porous structures but also regulate the PV concentration, opening up an accessible route to obtain PVvia dealloying-phosphorization, and boosting the development of high-performance HER electrocatalyst.
Collapse
Affiliation(s)
- Mei Wang
- School of Materials Science and Engineering & School of Energy and Power Engineering & School of Science, North University of China, Taiyuan 030051, China.
| | - Huifang Zhao
- School of Materials Science and Engineering & School of Energy and Power Engineering & School of Science, North University of China, Taiyuan 030051, China.
| | - Yi Long
- School of Materials Science and Engineering & School of Energy and Power Engineering & School of Science, North University of China, Taiyuan 030051, China.
| | - Wenjuan Zhang
- Department de Química, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Cerdanyola del Vallès, Spain
| | - Liyong Wang
- School of Materials Science and Engineering & School of Energy and Power Engineering & School of Science, North University of China, Taiyuan 030051, China.
| | - Diaoyu Zhou
- School of Materials Science and Engineering & School of Energy and Power Engineering & School of Science, North University of China, Taiyuan 030051, China.
| | - Huiqi Wang
- School of Materials Science and Engineering & School of Energy and Power Engineering & School of Science, North University of China, Taiyuan 030051, China.
| | - Xiaoguang Wang
- Laboratory of Advanced Materials and Energy Electrochemistry, School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
12
|
Kumar L, Antil B, Kumar A, Das MR, Deka S. A Superior and Stable Electrocatalytic Oxygen Evolution Reaction by One-Dimensional FeCoP Colloidal Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5468-5477. [PMID: 35060716 DOI: 10.1021/acsami.1c23014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transition metal phosphides (TMPs) are expected to be excellent electrocatalysts for oxygen evolution reaction (OER) because of their high stability, highly conducting metalloid nature, highly abundant constituting elements, and the ability to act as a precatalyst due to in situ surface-formed oxy-hydroxide species. Herein, a "one-pot" colloidal approach has been used to develop a rod-shaped one-dimensional non-noble metal FeCoP electrocatalyst, which exhibits an excellent OER activity with an exceptionally high current density of 950 mA cm-2, a turnover frequency value of 7.43 s-1, and a low Tafel slope value of 54 mV dec-1. The FeCoP electrocatalyst affords OER ultralow overpotentials of 230 and 260 mV at current densities of 50 and 100 mA cm-2, respectively, in 1.0 M KOH, and demonstrates a superior catalytic stability of 10,000 cycles and durability up to 60 h at 50 mA cm-2. An insight into the superior and stable electrocatalytic OER performance by the FeCoP nanorods is obtained by extensive X-ray photoelectron spectroscopy, X-ray diffraction, Raman and infrared spectroscopy, and cyclic voltammetry analyses for a mechanistic study. This reveals that a high number of electrocatalytically active sites enhance the oxygen evolution and kinetics by offering metal ion sites for utilitarian in situ surface formation and adsorption of *O, *OH, and *OOH reactive species for OER catalysis.
Collapse
Affiliation(s)
- Lakshya Kumar
- Nanochemistry Laboratory, Department of Chemistry, University of Delhi, North campus, Delhi 110007, India
| | - Bindu Antil
- Nanochemistry Laboratory, Department of Chemistry, University of Delhi, North campus, Delhi 110007, India
| | - Ankur Kumar
- Nanochemistry Laboratory, Department of Chemistry, University of Delhi, North campus, Delhi 110007, India
| | - Manash R Das
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Sasanka Deka
- Nanochemistry Laboratory, Department of Chemistry, University of Delhi, North campus, Delhi 110007, India
| |
Collapse
|
13
|
Liu L, Li W, He X, Yang J, Liu N. In Situ/Operando Insights into the Stability and Degradation Mechanisms of Heterogeneous Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104205. [PMID: 34741400 DOI: 10.1002/smll.202104205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/11/2021] [Indexed: 06/13/2023]
Abstract
The further commercialization of renewable energy conversion and storage technologies requires heterogeneous electrocatalysts that meet the exacting durability target. Studies of the stability and degradation mechanisms of electrocatalysts are expected to provide important breakthroughs in stability issues. Accessible in situ/operando techniques performed under realistic reaction conditions are therefore urgently needed to reveal the nature of active center structures and establish links between the structural motifs in a catalyst and its stability properties. This review highlights recent research advances regarding in situ/operando techniques and improves the understanding of the stabilities of advanced heterogeneous electrocatalysts used in a diverse range of electrochemical reactions; it also proposes some degradation mechanisms. The review concludes by offering suggestions for future research.
Collapse
Affiliation(s)
- Lindong Liu
- College of Resources and Environment, College of Sericulture,Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Zhejiang, 312000, China
| | - Wanting Li
- College of Resources and Environment, College of Sericulture,Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Xianbo He
- College of Resources and Environment, College of Sericulture,Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Jiao Yang
- College of Resources and Environment, College of Sericulture,Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Nian Liu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
14
|
Ji P, Yu R, Wang P, Pan X, Jin H, Zheng D, Chen D, Zhu J, Pu Z, Wu J, Mu S. Ultra-Fast and In-Depth Reconstruction of Transition Metal Fluorides in Electrocatalytic Hydrogen Evolution Processes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103567. [PMID: 34766738 PMCID: PMC8787395 DOI: 10.1002/advs.202103567] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/01/2021] [Indexed: 05/19/2023]
Abstract
Hitherto, there are almost no reports on the complete reconstruction in hydrogen evolution reaction (HER). Herein, the authors develop a new type of reconfigurable fluoride (such as CoF2 ) pre-catalysts, with ultra-fast and in-depth self-reconstruction, substantially promoting HER activity. By experiments and density functional theory (DFT) calculations, the unique surface structure of fluorides, alkaline electrolyte and bias voltage are identified as key factors for complete reconstruction during HER. The enrichment of F atoms on surface of fluorides provides the feasibility of spontaneous and continuous reconstruction. The alkaline electrolyte triggers rapid F- leaching and supplies an immediate complement of OH- to form amorphous α-Co(OH)2 which rapidly transforms into β-Co(OH)2 . The bias voltage promotes amorphous crystallization and accelerates the reconstruction process. These endow the generation of mono-component and crystalline β-Co(OH)2 with a loose and defective structure, leading to an ultra-low overpotential of 54 mV at 10 mA cm-2 and super long-term stability exceeding that of Pt/C. Moreover, DFT calculations confirm that F- leaching optimizes hydrogen and water adsorption energies, boosting HER kinetics. Impressively, the self-reconstruction is also applicable to other non-noble transition metal fluorides. The work builds the fundamental comprehension of complete self-reconstruction during HER and provides a new perspective to conceive advanced catalysts.
Collapse
Affiliation(s)
- Pengxia Ji
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong LaboratoryXianhu hydrogen ValleyFoshan528200China
| | - Ruohan Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
- Nanostructure Research Centre (NRC)Wuhan University of TechnologyWuhan430070China
| | - Pengyan Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Xuelei Pan
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Huihui Jin
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Deyong Zheng
- Ningxia Key Laboratory of CAE on Intelligent EquipmentNingxia UniversityYinchuan750021China
| | - Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Jiawei Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Zonghua Pu
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Jinsong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
- Nanostructure Research Centre (NRC)Wuhan University of TechnologyWuhan430070China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong LaboratoryXianhu hydrogen ValleyFoshan528200China
| |
Collapse
|
15
|
Sun R, Huang X, Jiang J, Xu W, Zhou S, Wei Y, Li M, Chen Y, Han S. Recent advances in cobalt-based catalysts for efficient electrochemical hydrogen evolution: a review. Dalton Trans 2022; 51:15205-15226. [DOI: 10.1039/d2dt02189g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen (H2) is a new type of renewable energy that can meet people's growing energy needs and is environmentally friendly. In order to improve the industrial application prospect and electrochemical...
Collapse
|
16
|
Lu Z, Xie J, Hu J, Wang K, Cao Y. In Situ Replacement Synthesis of Co@NCNT Encapsulated CoPt 3 @Co 2 P Heterojunction Boosting Methanol Oxidation and Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104656. [PMID: 34741432 DOI: 10.1002/smll.202104656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Simultaneous boosting electrochemical methanol oxidation reaction (MOR) for direct methanol fuel cells and production of hydrogen is meaningful but challenging. Herein, a sea urchin-shaped cobalt-embedded N-doped carbon nanotubes (Co@NCNT) encapsulated CoPt3 @Co2 P heterojunction (CoPt3 @Co2 P/Co@NCNT) is fabricated. Theoretical calculations confirm that electrons at the interfaces transfer from CoPt3 to Co2 P, where electron hole region on CoPt3 is beneficial to improving the MOR activity, whereas accumulation region on Co2 P favors to the optimization of H2 O and H* absorption energies for hydrogen evolution reaction (HER). Benefitting from its interfacial electronic reconfiguration, the CoPt3 @Co2 P/Co@NCNT heterojunction exhibits excellent electrocatalytic performances for MOR and HER, in which the mass activity (2981 mA mgPt -1 ) for MOR is 14.2 times than that of Pt/C (20%), and the smallest overpotentials only requires 19 mV to deliver a current density of 10 mA cm-2 for HER. Moreover, the electrolyzer employing CoPt3 @Co2 P/Co@NCNT for anodic MOR and cathodic H2 production only requires a low voltage of 1.43 V at 10 mA cm-2 with impressive long-life cycling stability, which is obviously better than that of commercial Pt/C//RuO2 . This study offers a novel strategy for other organics oxidation reaction coupled with HER catalyzed production of hydrogen.
Collapse
Affiliation(s)
- Zhenjiang Lu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Jing Xie
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Jindou Hu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Kun Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Yali Cao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| |
Collapse
|
17
|
Wang L, Zhao S, Liu Y, Liu D, Razal JM, Lei W. Interfacial Engineering of 3D Hollow Mo-Based Carbide/Nitride Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50524-50530. [PMID: 34641668 DOI: 10.1021/acsami.1c13289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molybdenum carbide and nitride nanocrystals have been widely recognized as ideal electrocatalyst materials for water splitting. Furthermore, the interfacial engineering strategy can effectively tune their physical and chemical properties to improve performance. Herein, we produced N-doped molybdenum carbide nanosheets on carbonized melamine (N-doped Mo2C@CN) and 3D hollow Mo2C-Mo2N nanostructures (3D H-Mo2C-Mo2N) with tuneable interfacial properties via high-temperature treatment. X-ray photoelectron spectroscopy reveals that Mo2C and Mo2N nanocrystals in 3D hollow nanostructures are chemically bonded with each other and produce stable heterostructures. The 3D H-Mo2C-Mo2N nanostructures demonstrate lower onset potential and overpotential at a current density of 10 mV cm-2 than the N-doped Mo2C@CN nanostructure due to its higher active sites and improved interfacial charge transfer. The current work presents a strategy to tune metal carbide/nitride nanostructures and interfacial properties for the production of high-performance energy materials.
Collapse
Affiliation(s)
- Lifeng Wang
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Locked Bag 20000, Victoria 3220, Australia
| | - Shenlong Zhao
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney 2006, Australia
| | - Yuchen Liu
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Locked Bag 20000, Victoria 3220, Australia
| | - Dan Liu
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Locked Bag 20000, Victoria 3220, Australia
| | - Joselito M Razal
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Locked Bag 20000, Victoria 3220, Australia
| | - Weiwei Lei
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Locked Bag 20000, Victoria 3220, Australia
| |
Collapse
|
18
|
Du Y, Tang H, Zhang D, Liu H, Chen Y, Zhu Z, Yang W, Li Z, Tang Y, Liu C. Boosting Electrocatalytic Oxygen Evolution: Superhydrophilic/Superaerophobic Hierarchical Nanoneedle/Microflower Arrays of Ce xCo 3-xO 4 with Oxygen Vacancies. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42843-42851. [PMID: 34482694 DOI: 10.1021/acsami.1c11662] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The oxygen evolution reaction has become the bottleneck of electrochemical water splitting for its sluggish kinetics. Developing high-efficiency and low-cost non-noble-metal oxide electrocatalysts is crucial but challenging for industrial application. Herein, superhydrophilic/superaerophobic hierarchical nanoneedle/microflower arrays of Ce-substituted Co3O4 (CexCo3-xO4) in situ grown on the nickel foam are successfully constructed. The hierarchical architecture and superhydrophilic/superaerophobic interface can be facilely regulated by controlling the introduction of Ce into Co3O4. The unique feature of hierarchical architecture and superhydrophilic/superaerophobic interface is in favor of electrolyte penetration and bubbles release. In addition, the presence of oxygen vacancy and Ce endows the catalyst with enhanced intrinsic activity. Benefiting from these advantages, the optimized Ce0.12Co2.88O4 catalyst shows a superior electrocatalytic performance for the oxygen evolution reaction (OER) with an overpotential of 282 mV at 20 mA cm-2, and a Tafel slope of 81.4 mV dec-1. The turnover frequency of 0.0279 s-1 for Ce0.12Co2.88O4 is 9.3 times larger than that for Co3O4 at an overpotential of 350 mV. Moreover, the optimized Ce0.12Co2.88O4 catalyst shows a robust long-term stability in alkaline media.
Collapse
Affiliation(s)
- Yi Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
- College of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, P. R. China
| | - Haifang Tang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Danyu Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Huiling Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Yuqing Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Zuoyan Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Weijian Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Ziru Li
- College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yanhong Tang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Chengbin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
19
|
Zhang P, Lu YR, Suen NT. Crystal and Electronic Structure Modification of Synthetic Perryite Minerals: A Facile Phase Transformation Strategy to Boost the Oxygen Evolution Reaction. Inorg Chem 2021; 60:13607-13614. [PMID: 34435489 DOI: 10.1021/acs.inorgchem.1c01909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Geometry effect and electronic effect are both essential for the rational design of a highly efficient electrocatalyst. In order to untangle the relationship between these effects and electrocatalytic activity, the perryite phase with a versatile chemical composition, (NixFe1-x)8(TyP1-y)3 (T = Si and Ge; 1 ≥ x, y ≥ 0), was selected as a platform to demonstrate the influence of geometry (e.g., atomic size and bond length) and electronic (e.g., bond strength and bonding scheme) factors toward the oxygen evolution reaction (OER). It was realized that the large Ge atom in the perryite phase can expand the unit cell parameters and interatomic distances (i.e., weaken bond strengths), which facilitates the phase transformation into active metal oxyhydroxide during OER. The quaternary perryite phase, Ni7FeGeP2, displays excellent OER activity and achieves current densities of 20 and 100 mA/cm2 at overpotentials of 239 and 273 mV, respectively. The oxidation state of Ni and Fe in the perryite phase before/after OER was analyzed and discussed. The result suggests that incorporating the Fe element in the system may increase the rate constant of OER (KOER) and therefore keeps the Ni element in a low valance state (i.e., Ni2+). This work indicates that the manipulation of geometry and electronic factors can promote phase transformation as well as OER activity, which exemplifies a strategy to design a promising "precatalyst" for OER.
Collapse
Affiliation(s)
- Peng Zhang
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| | - Nian-Tzu Suen
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
20
|
Song Z, Wang K(C, Sun Q, Zhang L, Li J, Li D, Sze P, Liang Y, Sun X, Fu X, Luo J. High-Performance Ammonium Cobalt Phosphate Nanosheet Electrocatalyst for Alkaline Saline Water Oxidation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100498. [PMID: 34306978 PMCID: PMC8292903 DOI: 10.1002/advs.202100498] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/08/2021] [Indexed: 05/19/2023]
Abstract
The development of highly efficient electrocatalysts toward the oxygen evolution reaction is imperative for advancing water splitting technology to generate clean hydrogen energy. Herein, a two dimensional (2D) nanosheet ammonium cobalt phosphate hydrate (NH4CoPO4·H2O) catalyst based on the earth-abundant non-noble metal is reported. When used for the challenging alkaline saline water electrolysis, the NH4CoPO4·H2O catalyst with the optimal thickness of 30 nm achieves current densities of 10 and 100 mA cm-2 at the record low overpotentials of 252 and 268 mV, respectively, while maintaining remarkable stability during the alkaline saline water oxidation at room temperature. X-ray absorption fine spectra reveal that the activation of Co (II) ions (in NH4CoPO4·H2O) to Co (III) species constructs the electrocatalytic active sites. The 2D nanosheet morphology of NH4CoPO4·H2O provides a larger active surface area and more surface-exposed active sites, which enable the nanosheet catalyst to facilitate the alkaline freshwater and simulated seawater oxidation with excellent activity. The facile and environmentally-benign H2O-mediated synthesis route under mild condition makes NH4CoPO4·H2O catalyst highly feasible for practical manufacturing. In comparison with noble metals, this novel electrocatalyst offers a cost-effective alternative for economic saline water oxidation to advance water electrolysis technology.
Collapse
Affiliation(s)
- Zhongxin Song
- Shenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
| | - Kaixi (Cathy) Wang
- Department of Mechanical and Materials EngineeringUniversity of Western OntarioLondonONN6A 5B9Canada
- Department of Electrical and Computer EngineeringWaterloo Institute for NanotechnologyUniversity of Waterloo200 University Avenue WestWaterlooONN2L 3G1Canada
| | - Qian Sun
- Department of Mechanical and Materials EngineeringUniversity of Western OntarioLondonONN6A 5B9Canada
| | - Lei Zhang
- Department of Mechanical and Materials EngineeringUniversity of Western OntarioLondonONN6A 5B9Canada
| | - Junjie Li
- Department of Mechanical and Materials EngineeringUniversity of Western OntarioLondonONN6A 5B9Canada
| | - Dingjiu Li
- Shenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
| | - Pok‐Wai Sze
- Shenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
| | - Yue Liang
- Shenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
| | - Xueliang Sun
- Department of Mechanical and Materials EngineeringUniversity of Western OntarioLondonONN6A 5B9Canada
| | - Xian‐Zhu Fu
- Shenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
| | - Jing‐Li Luo
- Shenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
| |
Collapse
|
21
|
El-Refaei SM, Russo PA, Pinna N. Recent Advances in Multimetal and Doped Transition-Metal Phosphides for the Hydrogen Evolution Reaction at Different pH values. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22077-22097. [PMID: 33951905 DOI: 10.1021/acsami.1c02129] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrogen is a fuel with a potentially zero-carbon footprint viewed as a viable alternative to fossil fuels. It can be produced in a large scale via electrochemical water splitting using electricity derived from renewable sources, but this would require highly active, inexpensive, and stable hydrogen evolution reaction (HER) catalysts to replace the Pt benchmark. Transition-metal phosphides (TMPs) are potential Pt replacements owing to their generally high activity as well as versatility as HER catalysts for different pH media. This review summarizes the recent progress in the development of TMP HER electrocatalysts, focusing on the strategies that have been recently explored to tune the activity in acidic, neutral, and basic media. These strategies are the doping of TMPs with metal and nonmetal elements, fabrication of multimetallic phosphide phases, and construction of multicomponent heterostructures comprising TMPs and another component such as a different TMP or a metal oxide/hydroxide. The synthetic methods utilized to design the catalysts are also presented. Finally, the challenges still remaining and future research directions are discussed.
Collapse
Affiliation(s)
- Sayed M El-Refaei
- Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
- Chemistry Department, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Patrícia A Russo
- Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Nicola Pinna
- Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| |
Collapse
|
22
|
Zhang D, Tang X, Yang Z, Yang Y, Li H. Oxygen-deficient Cu doped NiFeO nanosheets hydroxide as electrode material for efficient oxygen evolution reaction and supercapacitor. NANOTECHNOLOGY 2021; 32:195403. [PMID: 33508815 DOI: 10.1088/1361-6528/abe0e6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The development of renewable energy conversion and storage has triggered the development of electrode materials for oxygen evolution reaction (OER) and supercapacitors. Here we report a highly active Cu doped NiFe nanosheets hydroxide electrode with rich oxygen vacancies (OVs) (denoted as H-NiFeCuO/NF) prepared by in situ anodic electrodeposition on the three-dimensional macroporous nickel foam (NF) substrate followed by heat treatment with H2. The as-prepared H-NiFeCuO/NF electrode showed the initial potential of 1.44 V (versus RHE) for OER and 980 F g-1 specific capacity as supercapacitor in 1 M KOH. Further investigation suggested that the tuning of composition and structure by doping copper ions and creating OVs helped accelerate the electrochemical reactions. This practice provides an efficient approach for the fabrication of heteromultimetallic hydroxide monolithic electrode with high performance in OER or supercapacitor application.
Collapse
Affiliation(s)
- Ding Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, People's Republic of China
| | - Xiaoning Tang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Zhaoguang Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, People's Republic of China
| | - Ying Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Haipu Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, People's Republic of China
| |
Collapse
|
23
|
Yang Y, Feng X, Liu Z, Zhang X, Song H, Pi C, Gao B, K Chu P, Huo K. Enhanced Hydrogen Evolution Activity of Phosphorus‐Rich Tungsten Phosphide by Cobalt Doping: A Comprehensive Study of the Active Sites and Electronic Structure. ChemElectroChem 2021. [DOI: 10.1002/celc.202100384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yixuan Yang
- The State Key Laboratory of Refractories and Metallurgy and Institute of Advanced Materials and Nanotechnology Wuhan University of Science and Technology Wuhan 430081 China
| | - Xiaoyu Feng
- The State Key Laboratory of Refractories and Metallurgy and Institute of Advanced Materials and Nanotechnology Wuhan University of Science and Technology Wuhan 430081 China
| | - Zhizhong Liu
- The State Key Laboratory of Refractories and Metallurgy and Institute of Advanced Materials and Nanotechnology Wuhan University of Science and Technology Wuhan 430081 China
| | - Xuming Zhang
- The State Key Laboratory of Refractories and Metallurgy and Institute of Advanced Materials and Nanotechnology Wuhan University of Science and Technology Wuhan 430081 China
| | - Hao Song
- The State Key Laboratory of Refractories and Metallurgy and Institute of Advanced Materials and Nanotechnology Wuhan University of Science and Technology Wuhan 430081 China
- Department of Physics Department of Materials Science and Engineering and Department of Biomedical Engineering City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong 999077 China
| | - Chaoran Pi
- The State Key Laboratory of Refractories and Metallurgy and Institute of Advanced Materials and Nanotechnology Wuhan University of Science and Technology Wuhan 430081 China
| | - Biao Gao
- The State Key Laboratory of Refractories and Metallurgy and Institute of Advanced Materials and Nanotechnology Wuhan University of Science and Technology Wuhan 430081 China
- Department of Physics Department of Materials Science and Engineering and Department of Biomedical Engineering City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong 999077 China
| | - Paul K Chu
- Department of Physics Department of Materials Science and Engineering and Department of Biomedical Engineering City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong 999077 China
| | - Kaifu Huo
- Wuhan National Lab for Optoelectronics Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
24
|
Qian Q, Wang F, Zhang X, Zhao Q. Direct electro-phosphorization of nickel and cobalt films in hypophosphite solution for efficient hydrogen evolution. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Wang C, Shang H, Wang Y, Li J, Guo S, Guo J, Du Y. A general MOF-intermediated synthesis of hollow CoFe-based trimetallic phosphides composed of ultrathin nanosheets for boosting water oxidation electrocatalysis. NANOSCALE 2021; 13:7279-7284. [PMID: 33889888 DOI: 10.1039/d1nr00075f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Engineering an electrode material for boosting reaction kinetics is highly desired for the oxygen evolution reaction (OER) in the anodic half reaction, and is still a grand challenge for energy conversion technologies. By taking inspiration from the catalytic properties of transition metal phosphides (TMPs) and metal-organic frameworks (MOFs), we herein propose a general MOF-intermediated synthesis of a series of hollow CoFeM (M = Bi, Ni, Mn, Cu, Ce, and Zn) trimetallic phosphides composed of ultrathin nanosheets as advanced electrocatalysts for the OER. A dramatic improvement of electrocatalytic performance toward the OER is observed for hollow CoFeM trimetallic phosphides compared to bimetallic CoFe phosphides. Remarkably, composition-optimized CoFeBiP hollow microspheres could deliver superior electrocatalytic performance, achieving a current density of 10 mA cm-2 with an overpotential of only 273 mV. Mechanistic investigations reveal that the Bi and P doping effectively optimizes the electronic structure of Co and Fe by charge redistribution, which significantly lowers the adsorption energy of oxygen intermediates. Moreover, the hollow microsphere structures composed of ultrathin nanosheets also enable them to provide rich surface active sites to boost the electrocatalytic OER.
Collapse
Affiliation(s)
- Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | | | | | | | | | | | | |
Collapse
|
26
|
Quan Q, Lai Z, Bao Y, Bu X, Meng Y, Wang W, Takahashi T, Hosomi T, Nagashima K, Yanagida T, Liu C, Lu J, Ho JC. Self-Anti-Stacking 2D Metal Phosphide Loop-Sheet Heterostructures by Edge-Topological Regulation for Highly Efficient Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006860. [PMID: 33480477 DOI: 10.1002/smll.202006860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/08/2020] [Indexed: 06/12/2023]
Abstract
2D metal phosphide loop-sheet heterostructures are controllably synthesized by edge-topological regulation, where Ni2 P nanosheets are edge-confined by the N-doped carbon loop, containing ultrafine NiFeP nanocrystals (denoted as NiFeP@NC/Ni2 P). This loop-sheet feature with lifted-edges prevents the stacking of nanosheets and induces accessible open channels for catalytic site exposure and gas bubble release. Importantly, these NiFeP@NC/Ni2 P hybrids exhibit a remarkable oxygen evolution activity with an overpotential of 223 mV at 20 mA cm-2 and a Tafel slope of 46.1 mV dec-1 , constituting the record-high performance among reported metal phosphide electrocatalysts. The NiFeP@NC/Ni2 P hybrids are also employed as both anode and cathode to achieve an alkaline electrolyzer for overall water splitting, delivering a current density of 10 mA cm-2 with a voltage of 1.57 V, comparable to that of the commercial Pt/C||RuO2 couple (1.56 V). Moreover, a photovoltaic-electrolysis coupling system can as well be effectively established for robust overall water splitting. Evidently, this ingenious protocol would expand the toolbox for designing efficient 2D nanomaterials for practical applications.
Collapse
Affiliation(s)
- Quan Quan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhengxun Lai
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yan Bao
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Xiuming Bu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - You Meng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Wei Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Tsunaki Takahashi
- Department of Applied Chemistry, School of Engineering, University of Tokyo, Tokyo, 113-8654, Japan
| | - Takuro Hosomi
- Department of Applied Chemistry, School of Engineering, University of Tokyo, Tokyo, 113-8654, Japan
| | - Kazuki Nagashima
- Department of Applied Chemistry, School of Engineering, University of Tokyo, Tokyo, 113-8654, Japan
| | - Takeshi Yanagida
- Department of Applied Chemistry, School of Engineering, University of Tokyo, Tokyo, 113-8654, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 816-8580, Japan
| | - Chuntai Liu
- Key Laboratory of Advanced Materials Processing & Mold (Zhengzhou University), Ministry of Education, Zhengzhou, 450002, China
| | - Jian Lu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
| | - Johnny C Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 816-8580, Japan
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
27
|
Lv Z, Wang M, Liu D, Jian K, Zhang R, Dang J. Synergetic Effect of Ni 2P and MXene Enhances Catalytic Activity in the Hydrogen Evolution Reaction. Inorg Chem 2021; 60:1604-1611. [PMID: 33428387 DOI: 10.1021/acs.inorgchem.0c03072] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Developing highly efficient non-precious electrocatalytic materials for H2 production in an alkaline medium is attractive on the front of green energy production. Herein, we successfully designed an electrocatalyst with superb hydrophilicity, high conductivity, and a kinetically beneficial structure using Ni2P/MXene over a 3D Ni foam (NF) for the alkaline hydrogen evolution reaction (HER) based on the laboratory and computational research works. The designed self-supported and highly effective electrocatalyst achieves a huge boost in the HER activity compared with that of pristine Ni2P nanosheets owing to the distinctive structure and synergy of coupling Ti3C2Tx and Ni2P. More specifically, Ni2P/Ti3C2Tx/NF produces an electric current density of 10 mA·cm-2 under a low overpotential (135 mV) and shows excellent durability under alkaline (1 M KOH) conditions, and the observed performance degradation is negligible. The outstanding HER activity makes the synthetic strategy of Ni2P/Ti3C2Tx/NF a potential approach to be extended to other transition-metal-based electrocatalysts for enhanced catalytic performance.
Collapse
Affiliation(s)
- Zepeng Lv
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, PR China
| | - Meng Wang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, PR China
| | - Dong Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, PR China
| | - Kailiang Jian
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, PR China
| | - Run Zhang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, PR China
| | - Jie Dang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, PR China.,State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China
| |
Collapse
|
28
|
Li SH, Qi MY, Tang ZR, Xu YJ. Nanostructured metal phosphides: from controllable synthesis to sustainable catalysis. Chem Soc Rev 2021; 50:7539-7586. [PMID: 34002737 DOI: 10.1039/d1cs00323b] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metal phosphides (MPs) with unique and desirable physicochemical properties provide promising potential in practical applications, such as the catalysis, gas/humidity sensor, environmental remediation, and energy storage fields, especially for transition metal phosphides (TMPs) and MPs consisting of group IIIA and IVA metal elements. Most studies, however, on the synthesis of MP nanomaterials still face intractable challenges, encompassing the need for a more thorough understanding of the growth mechanism, strategies for large-scale synthesis of targeted high-quality MPs, and practical achievement of functional applications. This review aims at providing a comprehensive update on the controllable synthetic strategies for MPs from various metal sources. Additionally, different passivation strategies for engineering the structural and electronic properties of MP nanostructures are scrutinized. Then, we showcase the implementable applications of MP-based materials in emerging sustainable catalytic fields including electrocatalysis, photocatalysis, mild thermocatalysis, and related hybrid systems. Finally, we offer a rational perspective on future opportunities and remaining challenges for the development of MPs in the materials science and sustainable catalysis fields.
Collapse
Affiliation(s)
- Shao-Hai Li
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Ming-Yu Qi
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Zi-Rong Tang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Yi-Jun Xu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| |
Collapse
|
29
|
Zhang R, Zhu R, Li Y, Hui Z, Song Y, Cheng Y, Lu J. CoP and Ni 2P implanted in a hollow porous N-doped carbon polyhedron for pH universal hydrogen evolution reaction and alkaline overall water splitting. NANOSCALE 2020; 12:23851-23858. [PMID: 33237088 DOI: 10.1039/d0nr07126a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing low-cost and highly active bifunctional electrocatalysts for water splitting is very important but still remains a challenge. Herein, a novel bifunctional electrocatalyst composed of CoP and Ni2P nanoparticles implanted in a hollow porous N-doped carbon polyhedron (CoP/Ni2P@HPNCP) is synthesized by carbonization of Co/Ni-layered double hydroxide@zeolitic imidazolate framework-67 (Co/Ni-LDH@ZIF-67) followed by an oxidation and phosphorization strategy. The introduction of LDH can not only promote the formation of a hollow porous structure to supply more active sites, but also generate the CoP/Ni2P nanoheterostructure to afford extra active sites and modulate the electronic structure of the catalyst. As a result, CoP/Ni2P@HPNCP exhibits excellent pH universal hydrogen evolution reaction activity and alkaline oxygen evolution reaction activity. Furthermore, the electrolytic cell assembled from bifunctional CoP/Ni2P@HPNCP requires a cell voltage of 1.59 V in 1.0 M KOH at 10 mA cm-2, revealing its potential as a high performance bifunctional electrocatalyst.
Collapse
Affiliation(s)
- Run Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China.
| | | | | | | | | | | | | |
Collapse
|
30
|
Sai KNS, Tang Y, Dong L, Yu XY, Hong Z. N 2 plasma-activated NiO nanosheet arrays with enhanced water splitting performance. NANOTECHNOLOGY 2020; 31:455709. [PMID: 32707567 DOI: 10.1088/1361-6528/aba929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
NiO is a promising electrocatalyst for electrochemical energy conversion due to its rich redox sites, low cost, and ease of synthesis. However, hindered by low electrical conductivity and limited electrocatalytic active sites, bare NiO usually exhibits poor electrochemical performance towards hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, we develop an N2 plasma activation approach to simultaneously improve both HER and OER activity of NiO by constructing heterostructured Ni/Ni3N/NiO nanosheet arrays on Ni foam. The optimized N2 plasma-activated NiO nanosheet arrays for HER and OER (denoted as P-NiO-HER and P-NiO-OER) only need an overpotential of 46 and 294 mV, respectively, to achieve 10 mA cm-2. Moreover, for overall water splitting, the assembled electrolysis cell with P-NiO-HER and P-NiO-OER as the cathode and anode, respectively, only requires a small voltage of 1.57 V to deliver 10 mA cm-2. Remarkably, the plasma-activated NiO nanosheet arrays exhibit excellent stability for up to 50 h for HER, OER, and full water electrolysis. The strategy developed here to activate the electrocatalytic performance of metal oxides opens a new door for water splitting.
Collapse
Affiliation(s)
- K Naga Sathya Sai
- School of Material Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yuanhao Tang
- School of Material Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Lin Dong
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, People's Republic of China
| | - Xin-Yao Yu
- School of Material Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, People's Republic of China
| | - Zhanglian Hong
- School of Material Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
31
|
Tang YJ, You L, Zhou K. Enhanced Oxygen Evolution Reaction Activity of a Co 2P@NC-Fe 2P Composite Boosted by Interfaces Between a N-Doped Carbon Matrix and Fe 2P Microspheres. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25884-25894. [PMID: 32412228 DOI: 10.1021/acsami.0c04902] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Constructing highly efficient and low-cost transition-metal-based electrocatalysts with a large number of interfaces to increase their active site densities constitutes a major advancement in the development of water-splitting technology. Herein, a bimetallic phosphide composite (Co2P@NC-Fe2P) is successfully synthesized from a ferric hydroxyphosphate-zeolitic imidazolate framework hybrid precursor (FeHP-ZIF-67). Benefitting from morphology and composition regulations, the FeHP-ZIF-67 precursor is prepared by a room-temperature solution synthesis method, which exhibits an optimal morphology, where FeHP microspheres are coated with excess ZIF-67 nanoparticles. During the annealing of FeHP-ZIF-67, FeHP serves as a source of phosphorus to form Fe2P and Co2P simultaneously, where Co2P nanoparticles coated with an N-doped carbon (NC) matrix derived from ZIF-67 are partially adsorbed onto the surface of Fe2P microspheres, thereby forming numerous NC-Fe2P interfaces. The optimal Co2P@NC-Fe2P composite has an overpotential of 260 mV at a current density of 10 mA cm-2, a small Tafel slope of 41 mV dec-1, and long-term stability of over 35 h in an alkaline medium for oxygen evolution reactions (OERs). Such a superior OER performance is attributed to the active NC-Fe2P interfaces in the Co2P@NC-Fe2P composite. This work provides a new strategy to optimize transition-metal phosphides with effective interfaces for OER electrocatalysis.
Collapse
Affiliation(s)
- Yu-Jia Tang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Liming You
- Environmental Process Modelling Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 CleanTech Loop, Singapore 637141, Singapore
| | - Kun Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Environmental Process Modelling Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 CleanTech Loop, Singapore 637141, Singapore
| |
Collapse
|
32
|
Wu Y, Sun R, Cen J. Facile Synthesis of Cobalt Oxide as an Efficient Electrocatalyst for Hydrogen Evolution Reaction. Front Chem 2020; 8:386. [PMID: 32457876 PMCID: PMC7221197 DOI: 10.3389/fchem.2020.00386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Hydrogen evolution reaction (HER) is receiving a lot of attention because it produces clean energy hydrogen. Catalyst is the key to the promotion and application of HER. However, the precious metal catalysts with good catalytic performance are expensive, and the preparation process of non-precious metal catalysts is extremely complicated. The simple preparation process is the most important problem to be solved in HER catalyst development. We synthetized cobalt oxide (CoOx) catalyst for HER through a simple hydrothermal process. The CoOx catalyst shows excellent HER catalytic activity. Characterization results reveal that there are a great deal of surface hydroxyl groups or oxygen vacancy on the surface of CoOx catalyst. In alkaline media the CoOx catalyst shows an over-potential of 112 mV at 20 mA cm-2 and a small Tafel slope of 94 mV dec-1. This paper provides a simple and easy method for HER catalyst preparation.
Collapse
Affiliation(s)
- Yinbo Wu
- Guangdong Polytechnic Normal University, Guangzhou, China
| | - Ruirui Sun
- Safety and Environmental Protection Division of Jilin Petrochemical Company, PetroChina, Jilin, China
| | - Jian Cen
- Guangdong Polytechnic Normal University, Guangzhou, China
- The Key Laboratory for Smart Building Equipment Integration of Guangzhou, Guangzhou, China
| |
Collapse
|
33
|
Luo W, Wang Y, Li X, Cheng C. RuP nanoparticles on ordered macroporous hollow nitrogen-doped carbon spheres for efficient hydrogen evolution reaction. NANOTECHNOLOGY 2020; 31:295401. [PMID: 32203950 DOI: 10.1088/1361-6528/ab824b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The design of highly active, Earth-abundant and stable electrocatalysts is important for efficient water splitting. In this work, we report the fabrication of RuP and Ru2P nanoparticles supported on ordered macroporous N-doped carbon hollow spheres (RuP/H-NC and Ru2P/H-NC) through a facile and scalable space-confined pyrolysis process. The RuP/H-NC catalyst exhibits Pt-like activity in alkaline electrolyte, by means of the macroporous structure with a larger specific area and more exposed active sites, as well as the synergistic effect between the RuP nanoparticles and N-doped carbon. Specifically, the RuP/H-NC catalyst yields superior hydrogen evolution reaction activity in terms of low overpotential of 19 mV in 1 M KOH to achieve a current density of 10 mA cm-2 and excellent durability, outperforming Ru2P/H-NC and most of the reported non-Pt catalysts. Further density function theory calculation reveals that RuP is more intrinsically active with favorable hydrogen adsorption Gibbs free energy than that of Ru2P.
Collapse
Affiliation(s)
- Wenjie Luo
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | | | | | | |
Collapse
|
34
|
Zhu JY, Xue Q, Xue YY, Ding Y, Li FM, Jin P, Chen P, Chen Y. Iridium Nanotubes as Bifunctional Electrocatalysts for Oxygen Evolution and Nitrate Reduction Reactions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14064-14070. [PMID: 32125818 DOI: 10.1021/acsami.0c01937] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One-dimensionally (1D) hollow noble meal nanotubes are attracting continuous attention because of their huge potential applications in catalysis and electrocatalysis. Herein, we successfully synthesize hollow iridium nanotubes (Ir NTs) with the rough porous surface by the 1-hydroxyethylidene-1, 1-diphosphonic acid-induced self-template method under hydrothermal conditions and investigate their electrocatalytic performance for oxygen evolution (OER) and nitrate reduction reactions (NO3-RR) in an acidic electrolyte. The unique 1D and porous structure endow Ir NTs with big surface areas, high conductivity, and optimal atom utilization efficiency. Consequently, Ir NTs exhibit significantly enhanced activity and durability for acidic OERs compared with commercial Ir nanocrystals (Ir c-NCs), which only require the overpotential of 245 mV to deliver the current density of 10 mA cm-2. Meanwhile, Ir NTs also show higher electrocatalytic activity for NO3-RR than that of Ir c-NCs, such as a Faraday efficiency of 84.7% and yield rate of 921 μg h-1 mgcat-1 for ammonia generation, suggesting that Ir NTs are universally advanced Ir-based electrocatalysts.
Collapse
Affiliation(s)
- Jing-Yi Zhu
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Qi Xue
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Yuan-Yuan Xue
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Yu Ding
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Fu-Min Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Pujun Jin
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Pei Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| |
Collapse
|
35
|
Chebrolu VT, Balakrishnan B, Aravindha Raja S, Cho I, Bak JS, Kim HJ. The one-step electrodeposition of nickel phosphide for enhanced supercapacitive performance using 3-mercaptopropionic acid. NEW J CHEM 2020. [DOI: 10.1039/d0nj00367k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TMPs have received considerable attention for various applications, including the water splitting reaction (hydrogen evolution reaction and oxygen evolution reaction), methanol oxidation, the oxygen reduction reaction, rechargeable batteries, and supercapacitors.
Collapse
Affiliation(s)
| | - Balamuralitharan Balakrishnan
- Department of Electronics and Communication Engineering
- Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology
- Chennai 600062
- India
| | | | - Inho Cho
- Department of Electrical Engineering
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Jin-Soo Bak
- Department of Electrical Engineering
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Hee-Je Kim
- Department of Electrical Engineering
- Pusan National University
- Busan 46241
- Republic of Korea
| |
Collapse
|