1
|
Yao Z, Meyerbröker N, Qi Y, Cremer J, Westphal M, Anselmetti D, Yang Y, Gölzhäuser A. Scalable Synthesis of Carbon Nanomembranes from Amorphous Molecular Layers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41101-41108. [PMID: 37587014 DOI: 10.1021/acsami.3c07369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Nanoporous carbon nanomembranes (CNMs) created by self-assembled monolayers ideally combine a high water flux and precise ion selectivity for molecular separation and water desalination. However, their practical implementation is often challenged by the availability of large epitaxial substrates, limiting the membrane up-scaling. Here, we report a scalable synthesis of CNMs from poly(4-vinylbiphenyl) (PVBP) spin-coated on SiO2/Si wafers. Electron irradiation of the amorphous PVBP molecular layers induces the formation of a continuous membrane with a thickness of 15 nm and a high density of subnanometer pores, providing a water permeance as high as 530 L m-2 h-1 bar-1, while repelling ions and molecules larger than 1 nm in size. A further introduction of a reinforced porous block copolymer layer enables the fabrication of centimeter-scale CNM composites that efficiently separate organic dyes from water. These results suggest a feasible route for large-scale nanomembrane fabrication.
Collapse
Affiliation(s)
- Zhen Yao
- Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | | | - Yubo Qi
- Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Julian Cremer
- Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Michael Westphal
- Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Dario Anselmetti
- Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Yang Yang
- Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Haibin Road 1119, Guangzhou 511458, China
| | - Armin Gölzhäuser
- Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| |
Collapse
|
2
|
Yin C, Liu M, Zhang Z, Wei M, Shi X, Zhang Y, Wang J, Wang Y. Perpendicular Alignment of Covalent Organic Framework (COF) Pore Channels by Solvent Vapor Annealing. J Am Chem Soc 2023; 145:11431-11439. [PMID: 37162483 DOI: 10.1021/jacs.3c03198] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Covalent organic frameworks (COFs) have showcased great potential in diverse applications such as separation and catalysis, where mass transfer confined in their pore channels plays a significant role. However, anisotropic orientation usually occurs in polycrystalline COFs, and perpendicular alignment of COF pore channels is ultimately desired to maximize their performance. Herein, we demonstrate a strategy, solvent vapor annealing, to reorient COF pore channels from anisotropic orientation to perpendicular alignment. COF thin films are first synthesized to have flexible N-H bonds in their skeletons, thus having structural mobility to enable molecular rearrangement. A solvent with low relative permittivity and a conjugated structure is then identified to have a strong affinity toward the COFs, allowing its vapor to easily penetrate into the COF interlayers. The solvent vapor weakens the π-π interaction and consequently allows the COF monolayers to dissociate. The COF monolayers undergo a reorientation process that converts from random stacking into the face-on stacking fashion, in which the through COF pores are perpendicularly aligned. The aligned COF film exhibits high separation precision toward ions featuring a size difference down to 2 Å, which is 8 times higher than that of the anisotropically oriented counterpart. This work opens up an avenue for COF orientation regulation by solvent vapor annealing and reveals the essential role of the perpendicular alignment of COF pore channels to enable precision separations.
Collapse
Affiliation(s)
- Congcong Yin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China
- School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu, P. R. China
| | - Ming Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China
| | - Zhe Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China
| | - Mingjie Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China
| | - Xiansong Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Jingtao Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China
- School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu, P. R. China
| |
Collapse
|
3
|
Wu C, Xia L, Xia S, Van der Bruggen B, Zhao Y. Advanced Covalent Organic Framework-Based Membranes for Recovery of Ionic Resources. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206041. [PMID: 36446638 DOI: 10.1002/smll.202206041] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Membrane technology has shown a viable potential in conversion of liquid-waste or high-salt streams to fresh waters and resources. However, the non-adjustability pore size of traditional membranes limits the application of ion capture due to their low selectivity for target ions. Recently, covalent organic frameworks (COFs) have become a promising candidate for construction of advanced ion separation membranes for ion resource recovery due to their low density, large surface area, tunable channel structure, and tailored functionality. This tutorial review aims to analyze and summarize the progress in understanding ion capture mechanisms, preparation processes, and applications of COF-based membranes. First, the design principles for target ion selectivity are illustrated in terms of theoretical simulation of ions transport in COFs, and key properties for ion selectivity of COFs and COF-based membranes. Next, the fabrication methods of diverse COF-based membranes are classified into pure COF membranes, COF continuous membranes, and COF mixed matrix membranes. Finally, current applications of COF-based membranes are highlighted: desalination, extraction, removal of toxic metal ions, radionuclides and lithium, and acid recovery. This review presents promising approaches for design, preparation, and application of COF-based membranes in ion selectivity for recovery of ionic resources.
Collapse
Affiliation(s)
- Chao Wu
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
- Department of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Lei Xia
- Department of Earth and Environmental Sciences, KU Leuven, Kasteelpark Arenberg 20 bus 2459, Leuven, B-3001, Belgium
| | - Shengji Xia
- Department of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
| | - Yan Zhao
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
| |
Collapse
|
4
|
Li M, Ma J, Pan B, Wang J. Cage-Based Covalent Organic Framework for the Effective and Efficient Removal of Malachite Green from Wastewater. ACS APPLIED MATERIALS & INTERFACES 2022; 14:57180-57188. [PMID: 36516002 DOI: 10.1021/acsami.2c17878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A cage-covalent organic framework (COF)-TP {T = bis(tetraoxacalix[2]arene[2]triazine); P = piperazine}, a novel two-dimensional covalent organic skeleton substituted with a nucleophilic cyanuric chloride analogue, was synthesized by a simple polymerization process. Cage-COF-TP is advantageous owing to its good structural order, permanent porosity, and low preparation cost. This skeleton was employed as a cost-effective adsorbent for the intermittent adsorption of an organic dye from aqueous solutions. Adsorption experiments were carried out at different initial dye concentrations, contact times, and solution pH. The adsorption kinetics followed the pseudo-second order model, and the results of thermodynamic studies were consistent with the Langmuir isotherm model. The high degree of matching between the size and shape of malachite green (MG) and the shrunken channels present in Cage-COF-TP were responsible for the enhanced adsorption ability of this material. Furthermore, theoretical calculations indicated that the high adsorption of the studied adsorbent can be attributed to the presence of nitrogen-rich triazine units in the Cage-COF-TP, which are expected to strengthen its affinity to guest molecules. The obtained results showed that the developed adsorbent is an efficient adsorbent that is theoretically capable of stimulating the removal of ∼2000 mg/g MG from wastewater at ambient temperature. This study will therefore be expected to promote the development of new functional materials based on COFs.
Collapse
Affiliation(s)
- Ming Li
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Junying Ma
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Bingli Pan
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Junling Wang
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| |
Collapse
|
5
|
Zhang Z, Xiao A, Yin C, Wang X, Shi X, Wang Y. Heterostructured two-dimensional covalent organic framework membranes for enhanced ion separation. Chem Commun (Camb) 2022; 58:7136-7139. [PMID: 35666182 DOI: 10.1039/d2cc01749k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A heterostructured covalent organic framework (COF) membrane is synthesized via in situ linker exchange. Narrowed pores can be formed at the interface between two types of COFs by adjusting the linker exchange duration. The resultant COF membrane demonstrates a high rejection rate toward Na2SO4 of up to 97%.
Collapse
Affiliation(s)
- Zhe Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China.
| | - Ankang Xiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China.
| | - Congcong Yin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China.
| | - Xingyuan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China.
| | - Xiansong Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China.
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China.
| |
Collapse
|
6
|
Cao HL, Yang C, Qian HL, Yan XP. Urea-linked covalent organic framework functionalized polytetrafluoroethylene film for selective and rapid thin film microextraction of rhodamine B. J Chromatogr A 2022; 1673:463133. [PMID: 35584564 DOI: 10.1016/j.chroma.2022.463133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 12/01/2022]
Abstract
Incorporation of highly selective and stable adsorbent with facile extraction technology is desired in practical analysis. Here we show the rational preparation of a urea-linked covalent organic framework functionalized polytetrafluoroethylene film (COF-117-PTFE) with ordered porous structure, rich functional groups, and large surface area-to-volume ratio as the effective adsorbent for convenient, selective and rapid thin film microextraction (TFME) of rhodamine B (RB). The COF-117-PTFE based TFME coupled with high performance liquid chromatography-fluorescence detector (HPLC-FLD) successfully realized the determination of RB with the limit of detection of 0.007 μg L-1, the linear range of 0.1 - 100 μg L-1. The relative standard deviation (RSD) of intraday (n = 5) and interday (n = 5) for the determination of 10 μg L-1 RB were 2.3% and 6.8%, respectively. The absolute recoveries were 80.3%, 71.2% and 67.9% in river water, chili powder and Sichuan pepper powder, respectively. The recoveries for RB spiking in complicated real samples (dry chili, chili powder, dry Sichuan pepper, Sichuan pepper powder and river water) ranged from 90.4% to 107.5%. The developed COF-117-PTFE based TFME-HPLC-FLD method is promising in practical application. This work reveals the high potential of functionalized COF film as the adsorbent for effective extraction of trace contaminants in complicated samples.
Collapse
Affiliation(s)
- Hui-Ling Cao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Yang C, Li S, Lv X, Li H, Han L, Su B. Effectively regulating interfacial polymerization process via in-situ constructed 2D COFs interlayer for fabricating organic solvent nanofiltration membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119618] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Covalent-organic frameworks with keto-enol tautomerism for efficient photocatalytic oxidative coupling of amines to imines under visible light. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1088-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
9
|
Niu L, Zhao X, Wu F, Tang Z, Lv H, Wang J, Fang M, Giesy JP. Hotpots and trends of covalent organic frameworks (COFs) in the environmental and energy field: Bibliometric analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146838. [PMID: 33865146 DOI: 10.1016/j.scitotenv.2021.146838] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/05/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Covalent organic frameworks (COFs) have attracted extensive attention due to their low density, adjustable structure, functionalization, and good stability. This paper systematically and comprehensively describes to qualitatively and quantitatively the progress, trends, and hotspots of COFs in the environmental and energy fields from the perspective of bibliometrics. Herein, based on the Web of Science database, a total of 2589 articles from 2005 to October 6, 2020, were collected. Thereafter, co-occurrence, co-citation analysis, and cluster analysis were conducted using CiteSpace and VOSviewer software. The results indicated that COFs research shows the characteristics of rapid growth. The active countries were mainly USA, Germany, Japan, China, and India. More than half of the top 20 active institutions were from China. The research hotspots in this field were systematically elaborated, including synthesis, adsorption, catalysis, membrane, sensor, and energy storage. Research has shown that various COFs are reasonably designed, synthesized, and used in different applications. For example, when COFs are used for photocatalysis, groups containing photocatalytic active sites are integrated into COFs to improve photocatalytic activity. Finally, some challenges were proposed, that are beneficial to the rapid and balanced development of the COFs field. For instance, the preparation methods still need to be further improved for mass production and there is an imbalance in environmental applications such as fewer sensor and membrane applications. We believe that this study provides a comprehensive and systematic overview of the environmental and energy applications of COFs for future investigations.
Collapse
Affiliation(s)
- Lin Niu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Zhi Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Hongzhou Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Junyu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Mengyuan Fang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
10
|
Covalent organic frameworks for fluorescent sensing: Recent developments and future challenges. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213957] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
11
|
Xiao A, Shi X, Zhang Z, Yin C, Xiong S, Wang Y. Secondary growth of bi-layered covalent organic framework nanofilms with offset channels for desalination. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119122] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Nowak SR, Lachmayr KK, Yager KG, Sita LR. Stable Thermotropic 3D and 2D Double Gyroid Nanostructures with Sub‐2‐nm Feature Size from Scalable Sugar–Polyolefin Conjugates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Samantha R. Nowak
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Kätchen K. Lachmayr
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Kevin G. Yager
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| | - Lawrence R. Sita
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| |
Collapse
|
13
|
Nowak SR, Lachmayr KK, Yager KG, Sita LR. Stable Thermotropic 3D and 2D Double Gyroid Nanostructures with Sub‐2‐nm Feature Size from Scalable Sugar–Polyolefin Conjugates. Angew Chem Int Ed Engl 2021; 60:8710-8716. [DOI: 10.1002/anie.202016384] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 01/15/2023]
Affiliation(s)
- Samantha R. Nowak
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Kätchen K. Lachmayr
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Kevin G. Yager
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| | - Lawrence R. Sita
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| |
Collapse
|
14
|
Dou H, Xu M, Wang B, Zhang Z, Wen G, Zheng Y, Luo D, Zhao L, Yu A, Zhang L, Jiang Z, Chen Z. Microporous framework membranes for precise molecule/ion separations. Chem Soc Rev 2020; 50:986-1029. [PMID: 33226395 DOI: 10.1039/d0cs00552e] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Microporous framework membranes such as metal-organic framework (MOF) membranes and covalent organic framework (COF) membranes are constructed by the controlled growth of small building blocks with large porosity and permanent well-defined micropore structures, which can overcome the ubiquitous tradeoff between membrane permeability and selectivity; they hold great promise for the enormous challenging separations in energy and environment fields. Therefore, microporous framework membranes are endowed with great expectations as next-generation membranes, and have evolved into a booming research field. Numerous novel membrane materials, versatile manipulation strategies of membrane structures, and fascinating applications have erupted in the last five years. First, this review summarizes and categorizes the microporous framework membranes with pore sizes lower than 2 nm based on their chemistry: inorganic microporous framework membranes, organic-inorganic microporous framework membranes, and organic microporous framework membranes, where the chemistry, fabrications, and differences among these membranes have been highlighted. Special attention is paid to the membrane structures and their corresponding modifications, including pore architecture, intercrystalline grain boundary, as well as their diverse control strategies. Then, the separation mechanisms of membranes are covered, such as diffusion-selectivity separation, adsorption-selectivity separation, and synergetic adsorption-diffusion-selectivity separation. Meanwhile, intricate membrane design to realize synergistic separation and some emerging mechanisms are highlighted. Finally, the applications of microporous framework membranes for precise gas separation, liquid molecule separation, and ion sieving are summarized. The remaining challenges and future perspectives in this field are discussed. This timely review may provide genuine guidance on the manipulation of membrane structures and inspire creative designs of novel membranes, promoting the sustainable development and steadily increasing prosperity of this field.
Collapse
Affiliation(s)
- Haozhen Dou
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ren L, Zhou J, Xiong S, Wang Y. N-Doping Carbon-Nanotube Membrane Electrodes Derived from Covalent Organic Frameworks for Efficient Capacitive Deionization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12030-12037. [PMID: 32957785 DOI: 10.1021/acs.langmuir.0c02405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Capacitive deionization (CDI) is an energy-efficient and environmentally friendly electrochemical desalination technology which has attracted increasing attention in recent years. Electrodes are crucial to the performance of CDI processes, and utilizing a carbon-nanotubes (CNTs) membrane to fabricate electrodes is an attractive solution for advanced CDI processes. However, the strong hydrophobicity and low electrosorption capacity limit applications of CNTs membranes in CDI. To solve this problem, we introduce crystalline porous covalent organic frameworks (COFs) into CNTs membranes to fabricate N-doping carbon-nanotubes membrane electrodes (NCMEs). After solvothermal growth and carbonization, CNTs membranes are successfully coated with imine-based COFs and turned into integrated NCMEs. Comparing with the CNTs membranes, the NCMEs exhibit an ∼2.3 times higher electrosorption capacity and superior reusability. This study not only confirms that COFs can be used as high-quality carbon sources but also provides a new strategy to fabricate high-performance CDI electrodes.
Collapse
Affiliation(s)
- Li Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| | - Jiemei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| | - Sen Xiong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| |
Collapse
|
16
|
Wu J, Dai Q, Zhang H, Li X. Recent Development in Composite Membranes for Flow Batteries. CHEMSUSCHEM 2020; 13:3805-3819. [PMID: 32356616 DOI: 10.1002/cssc.202000633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Flow batteries (FBs) are one of the most attractive candidates for stationary energy storage and vital in realizing the wide application of renewable energies. Membranes play an important role in isolating redox couples while transporting ions to close the internal electrical circuit. Therefore, membranes with high selectivity and conductivity are highly important. Among different membranes, a composite membrane with independent design of support layer and thin selective top layer becomes one of the most promising candidates to break the trade-off between selectivity and conductivity. In this Review, recent studies on composite membranes for FBs and the principles of membrane design in different systems are discussed and summarized. Finally, the future direction on membrane design for different FBs is presented, which will provide an extensive, comprehensive reference to design and construct high-performance composite membranes for FBs.
Collapse
Affiliation(s)
- Jine Wu
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P.R. China
- University of Chinese Academy of Sciences, 380 Huaibei Zhuang, Beijing, 100049, P.R. China
| | - Qing Dai
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P.R. China
- University of Chinese Academy of Sciences, 380 Huaibei Zhuang, Beijing, 100049, P.R. China
| | - Huamin Zhang
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P.R. China
| | - Xianfeng Li
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P.R. China
| |
Collapse
|
17
|
Li Y, Zhu J, Li S, Guo Z, Van der Bruggen B. Flexible Aliphatic-Aromatic Polyamide Thin Film Composite Membrane for Highly Efficient Organic Solvent Nanofiltration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31962-31974. [PMID: 32559377 DOI: 10.1021/acsami.0c07341] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Membranes with strong solvent resistance and efficient molecular separation are desirable in industries. Especially the fractionation of organic molecules in harsh organic solvents still remains a challenge in the pharmaceutical industry. Here, we report a flexible aliphatic-aromatic polyamide thin-film composite (TFC) membrane with high stability, permeability, and precise selectivity in mild solvents as well as in polar aprotic solvents. This composite organic solvent nanofiltration (OSN) membrane integrates a cross-linked sub-100 nm nanofilm and a nanofibrous sublayer. The flexible aliphatic chains in the polyamide network render the selective layer with a tunable free volume in different organic solvents. Consistent with the solvent swelling degrees, the membrane shows a cutoff in a sequence of dimethyl sulfoxide (DMSO, MWCO: 814 g mol-1) > N,N-dimethylformamide (DMF, MWCO: 648 g mol-1) > methanol (MWCO: 506 g mol-1, with DMF activation) > methanol (MWCO: 327 g mol-1). The membrane can precisely fractionate two molecules with difference in molar mass of <166 g mol-1 in a polar aprotic solvent, DMSO. Long-term filtration tests in DMF further demonstrate that the TFC membrane has an outstanding chemical stability and molecular selectivity in aggressive organic media. This work provides an efficient way to control OSN membrane separations by introducing flexible alkane chains into the rigid polymer structure followed by solvent activation. Additionally, the high permeance and excellent separation efficiency of the TFC membrane highlight its great potential for molecular separation in pharmaceutical and chemical industries.
Collapse
Affiliation(s)
- Yi Li
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Junyong Zhu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Sha Li
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong 519041, P. R. China
| | - Zhong Guo
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong 519041, P. R. China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| |
Collapse
|