1
|
Huang X, Li G, Li H, Zhong W, Jiang G, Cai J, Xiong Q, Wu C, Su K, Huang R, Xu S, Liu Z, Wang M, Wang H. Glycyrrhetinic Acid as a Hepatocyte Targeting Ligand-Functionalized Platinum(IV) Complexes for Hepatocellular Carcinoma Therapy and Overcoming Multidrug Resistance. J Med Chem 2024; 67:8020-8042. [PMID: 38727048 DOI: 10.1021/acs.jmedchem.4c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Promising targeted therapy options to overcome drug resistance and side effects caused by platinum(II) drugs for treatment in hepatocellular carcinoma are urgently needed. Herein, six novel multifunctional platinum(IV) complexes through linking platinum(II) agents and glycyrrhetinic acid (GA) were designed and synthesized. Among them, complex 20 showed superior antitumor activity against tested cancer cells including cisplatin resistance cells than cisplatin and simultaneously displayed good liver-targeting ability. Moreover, complex 20 can significantly cause DNA damage and mitochondrial dysfunction, promote reactive oxygen species generation, activate endoplasmic reticulum stress, and eventually induce apoptosis. Additionally, complex 20 can effectively inhibit cell migration and invasion and trigger autophagy and ferroptosis in HepG-2 cells. More importantly, complex 20 demonstrated stronger tumor inhibition ability than cisplatin or the combo of cisplatin/GA with almost no systemic toxicity in HepG-2 or A549 xenograft models. Collectively, complex 20 could be developed as a potential anti-HCC agent for cancer treatment.
Collapse
Affiliation(s)
- Xiaochao Huang
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Guimei Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Huifang Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Wentian Zhong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Guiyang Jiang
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Jinyuan Cai
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Qingping Xiong
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Chuang Wu
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Kangning Su
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Rizhen Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Shiliu Xu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Zhikun Liu
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Meng Wang
- Institute of Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
2
|
Cui LW, Fan LY, Shen ZY. Application Research Progress of Nanomaterial Graphene and its Derivative Complexes in Tumor Diagnosis and Therapy. Curr Med Chem 2024; 31:6436-6459. [PMID: 38299292 DOI: 10.2174/0109298673251648231106112354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/05/2023] [Accepted: 10/05/2023] [Indexed: 02/02/2024]
Abstract
Functional nanomaterial graphene and its derivatives have attracted considerable attention in many fields because of their unique physical and chemical properties. Most notably, graphene has become a research hotspot in the biomedical field, especially in relation to malignant tumors. In this study, we briefly review relevant research from recent years on graphene and its derivatives in tumor diagnosis and antitumor therapy. The main contents of the study include the graphene-derivative diagnosis of tumors in the early stage, graphene quantum dots, photodynamics, MRI contrast agent, acoustic dynamics, and the effects of ultrasonic cavitation and graphene on tumor therapy. Moreover, the biocompatibility of graphene is briefly described. This review provides a broad overview of the applications of graphene and its derivatives in tumors. Conclusion, graphene and its derivatives play an important role in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Li Wen Cui
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, No. 30, North Tong-yang Road, Pingchao Town, Tongzhou District, Nantong, Jiangsu 226361, China
| | - Lu Yao Fan
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, No. 30, North Tong-yang Road, Pingchao Town, Tongzhou District, Nantong, Jiangsu 226361, China
| | - Zhi Yong Shen
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, No. 30, North Tong-yang Road, Pingchao Town, Tongzhou District, Nantong, Jiangsu 226361, China
| |
Collapse
|
3
|
Jiang L, Lin X, Chen F, Qin X, Yan Y, Ren L, Yu H, Chang L, Wang Y. Current research status of tumor cell biomarker detection. MICROSYSTEMS & NANOENGINEERING 2023; 9:123. [PMID: 37811123 PMCID: PMC10556054 DOI: 10.1038/s41378-023-00581-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/26/2023] [Accepted: 07/23/2023] [Indexed: 10/10/2023]
Abstract
With the annual increases in the morbidity and mortality rates of tumors, the use of biomarkers for early diagnosis and real-time monitoring of tumor cells is of great importance. Biomarkers used for tumor cell detection in body fluids include circulating tumor cells, nucleic acids, protein markers, and extracellular vesicles. Among them, circulating tumor cells, circulating tumor DNA, and exosomes have high potential for the prediction, diagnosis, and prognosis of tumor diseases due to the large amount of valuable information on tumor characteristics and evolution; in addition, in situ monitoring of telomerase and miRNA in living cells has been the topic of extensive research to understand tumor development in real time. Various techniques, such as enzyme-linked immunosorbent assays, immunoblotting, and mass spectrometry, have been widely used for the detection of these markers. Among them, the detection of tumor cell markers in body fluids based on electrochemical biosensors and fluorescence signal analysis is highly preferred because of its high sensitivity, rapid detection and portable operation. Herein, we summarize recent research progress in the detection of tumor cell biomarkers in body fluids using electrochemical and fluorescence biosensors, outline the current research status of in situ fluorescence monitoring and the analysis of tumor markers in living cells, and discuss the technical challenges for their practical clinical application to provide a reference for the development of new tumor marker detection methods.
Collapse
Affiliation(s)
- Liying Jiang
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Xinyi Lin
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Fenghua Chen
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Xiaoyun Qin
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Yanxia Yan
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Linjiao Ren
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Hongyu Yu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Lingqian Chang
- key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083 China
| | - Yang Wang
- key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083 China
- School of Engineering Medicine, Beihang University, Beijing, 100083 China
| |
Collapse
|
4
|
Salehi M, Lavasani ZM, Keshavarz Alikhani H, Shokouhian B, Hassan M, Najimi M, Vosough M. Circulating Tumor Cells as a Promising Tool for Early Detection of Hepatocellular Carcinoma. Cells 2023; 12:2260. [PMID: 37759483 PMCID: PMC10527869 DOI: 10.3390/cells12182260] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/27/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Liver cancer is a significant contributor to the cancer burden, and its incidence rates have recently increased in almost all countries. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and is the second leading cause of cancer-related deaths worldwide. Because of the late diagnosis and lack of efficient therapeutic modality for advanced stages of HCC, the death rate continues to increase by ~2-3% per year. Circulating tumor cells (CTCs) are promising tools for early diagnosis, precise prognosis, and follow-up of therapeutic responses. They can be considered to be an innovative biomarker for the early detection of tumors and targeted molecular therapy. In this review, we briefly discuss the novel materials and technologies applied for the practical isolation and detection of CTCs in HCC. Also, the clinical value of CTC detection in HCC is highlighted.
Collapse
Affiliation(s)
- Mahsa Salehi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran 1665666311, Iran; (M.S.); (B.S.)
| | - Zohre Miri Lavasani
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran;
| | - Hani Keshavarz Alikhani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran 1665666311, Iran; (M.S.); (B.S.)
| | - Bahare Shokouhian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran 1665666311, Iran; (M.S.); (B.S.)
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, 171 77 Stockholm, Sweden;
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, B-1200 Brussels, Belgium
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran 1665666311, Iran; (M.S.); (B.S.)
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, 171 77 Stockholm, Sweden;
| |
Collapse
|
5
|
Pan A, Truong TN, Su YH, Dao DY. Circulating Biomarkers for the Early Diagnosis and Management of Hepatocellular Carcinoma with Potential Application in Resource-Limited Settings. Diagnostics (Basel) 2023; 13:676. [PMID: 36832164 PMCID: PMC9954913 DOI: 10.3390/diagnostics13040676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is among the world's third most lethal cancers. In resource-limited settings (RLS), up to 70% of HCCs are diagnosed with limited curative treatments at an advanced symptomatic stage. Even when HCC is detected early and resection surgery is offered, the post-operative recurrence rate after resection exceeds 70% in five years, of which about 50% occur within two years of surgery. There are no specific biomarkers addressing the surveillance of HCC recurrence due to the limited sensitivity of the available methods. The primary goal in the early diagnosis and management of HCC is to cure disease and improve survival, respectively. Circulating biomarkers can be used as screening, diagnostic, prognostic, and predictive biomarkers to achieve the primary goal of HCC. In this review, we highlighted key circulating blood- or urine-based HCC biomarkers and considered their potential applications in resource-limited settings, where the unmet medical needs of HCC are disproportionately highly significant.
Collapse
Affiliation(s)
- Annabelle Pan
- School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Thai N. Truong
- Department of Internal Medicine, Campus in Thanh Hoa, Hanoi Medical University, Thanh Hoa 40000, Vietnam
| | - Ying-Hsiu Su
- Department of Translational Medical Science, The Baruch S. Blumberg Institute, Doylestown, PA 18902, USA
| | - Doan Y Dao
- School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Center of Excellence for Liver Disease in Vietnam, Johns Hopkins University of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
6
|
Isolation, Detection and Analysis of Circulating Tumour Cells: A Nanotechnological Bioscope. Pharmaceutics 2023; 15:pharmaceutics15010280. [PMID: 36678908 PMCID: PMC9864919 DOI: 10.3390/pharmaceutics15010280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/17/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Cancer is one of the dreaded diseases to which a sizeable proportion of the population succumbs every year. Despite the tremendous growth of the health sector, spanning diagnostics to treatment, early diagnosis is still in its infancy. In this regard, circulating tumour cells (CTCs) have of late grabbed the attention of researchers in the detection of metastasis and there has been a huge surge in the surrounding research activities. Acting as a biomarker, CTCs prove beneficial in a variety of aspects. Nanomaterial-based strategies have been devised to have a tremendous impact on the early and rapid examination of tumor cells. This review provides a panoramic overview of the different nanotechnological methodologies employed along with the pharmaceutical purview of cancer. Initiating from fundamentals, the recent nanotechnological developments toward the detection, isolation, and analysis of CTCs are comprehensively delineated. The review also includes state-of-the-art implementations of nanotechnological advances in the enumeration of CTCs, along with future challenges and recommendations thereof.
Collapse
|
7
|
Ma T, Zhang J, Zhang L, Zhang Q, Xu X, Xiong Y, Ying Y, Fu Y. Recent advances in determination applications of emerging films based on nanomaterials. Adv Colloid Interface Sci 2023; 311:102828. [PMID: 36587470 DOI: 10.1016/j.cis.2022.102828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Sensitive and facile detection of analytes is crucial in various fields such as agriculture production, food safety, clinical diagnosis and therapy, and environmental monitoring. However, the synergy of complicated sample pretreatment and detection is an urgent challenge. By integrating the inherent porosity, processability and flexibility of films and the diversified merits of nanomaterials, nanomaterial-based films have evolved as preferred candidates to meet the above challenge. Recent years have witnessed the flourishment of films-based detection technologies due to their unique porous structures and integrated physical/chemical merits, which favors the separation/collection and detection of analytes in a rapid, efficient and facile way. In particular, films based on nanomaterials consisting of 0D metal-organic framework particles, 1D nanofibers and carbon nanotubes, and 2D graphene and analogs have drawn increasing attention due to incorporating new properties from nanomaterials. This paper summarizes the progress of the fabrication of emerging films based on nanomaterials and their detection applications in recent five years, focusing on typical electrochemical and optical methods. Some new interesting applications, such as point-of-care testing, wearable devices and detection chips, are proposed and emphasized. This review will provide insights into the integration and processability of films based on nanomaterials, thus stimulate further contributions towards films based on nanomaterials for high-performance analytical-chemistry-related applications.
Collapse
Affiliation(s)
- Tongtong Ma
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Lin Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Qi Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xiahong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Guo M, Nei R, Wang J, Ai J, Dong Y, Zhao H, Gao Q. Sensitive detection of folate receptor-positive circulating tumor cells based on intracellular uptake of the PbS nanoparticle cluster-loaded phospholipid micelles decorated with folic acid in combination with E-DNA sensor. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Jia W, Han Y, Mao X, Xu W, Zhang Y. Nanotechnology strategies for hepatocellular carcinoma diagnosis and treatment. RSC Adv 2022; 12:31068-31082. [PMID: 36349046 PMCID: PMC9621307 DOI: 10.1039/d2ra05127c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/20/2022] [Indexed: 10/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy threatening human health, and existing diagnostic and therapeutic techniques are facing great challenges. In the last decade or so, nanotechnology has been developed and improved for tumor diagnosis and treatment. For example, nano-intravenous injections have been approved for malignant perivascular epithelioid cell tumors. This article provides a comprehensive review of the applications of nanotechnology in HCC in recent years: (I) in radiological imaging, magnetic resonance imaging (MRI), fluorescence imaging (FMI) and multimodality imaging. (II) For diagnostic applications in HCC serum markers. (III) As embolic agents in transarterial chemoembolization (TACE) or directly as therapeutic drugs. (IV) For application in photothermal therapy and photodynamic therapy. (V) As carriers of chemotherapeutic drugs, targeted drugs, and natural plant drugs. (VI) For application in gene and immunotherapy. Compared with the traditional methods for diagnosis and treatment of HCC, nanoparticles have high sensitivity, reduce drug toxicity and have a long duration of action, and can also be combined with photothermal and photodynamic multimodal combination therapy. These summaries provide insights for the further development of nanotechnology applications in HCC.
Collapse
Affiliation(s)
- WeiLu Jia
- Medical School, Southeast University Nanjing 210009 China
| | - YingHui Han
- Outpatient Department, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| | - XinYu Mao
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| | - WenJing Xu
- Medical School, Southeast University Nanjing 210009 China
| | - YeWei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| |
Collapse
|
10
|
Li J, Wuethrich A, Zhang Z, Wang J, Lin LL, Behren A, Wang Y, Trau M. SERS Multiplex Profiling of Melanoma Circulating Tumor Cells for Predicting the Response to Immune Checkpoint Blockade Therapy. Anal Chem 2022; 94:14573-14582. [PMID: 36222247 DOI: 10.1021/acs.analchem.2c02398] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Immune checkpoint blockade (ICB) therapy has achieved remarkable success in many cancers including melanoma. However, ICB therapy benefits only a small proportion of patients and produces severe side effects for some patients. Thus, there is an urgent need to identify patients who are more likely to respond to ICB therapy to improve outcomes and minimize side effects. To predict ICB therapy responses, we design a surface-enhanced Raman scattering (SERS) assay for multiplex profiling of circulating tumor cells (CTCs) under basal and interferon-γ (IFN-γ) stimulation. Through simultaneous ensemble and single-cell measurements of CTCs, the SERS assay can reveal tumor heterogeneity and offer a comprehensive CTC phenotype for decision-making. Anisotropic gold-silver alloy nanoboxes are utilized as SERS plasmonic substrates for improved signal readouts of CTC surface biomarkers. By generating a unique CTC signature with four surface biomarkers, the developed assay enables the differentiation of CTCs from three different patient-derived melanoma cell lines. Significantly, in a cohort of 14 melanoma patients who received programmed cell death-1 blockade therapy, the changes of CTC signature induced by IFN-γ stimulation to CTCs show the potential to predict responders. We expect that the SERS assay can help select patients for receiving ICB therapy in other cancers.
Collapse
Affiliation(s)
- Junrong Li
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan430079, P. R. China.,Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072, Australia
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072, Australia
| | - Zhen Zhang
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072, Australia
| | - Jing Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou350007, P. R. China
| | - Lynlee L Lin
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD4102, Australia
| | - Andreas Behren
- Oliva Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC3086, Australia.,Department of Medicine, University of Melbourne, Heidelberg, VIC3010, Australia
| | - Yuling Wang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW2109, Australia
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD4072, Australia
| |
Collapse
|
11
|
Xu M, Yang L, Lin Y, Lu Y, Bi X, Jiang T, Deng W, Zhang L, Yi W, Xie Y, Li M. Emerging nanobiotechnology for precise theranostics of hepatocellular carcinoma. J Nanobiotechnology 2022; 20:427. [PMID: 36175957 PMCID: PMC9524074 DOI: 10.1186/s12951-022-01615-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Primary liver cancer has become the second most fatal cancer in the world, and its five-year survival rate is only 10%. Most patients are in the middle and advanced stages at the time of diagnosis, losing the opportunity for radical treatment. Liver cancer is not sensitive to chemotherapy or radiotherapy. At present, conventional molecularly targeted drugs for liver cancer show some problems, such as short residence time, poor drug enrichment, and drug resistance. Therefore, developing new diagnosis and treatment methods to effectively improve the diagnosis, treatment, and long-term prognosis of liver cancer is urgent. As an emerging discipline, nanobiotechnology, based on safe, stable, and efficient nanomaterials, constructs highly targeted nanocarriers according to the unique characteristics of tumors and further derives a variety of efficient diagnosis and treatment methods based on this transport system, providing a new method for the accurate diagnosis and treatment of liver cancer. This paper aims to summarize the latest progress in this field according to existing research and the latest clinical diagnosis and treatment guidelines in hepatocellular carcinoma (HCC), as well as clarify the role, application limitations, and prospects of research on nanomaterials and the development and application of nanotechnology in the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Mengjiao Xu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Liu Yang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Yanjie Lin
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Yao Lu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Xiaoyue Bi
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Tingting Jiang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Wen Deng
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Lu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Wei Yi
- Department of Gynecology and Obstetrics, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China.
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China. .,Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China.
| | - Minghui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China. .,Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China.
| |
Collapse
|
12
|
Wang Y, Li J, Pei Z, Pei Y. A glutathione activatable bioprobe for detection of hepatocellular carcinoma cells in peripheral blood via carbohydrate-protein interaction. Anal Chim Acta 2022; 1221:340106. [DOI: 10.1016/j.aca.2022.340106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/14/2022] [Accepted: 06/19/2022] [Indexed: 11/01/2022]
|
13
|
Li C, He W, Wang N, Xi Z, Deng R, Liu X, Kang R, Xie L, Liu X. Application of Microfluidics in Detection of Circulating Tumor Cells. Front Bioeng Biotechnol 2022; 10:907232. [PMID: 35646880 PMCID: PMC9133555 DOI: 10.3389/fbioe.2022.907232] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 12/22/2022] Open
Abstract
Tumor metastasis is one of the main causes of cancer incidence and death worldwide. In the process of tumor metastasis, the isolation and analysis of circulating tumor cells (CTCs) plays a crucial role in the early diagnosis and prognosis of cancer patients. Due to the rarity and inherent heterogeneity of CTCs, there is an urgent need for reliable CTCs separation and detection methods in order to obtain valuable information on tumor metastasis and progression from CTCs. Microfluidic technology is increasingly used in various studies of CTCs separation, identification and characterization because of its unique advantages, such as low cost, simple operation, less reagent consumption, miniaturization of the system, rapid detection and accurate control. This paper reviews the research progress of microfluidic technology in CTCs separation and detection in recent years, as well as the potential clinical application of CTCs, looks forward to the application prospect of microfluidic technology in the treatment of tumor metastasis, and briefly discusses the development prospect of microfluidic biosensor.
Collapse
Affiliation(s)
- Can Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei He
- Department of Clinical Medical Engineering, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Nan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhipeng Xi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rongrong Deng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiyu Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ran Kang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Lin Xie
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
14
|
Chen B, Wang G, Huang C, Sun Y, Zhang J, Chai Z, Guo SS, Zhao XZ, Yuan Y, Liu W. A light-induced hydrogel responsive platform to capture and selectively isolate single circulating tumor cells. NANOSCALE 2022; 14:3504-3512. [PMID: 35171188 DOI: 10.1039/d1nr06876h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Isolation of circulating tumor cells (CTCs) from patients is a challenge due to the rarity of CTCs. Recently, various platforms to capture and release CTCs for downstream analysis have been developed. However, most of the reported release methods provide external stimuli to release all captured cells, which lead to lack of specificity in the pool of collected cells, and the external stimuli may affect the activity of the released cells. Here, we presented a simple method for single-cell recovery to overcome the shortcomings, which combined the nanostructures with a photocurable hydrogel, chondroitin sulfate methacryloyl (CSMA). In brief, we synthesized gelatin nanoparticles (Gnps) and modified them on flat glass (Gnp substrate) for the specific capture of CTCs. A 405 nm laser was projected onto the selected cells, and then CSMA was cured to encapsulate the selected CTCs. Unselected cells were removed with MMP-9 enzyme solution, and selected CTCs were recovered using a microcapillary. Finally, the photocurable hydrogel-encapsulated cells were analyzed by nucleic acid detection. In addition, the results suggested that the isolation platform showed good biocompatibility and successfully achieved the isolation of selected cells. In summary, our light-induced hydrogel responsive platform holds certain potential for clinical applications.
Collapse
Affiliation(s)
- Bei Chen
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Ganggang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.
| | - Chunyu Huang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Yue Sun
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Jing Zhang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Zhuomin Chai
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Shi-Shang Guo
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Xing-Zhong Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.
| | - Wei Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|
15
|
Li C, Feng X, Yang S, Xu H, Yin X, Yu Y. Capture, Detection, and Simultaneous Identification of Rare Circulating Tumor Cells Based on a Rhodamine 6G-Loaded Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52406-52416. [PMID: 34709779 DOI: 10.1021/acsami.1c15838] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Circulating tumor cells (CTCs) play a key role in the development of tumor metastasis. It will be a big step forward for CTC application as a reliable clinical liquid biopsy marker to be able to identify the captured CTCs while achieving a high capture efficiency within one analytical system. Herein, in this work, a stimuli-responsive and rhodamine 6G (Rho 6G)-entrapped fluorescent metal-organic framework (MOF) probe, named MOF-Rho 6G-DNA, was designed to capture, detect, and subsequently identify CTCs from blood samples of cancer patients. The probe was fabricated by modifying the epithelial cell adhesion molecule (EpCAM) hairpin DNA aptamer with Rho 6G enclosed and an Arm-DNA-attached UiO-66-NH2 MOF by sequence complementation. CTCs could be captured by the EpCAM hairpin DNA on the probe; as a result, Rho 6G loaded in the probe was released, and the number of CTCs was positively related to the concentration of released Rho 6G. An excellent correlation of fluorescence intensities with CTC numbers was obtained from 2 to 500 cells/mL. More importantly, the MOF-Rho 6G-DNA probe simultaneously realized rapid identification of the captured cells within 30 min by only relying on the residue Rho 6G in the MOF cavity. The captured target cells can be conveniently released from the probe using the complementary DNA sequence. These performance features of the probe were further verified by blood samples from patients of various types of tumor.
Collapse
Affiliation(s)
- Chenglin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Xingqing Feng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Shenhao Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Hao Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| |
Collapse
|
16
|
Su H, Yin S, Yang J, Wu Y, Shi C, Sun H, Wang G. In situ monitoring of circulating tumor cell adhered on three-dimensional graphene/ZnO macroporous structure by resistance change and electrochemical impedance spectroscopy. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Nanostructure Materials: Efficient Strategies for Circulating Tumor Cells Capture, Release, and Detection. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0257-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Xu C, He XY, Ren XH, Cheng SX. Direct detection of intracellular miRNA in living circulating tumor cells by tumor targeting nanoprobe in peripheral blood. Biosens Bioelectron 2021; 190:113401. [PMID: 34119837 DOI: 10.1016/j.bios.2021.113401] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023]
Abstract
Molecular analysis of circulating tumor cells (CTCs) is of critical significance for the non-invasive early detection of tumors. However, in situ detection of intracellular nucleic acids of CTCs in whole blood still remains challenge. By using a highly efficient tumor targeting nanoprobe, we realize in situ detection of microRNA-21 (miR-21) of living CTCs in unprocessed whole blood. In the nanoprobe, a catalytic hairpin assembly (CHA) system is complexed with protamine sulfate (PS), and then decorated by SYL3C conjugated hyaluronic acid (SHA) and hyaluronic acid (HA). The CHA system can be specifically delivered into living CTCs in whole blood, followed by hybridization between the CHA system and intracellular miR-21 in CTCs to induce strong fluorescence emission. After isolation of CTCs by membrane filtration, CTCs of cancer patients can be directly visualized by a fluorescence microscope for miR-21 detection at a single-cell level. Our study provides an efficient strategy to realize in situ genomic analysis of living CTCs in whole blood.
Collapse
Affiliation(s)
- Chang Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Xiao-Yan He
- School of Life Sciences, Anhui Medical University, Hefei, 230032, PR China
| | - Xiao-He Ren
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
19
|
Lei Y, Wang X, Sun H, Fu Y, Tian Y, Yang L, Wang J, Xia F. Association of Preoperative NANOG-Positive Circulating Tumor Cell Levels With Recurrence of Hepatocellular Carcinoma. Front Oncol 2021; 11:601668. [PMID: 34123777 PMCID: PMC8190394 DOI: 10.3389/fonc.2021.601668] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/22/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) and Circulating tumor cells (CTCs) have been proposed as fundamental causes for the recurrence of hepatocellular carcinoma (HCC). CTCs isolated from patients with HCC illustrate a unique Nanog expression profile analysis. The aim of this study was to enhance the prediction of recurrence and prognosis of the CTC phenotype in patients with HCC by combining Nanog expression into a combined forecasting model. SUBJECTS MATERIALS AND METHODS We collected 320 blood samples from 160 patients with HCC cancer before surgery and used CanPatrol™ CTC enrichment technology and in situ hybridization (ISH) to enrich and detect CTCs and CSCs. Nanog expression in all CTCs was also determined. In addition, RT-PCR and immunohistochemistry were used to study the expression of Nanog, E-Cadherin, and N-Cadherin in liver cancer tissues and to conduct clinical correlation studies. RESULTS The numbers of EpCAM mRNA+ CTCs and Nanog mRNA+ CTCs were strongly correlated with postoperative HCC recurrence (CTC number (P = 0.03), the total number of mixed CTCS (P = 0.02), and Nanog> 6.7 (P = 0.001), with Nanog > 6.7 (P = 0.0003, HR = 2.33) being the most crucial marker. There are significant differences in the expression of Nanog on different types of CTC: most Epithelial CTCs do not express Nanog, while most of Mixed CTC and Mesenchymal CTC express Nanog, and their positive rates are 38.7%, 66.7%, and 88.7%, respectively, (P=0.0001). Moreover, both CTC (≤/> 13.3) and Nanog (≤/>6.7) expression were significantly correlated with BCLC stage, vascular invasion, tumor size, and Hbv-DNA (all P < 0.05). In the young group and the old group, patients with higher Nanog expression had a higher recurrence rate. (P < 0.001). CONCLUSIONS The number of Nanog-positive cells showed positive correlation with the poor prognosis of HCC patients. The detection and analysis of CTC markers (EpCAM and CK8, 18, CD45 Vimentin,Twist and 19) and CSCs markers (NANOG) are of great value in the evaluation of tumor progression.
Collapse
Affiliation(s)
- Yongrong Lei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xishu Wang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, the First Hospital Affiliated to AMU (Southwest Hospital), Chongqing, China
| | - Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yuna Fu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yichen Tian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Ludi Yang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, the First Hospital Affiliated to AMU (Southwest Hospital), Chongqing, China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Feng Xia
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, the First Hospital Affiliated to AMU (Southwest Hospital), Chongqing, China
| |
Collapse
|
20
|
Xia W, Li H, Li Y, Li M, Fan J, Sun W, Li N, Li R, Shao K, Peng X. In Vivo Coinstantaneous Identification of Hepatocellular Carcinoma Circulating Tumor Cells by Dual-Targeting Magnetic-Fluorescent Nanobeads. NANO LETTERS 2021; 21:634-641. [PMID: 33264027 DOI: 10.1021/acs.nanolett.0c04180] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Circulating tumor cells (CTCs) have been considered as a potential biomarker for evaluation of cancer metastasis and prognosis, especially in hepatocellular carcinoma (HCC). However, the isolation and detection of rare CTCs in HCC patients face enormous challenges due to omittance and nonspecific binding. We previously designed a small molecular NIR fluoresent agent, named MLP, which had high affinity with a tumor cell-overexpressed enzyme, aminopeptidase N (APN). Based on that, in this work we introduced a novel strategy via coassembling the antiepithelial cell adhesion molecule (EpCAM) antibody and MLPinto theFe3O4 magnetic nanobeads (MB-MLP-EpCAM) to isolate and identify HCC-CTCs coinstantaneously. MB-MLP-EpCAM significantly improved the CTC-capture efficiency (>85%) without sacrificing cell viability (>90%). Most importantly, the advantages of precise dual-targetability, high resolution of fluorescence imaging, and prominent selectivity make our nanoplatform have great potential to achieve in vivo real-time identification and monitoring of CTCs clinically.
Collapse
Affiliation(s)
- Wenxi Xia
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P.R. China
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P.R. China
| | - Yueqing Li
- School of Pharmaceutical Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P.R. China
| | - Miao Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P.R. China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P.R. China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P.R. China
| | - Na Li
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, P.R. China
| | - Ruojie Li
- Interventional Therapy Department, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, P.R. China
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P.R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P.R. China
| |
Collapse
|
21
|
Wang J, Zhang R, Ji X, Wang P, Ding C. SERS and fluorescence detection of circulating tumor cells (CTCs) with specific capture-release mode based on multifunctional gold nanomaterials and dual-selective recognition. Anal Chim Acta 2021; 1141:206-213. [PMID: 33248653 DOI: 10.1016/j.aca.2020.10.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/16/2020] [Indexed: 01/05/2023]
Abstract
Herein, a dual-selective recognition and multi-enhanced surface-enhanced Raman scattering (SERS)-fluorescence dual mode detection platform is designed for the detection of circulating tumor cells (CTCs). The gold nanoflowers (AuNFs) substrate was synthesized and the CTCs were captured on the surface area of AuNFs/ITO substrate by aptamers modified. At the same time, the novel nanoprobe was designed, anti-EpCAM (AE) and trigger DNA were modified onto the surface of gold nanostars (AuNSs) through a PEG linker. The novel nanoprobe identified CTCs through the specific recognition reaction between AE and the cell epithelial adhesion molecule of the CTCs. The dual-recognition cellular mechanism of the aptamers and AE improves selectivity. Then, the complementary sequence (CS) hybridize with aptamers to release the captured CTCs into the culture medium. The number of CTCs released was detected by SERS and fluorescence. The limit of SERS detection was 5 cells/mL with a linear relationship from 5 to 200 cells/mL. The limit of fluorescence detection was 10 cells/mL with a linear relationship from 10 to 200 cells/mL. Thus, the developed CTCs detection platform demonstrates promising applications for clinical diagnosis.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Ruiyuan Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xiaoting Ji
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Peipei Wang
- Qingdao Central Hospital, Qingdao, 266042, China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
22
|
Wang Q, Xiao J, Su Y, Huang J, Li J, Qiu L, Zhan M, He X, Yuan W, Li Y. Fabrication of thermoresponsive magnetic micelles from amphiphilic poly(phenyl isocyanide) and Fe3O4 nanoparticles for controlled drug release and synergistic thermochemotherapy. Polym Chem 2021. [DOI: 10.1039/d1py00022e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The drug-loaded micelles self-assembled from co-poly(phenyl isocyanide), Fe3O4 and DOX demonstrated thermoresponsiveness and magnetic hyperthermia for synergistic thermochemotherapy.
Collapse
|
23
|
A dual recognition strategy for accurate detection of CTCs based on novel branched PtAuRh trimetallic nanospheres. Biosens Bioelectron 2020; 176:112893. [PMID: 33342693 DOI: 10.1016/j.bios.2020.112893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Accurate detection of circulating tumor cells (CTCs) has a pivotal role in the metastasis monitoring and prognosis of tumor. In this work, an ultrasensitive electrochemical cytosensor was developed based on excellent electrocatalytic materials and a dual recognition strategy. Herein, novel branched PtAuRh trimetallic nanospheres (b-PtAuRh TNS) were synthesized for the first time by a facile one-pot method, which had a huge specific surface area and outstanding catalytic activity. B-PtAuRh TNS linked with aptamers targeting mucin1 (MUC1) were served as signal tags to amplify the signal. As electrode modified material, the nanocomposites of Cabot carbon black (BP2000) and AuNPs were used to improve the electron transfer efficiency of electrode. In addition to using b-PtAuRh TNS labeled anti-MUC1 aptamers as signal probes, anti-EpCAM antibodies were worked as capture probes to achieve dual recognition of target cells. In other words, only cells expressing both MUC1 and EpCAM could produce electrochemical signal. The constructed cytosensor presented a wide linear range (5 - 1 × 106 cells mL-1) and a low detection limit (1 cell mL-1). It was worth noting that the proposed cytosensor could detect CTCs in clinical blood samples. To sum up, the developed cytosensor might become a promising detection platform for cancer diagnosis and tumor metastasis.
Collapse
|
24
|
Pei H, Li L, Han Z, Wang Y, Tang B. Recent advances in microfluidic technologies for circulating tumor cells: enrichment, single-cell analysis, and liquid biopsy for clinical applications. LAB ON A CHIP 2020; 20:3854-3875. [PMID: 33107879 DOI: 10.1039/d0lc00577k] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Circulating tumor cells (CTCs) detach from primary or metastatic lesions and circulate in the peripheral blood, which is considered to be the cause of distant metastases. CTC analysis in the form of liquid biopsy, enumeration and molecular analysis provide significant clinical information for cancer diagnosis, prognosis and therapeutic strategies. Despite the great clinical value, CTC analysis has not yet entered routine clinical practice due to lack of efficient technologies to perform CTC isolation and single-cell analysis. Taking the rarity and inherent heterogeneity of CTCs into account, reliable methods for CTC isolation and detection are in urgent demand for obtaining valuable information on cancer metastasis and progression from CTCs. Microfluidic technology, featuring microfabricated structures, can precisely control fluids and cells at the micrometer scale, thus making itself a particularly suitable method for rare CTC manipulation. Besides the enrichment function, microfluidic chips can also realize the analysis function by integrating multiple detection technologies. In this review, we have summarized the recent progress in CTC isolation and detection using microfluidic technologies, with special attention to emerging direct enrichment and enumeration in vivo. Further, few insights into single CTC molecular analysis are also demonstrated. We have provided a review of potential clinical applications of CTCs, ranging from early screening and diagnosis, tumor progression and prognosis, treatment and resistance monitoring, to therapeutic evaluation. Through this review, we conclude that the clinical utility of CTCs will be expanded as the isolation and analysis techniques are constantly improving.
Collapse
Affiliation(s)
- Haimeng Pei
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | | | | | | | | |
Collapse
|
25
|
Cheng M, Zhang Y, Wang Y, Zhu A, Chen L, Hua Z, Zhang X. SERS Immunosensor of Array Units Surrounded by Particles: A Platform for Auxiliary Diagnosis of Hepatocellular Carcinoma. NANOMATERIALS 2020; 10:nano10102090. [PMID: 33096939 PMCID: PMC7589698 DOI: 10.3390/nano10102090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 11/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the diseases with high mortality worldwide, so its early diagnosis and treatment have attracted much attention. Due to the advantages of the high sensitivity of surface-enhanced Raman scattering (SERS) detection, SERS has excellent application value in the diagnosis of HCC. In this paper, silver nanoparticles (AgNPs) are modified by magnetron sputtering on the surface of polystyrene (PS) templates with spheres of two different diameters. The array of units surrounded by particles is successfully prepared and the SERS performance is characterized. The effect of the gap between AgNPs on plasmon coupling and hot spot distribution is discussed. Finite-difference time domain (FDTD) simulation is used to verify the electric fields and hot spot distribution of the array. The differences in the concentrations of HCC markers are analyzed by using the change of SERS signal intensity of the array. The whole process proves that the preparation of structures with a strong local electric field to provide highly sensitive SERS signals is a key link in the detection of HCC markers, which is conducive to the diagnosis of HCC and has potential application value in clinical diagnosis.
Collapse
Affiliation(s)
- Mingyu Cheng
- School of Material and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China; (M.C.); (Y.W.)
- Key Laboratory of Functional Materials Physics and Chemistry, Ministry of Education, College of Physics, Jilin Normal University, Changchun 130103, China; (L.C.); (Z.H.)
| | - Yongjun Zhang
- School of Material and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China; (M.C.); (Y.W.)
- Correspondence: (Y.Z.); (X.Z.)
| | - Yaxin Wang
- School of Material and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China; (M.C.); (Y.W.)
| | - Aonan Zhu
- College of Chemistry, Nankai University, Tianjin 300071, China;
| | - Lei Chen
- Key Laboratory of Functional Materials Physics and Chemistry, Ministry of Education, College of Physics, Jilin Normal University, Changchun 130103, China; (L.C.); (Z.H.)
| | - Zhong Hua
- Key Laboratory of Functional Materials Physics and Chemistry, Ministry of Education, College of Physics, Jilin Normal University, Changchun 130103, China; (L.C.); (Z.H.)
| | - Xiaolong Zhang
- Key Laboratory of Functional Materials Physics and Chemistry, Ministry of Education, College of Physics, Jilin Normal University, Changchun 130103, China; (L.C.); (Z.H.)
- Correspondence: (Y.Z.); (X.Z.)
| |
Collapse
|
26
|
Huang M, Zhao Q, Ye Z, Xu D, Tang S, Jiang T. Development of a novel melatonin-modified near-infrared fluorescent probe for in vivo hepatocellular carcinoma imaging. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4556-4561. [PMID: 33001063 DOI: 10.1039/d0ay01135e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy worldwide with poor prognosis. The early identification and precise resection of HCC are essential for improving the prognosis and overall survival of patients. In clinical practice, fluorescence imaging is a powerful technology to identify and remove HCC lesions, but accurate and reliable detection of HCC continues to remain a challenge due to non-specificity and false-positive uptake of probes. To circumvent these problems, it is crucial to design a specific probe for the accurate detection of HCC. Herein, we reported the design and synthesis of an NIR fluorescent probe by conjugating IRDye800CW with melatonin, which plays a significant role in the HCC development. The in vivo imaging revealed that IRDye800-MT was uptake specifically by the HCC tumor with a high tumor-to-background ratio. These results demonstrated that IRDye800-MT might hold clinical potentials for future diagnosis of HCC patients.
Collapse
Affiliation(s)
- Min Huang
- Department of Ultrasound, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China.
| | | | | | | | | | | |
Collapse
|
27
|
Huang B, Wang P, Ouyang Y, Pang R, Liu S, Hong C, Ma S, Gao Y, Tian J, Zhang W. Pillar[5]arene-Based Switched Supramolecular Photosensitizer for Self-Amplified and pH-Activated Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41038-41046. [PMID: 32830945 DOI: 10.1021/acsami.0c10372] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photodynamic therapy (PDT) has emerged as a promising and spatiotemporally controllable cancer treatment modality. However, serious skin photosensitization during the PDT process limits the clinical application of PDT. Thus, the construction of "smart" and multifunctional photosensitizers has attracted substantial interest. Herein, we develop a mitochondria-targeting and pH-switched hybrid supramolecular photosensitizer by the host-guest interaction. The PDT efficacy of supramolecular photosensitizers can be quenched by the Förster resonance energy transfer (FRET) effect during long circulation and activated by the dissociation of supramolecular photosensitizers in an acidic tumor microenvironment, benefitting from the dynamic feature of the host-guest interaction and pH responsiveness of the water-soluble pillar[5]arene on gold nanoparticles. The rational integration of mitochondria-targeting and reductive glutathione (GSH) elimination in the hybrid switchable supramolecular photosensitizer prolongs the lifetime of reactive oxygen species generated in the PDT near mitochondria and further amplifies the PDT efficacy. Thus, the facile and versatile construction of switchable supramolecular photosensitizer offers not only the targeted and precise phototherapy but also high therapeutic efficacy, which would provide a new path for the clinic application of PDT.
Collapse
Affiliation(s)
- Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Peng Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Yingjie Ouyang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Ruiqi Pang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Siyi Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Chenyu Hong
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Shaohua Ma
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Yun Gao
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|
28
|
Han L, Peng R, Jiang W, Xu T, Zhang C, Chen K, Zhang Y, Song H, Jia L. Coordination-driven reversible surfaces with site-specifically immobilized nanobody for dynamic cancer cell capture and release. J Mater Chem B 2020; 8:7511-7520. [PMID: 32677632 DOI: 10.1039/d0tb00574f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Selective isolation of circulating tumor cells (CTCs) from blood provides a non-invasive avenue for the diagnosis, prognosis and personalized treatment for patients with cancer. The specific capture of CTCs is conventionally based on the immunoaffinity recognition between antibody and receptor on cell membranes. However, using a traditional antibody for high-efficiency isolation of CTCs remains a challenge due to the limited loading capacity of the large antibodies on material surfaces. Herein, using a small-sized nanobody (Nb), we developed a widely applicable strategy to construct reversible site-specifically immobilized Nb surfaces for the capture and release of epidermoid cancer cell line A431 cells. Coordination interaction between the histidine tag (His-tag) of the nanobody (Nb) and Ni2+ ions that chelated to the NTA-modified poly(2-hydroxyethyl methacrylate) (PHEMA) brushes was used to achieve site-specific immobilization of EGFR Nb (PHEMA-aEGFR surfaces). The high-density immobilized nanobody possessing maximized activity resulted in the high-efficiency capture of 81% rare A431 cells within just 30 min, showing a higher capture yield and shorter capture time compared with that achieved by the conventional antibody immobilized on the flat surface. Additionally, the PHEMA-aEGFR surfaces exhibited low capture limit (1 cell mL-1), cytocompatibility for captured cells, as well as negligible non-specific adhesion of PBMCs. With a one-step treatment using imidazole for competitive coordination, 86% of the captured cells were effectively released. This multifunctional and dynamic site-specifically immobilized nanobody strategy paves a new path in the development of materials and instruments for the high-efficiency capture and release of rare cells at a low cost.
Collapse
Affiliation(s)
- Lulu Han
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Qian W, Miao Z, Zhang XJ, Yang XT, Tang YY, Tang YY, Hu LY, Li S, Zhu D, Cheng H. Functionalized reduced graphene oxide with aptamer macroarray for cancer cell capture and fluorescence detection. Mikrochim Acta 2020; 187:407. [PMID: 32594259 DOI: 10.1007/s00604-020-04402-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/17/2020] [Indexed: 12/29/2022]
Abstract
An integrated aptamer macroarray functionalized with reduced graphene oxide (rGO) to specifically capture and sensitively detect cancer cells is reported. The capture for cancer cells is based on effective recognition of the modified rGO surface through the aptamer against epithelial cell adhesion molecule (EpCAM). The rough structure of rGO enhances morphologic interactions between rGO film interface and the cancer cells, while super-hydrophilicity of modified rGO hinders nonspecific cell capture. The synergistic interactions offer the aptamer macroarray high efficiency of cancer cell capture. By means of a turn-on fluorescence strategy based on the conformation change of the aptamer induced by the target recognition, the enriched cancer cells can be directly read out at excitation/emission wavelengths of 550/680 nm without washing, separation, and dying steps. The working range is 1 × 102 to 2 × 104 cells per mL with a detection limit of 22 cells per mL. The results indicate that the aptamer macroarray has a considerable foreground for early diagnosis, therapy, and monitoring of cancer. Graphical abstract.
Collapse
Affiliation(s)
- Wenhui Qian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Zhaoyi Miao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Xiao-Jing Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Xiao-Tong Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Ying-Ying Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Yu Ying Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Lin Yu Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Su Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Dong Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China. .,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing, China.
| | - Haibo Cheng
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, the First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|