1
|
Cheng F, Pavliuk O, Hardt S, Hunt LA, Cai B, Kubart T, Hammarström L, Plumeré N, Berggren G, Tian H. Embedding biocatalysts in a redox polymer enhances the performance of dye-sensitized photocathodes in bias-free photoelectrochemical water splitting. Nat Commun 2024; 15:3202. [PMID: 38615087 PMCID: PMC11016092 DOI: 10.1038/s41467-024-47517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/03/2024] [Indexed: 04/15/2024] Open
Abstract
Dye-sensitized photoelectrodes consisting of photosensitizers and molecular catalysts with tunable structures and adjustable energy levels are attractive for low-cost and eco-friendly solar-assisted synthesis of energy rich products. Despite these advantages, dye-sensitized NiO photocathodes suffer from severe electron-hole recombination and facile molecule detachment, limiting photocurrent and stability in photoelectrochemical water-splitting devices. In this work, we develop an efficient and robust biohybrid dye-sensitized NiO photocathode, in which the intermolecular charge transfer is enhanced by a redox polymer. Owing to efficient assisted electron transfer from the dye to the catalyst, the biohybrid NiO photocathode showed a satisfactory photocurrent of 141±17 μA·cm-2 at neutral pH at 0 V versus reversible hydrogen electrode and a stable continuous output within 5 h. This photocathode is capable of driving overall water splitting in combination with a bismuth vanadate photoanode, showing distinguished solar-to-hydrogen efficiency among all reported water-splitting devices based on dye-sensitized photocathodes. These findings demonstrate the opportunity of building green biohybrid systems for artificial synthesis of solar fuels.
Collapse
Affiliation(s)
- Fangwen Cheng
- Department of Chemistry─Ångström laboratory, Physical Chemistry, Uppsala University, Box 521, 75120, Uppsala, Sweden
| | - Olha Pavliuk
- Department of Chemistry─Ångström laboratory, Molecular Biomimetics, Uppsala University, Box 523, 75120, Uppsala, Sweden
| | - Steffen Hardt
- Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Leigh Anna Hunt
- Department of Chemistry─Ångström laboratory, Physical Chemistry, Uppsala University, Box 521, 75120, Uppsala, Sweden
| | - Bin Cai
- Department of Chemistry─Ångström laboratory, Physical Chemistry, Uppsala University, Box 521, 75120, Uppsala, Sweden
| | - Tomas Kubart
- Department of Electrical Engineering, Solid-State Electronics, Uppsala University, Box 65, 75103, Uppsala, Sweden
| | - Leif Hammarström
- Department of Chemistry─Ångström laboratory, Physical Chemistry, Uppsala University, Box 521, 75120, Uppsala, Sweden
| | - Nicolas Plumeré
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Uferstrasse 53, 94315, Straubing, Germany.
| | - Gustav Berggren
- Department of Chemistry─Ångström laboratory, Molecular Biomimetics, Uppsala University, Box 523, 75120, Uppsala, Sweden.
| | - Haining Tian
- Department of Chemistry─Ångström laboratory, Physical Chemistry, Uppsala University, Box 521, 75120, Uppsala, Sweden.
| |
Collapse
|
2
|
Lalaoui N, Abdellah M, Materna KL, Xu B, Tian H, Thapper A, Sa J, Hammarström L, Ott S. Gold nanoparticle-based supramolecular approach for dye-sensitized H 2-evolving photocathodes. Dalton Trans 2022; 51:15716-15724. [PMID: 36177940 DOI: 10.1039/d2dt02798d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solar conversion of water into the storable energy carrier H2 can be achieved through photoelectrochemical water splitting using light adsorbing anodes and cathodes bearing O2 and H2 evolving catalysts, respectively. Herein a novel photocathode nanohybrid system is reported. This photocathode consists of a dye-sensitized p-type nickel oxide (NiO) with a perylene-based chromophore (PCA) and a tetra-adamantane modified cobaloxime reduction catalyst (Co) that photo-reduces aqueous protons to H2. An original supramolecular approach was employed, using β-cyclodextrin functionalized gold nanoparticles (β-CD-AuNPs) to link the alkane chain of the PCA dye to the adamantane moieties of the cobaloxime catalyst (Co). This new architecture was investigated by photoelectrochemical measurements and via femtosecond-transient absorption spectroscopy. The results show that irradiation of the complete NiO|PCA|β-CD-AuNPs|Co electrode leads to ultrafast hole injection into NiO (π = 3 ps) from the excited dye, followed by rapid reduction of the catalyst, and finally H2 evolution.
Collapse
Affiliation(s)
- Noémie Lalaoui
- Department of Chemistry-Ångström Laboratories, Uppsala University, Box 523, SE75120 Uppsala, Sweden. .,Univ. Grenoble Alpes, UMR CNRS 5250, Département de Chimie Moléculaire, 38000 Grenoble, France
| | - Mohamed Abdellah
- Department of Chemistry-Ångström Laboratories, Uppsala University, Box 523, SE75120 Uppsala, Sweden. .,Department of Chemistry, Qena Faculty of Science, South Valley University, 83523 Qena, Egypt
| | - Kelly L Materna
- Department of Chemistry-Ångström Laboratories, Uppsala University, Box 523, SE75120 Uppsala, Sweden.
| | - Bo Xu
- Department of Chemistry-Ångström Laboratories, Uppsala University, Box 523, SE75120 Uppsala, Sweden.
| | - Haining Tian
- Department of Chemistry-Ångström Laboratories, Uppsala University, Box 523, SE75120 Uppsala, Sweden.
| | - Anders Thapper
- Department of Chemistry-Ångström Laboratories, Uppsala University, Box 523, SE75120 Uppsala, Sweden.
| | - Jacinto Sa
- Department of Chemistry-Ångström Laboratories, Uppsala University, Box 523, SE75120 Uppsala, Sweden. .,Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Leif Hammarström
- Department of Chemistry-Ångström Laboratories, Uppsala University, Box 523, SE75120 Uppsala, Sweden.
| | - Sascha Ott
- Department of Chemistry-Ångström Laboratories, Uppsala University, Box 523, SE75120 Uppsala, Sweden.
| |
Collapse
|
3
|
Wiedner ES, Appel AM, Raugei S, Shaw WJ, Bullock RM. Molecular Catalysts with Diphosphine Ligands Containing Pendant Amines. Chem Rev 2022; 122:12427-12474. [PMID: 35640056 DOI: 10.1021/acs.chemrev.1c01001] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pendant amines play an invaluable role in chemical reactivity, especially for molecular catalysts based on earth-abundant metals. As inspired by [FeFe]-hydrogenases, which contain a pendant amine positioned for cooperative bifunctionality, synthetic catalysts have been developed to emulate this multifunctionality through incorporation of a pendant amine in the second coordination sphere. Cyclic diphosphine ligands containing two amines serve as the basis for a class of catalysts that have been extensively studied and used to demonstrate the impact of a pendant base. These 1,5-diaza-3,7-diphosphacyclooctanes, now often referred to as "P2N2" ligands, have profound effects on the reactivity of many catalysts. The resulting [Ni(PR2NR'2)2]2+ complexes are electrocatalysts for both the oxidation and production of H2. Achieving the optimal benefit of the pendant amine requires that it has suitable basicity and is properly positioned relative to the metal center. In addition to the catalytic efficacy demonstrated with [Ni(PR2NR'2)2]2+ complexes for the oxidation and production of H2, catalysts with diphosphine ligands containing pendant amines have also been demonstrated for several metals for many different reactions, both in solution and immobilized on surfaces. The impact of pendant amines in catalyst design continues to expand.
Collapse
|
4
|
Cerpentier FJR, Karlsson J, Lalrempuia R, Brandon MP, Sazanovich IV, Greetham GM, Gibson EA, Pryce MT. Ruthenium Assemblies for CO 2 Reduction and H 2 Generation: Time Resolved Infrared Spectroscopy, Spectroelectrochemistry and a Photocatalysis Study in Solution and on NiO. Front Chem 2022; 9:795877. [PMID: 35004612 PMCID: PMC8738169 DOI: 10.3389/fchem.2021.795877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Two novel supramolecular complexes RuRe ([Ru(dceb)2(bpt)Re(CO)3Cl](PF6)) and RuPt ([Ru(dceb)2(bpt)PtI(H2O)](PF6)2) [dceb = diethyl(2,2′-bipyridine)-4,4′-dicarboxylate, bpt = 3,5-di(pyridine-2-yl)-1,2,4-triazolate] were synthesized as new catalysts for photocatalytic CO2 reduction and H2 evolution, respectively. The influence of the catalytic metal for successful catalysis in solution and on a NiO semiconductor was examined. IR-active handles in the form of carbonyl groups on the peripheral ligand on the photosensitiser were used to study the excited states populated, as well as the one-electron reduced intermediate species using infrared and UV-Vis spectroelectrochemistry, and time resolved infrared spectroscopy. Inclusion of ethyl-ester moieties led to a reduction in the LUMO energies on the peripheral bipyridine ligand, resulting in localization of the 3MLCT excited state on these peripheral ligands following excitation. RuPt generated hydrogen in solution and when immobilized on NiO in a photoelectrochemical (PEC) cell. RuRe was inactive as a CO2 reduction catalyst in solution, and produced only trace amounts of CO when the photocatalyst was immobilized on NiO in a PEC cell saturated with CO2.
Collapse
Affiliation(s)
| | - Joshua Karlsson
- Energy Materials Laboratory, Department of Chemistry, School of Natural and Environmental Science, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ralte Lalrempuia
- School of Chemical Sciences, Dublin City University, Dublin, Ireland.,Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl, India
| | - Michael P Brandon
- School of Chemical Sciences, Dublin City University, Dublin, Ireland
| | - Igor V Sazanovich
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxford, United Kingdom
| | - Gregory M Greetham
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxford, United Kingdom
| | - Elizabeth A Gibson
- Energy Materials Laboratory, Department of Chemistry, School of Natural and Environmental Science, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mary T Pryce
- School of Chemical Sciences, Dublin City University, Dublin, Ireland
| |
Collapse
|
5
|
Materna KL, Hammarström L. Photoredox Catalysis Using Heterogenized Iridium Complexes*. Chemistry 2021; 27:16966-16977. [PMID: 34137473 PMCID: PMC9292873 DOI: 10.1002/chem.202101651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 12/27/2022]
Abstract
Heterogenized photoredox catalysts provide a path for sustainable chemical synthesis using highly tunable, reusable constructs. Here, heterogenized iridium complexes as photoredox catalysts were assembled via covalent attachment to metal oxide surfaces (ITO, ZrO2 , Al2 O3 ) in thin film or nanopowder constructs. The goal was to understand which materials provided the most promising constructs for catalysis. To do this, reductive dehalogenation of bromoacetophenone to acetophenone was studied as a test reaction for system optimization. All catalyst constructs produced acetophenone with high conversions and yields with the fastest reactions complete in fifteen minutes using Al2 O3 supports. The nanopowder catalysts resulted in faster and more efficient catalysis, while the thin film catalysts were more robust and easily reused. Importantly, the thin film constructs show promise for future photoelectrochemical and electrochemical photoredox setups. Finally, all catalysts were reusable 2-3 times, performing at least 1000 turnovers (Al2 O3 ), demonstrating that heterogenized catalysts are a sustainable catalyst alternative.
Collapse
Affiliation(s)
- Kelly L. Materna
- Department of Chemistry-Ångström LaboratoriesUppsala UniversityBox 523, SE75120UppsalaSweden
| | - Leif Hammarström
- Department of Chemistry-Ångström LaboratoriesUppsala UniversityBox 523, SE75120UppsalaSweden
| |
Collapse
|
6
|
Giannoudis E, Bold S, Müller C, Schwab A, Bruhnke J, Queyriaux N, Gablin C, Leonard D, Saint-Pierre C, Gasparutto D, Aldakov D, Kupfer S, Artero V, Dietzek B, Chavarot-Kerlidou M. Hydrogen Production at a NiO Photocathode Based on a Ruthenium Dye-Cobalt Diimine Dioxime Catalyst Assembly: Insights from Advanced Spectroscopy and Post-operando Characterization. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49802-49815. [PMID: 34637266 DOI: 10.1021/acsami.1c12138] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The production of hydrogen by efficient, low-cost, and integrated photoelectrochemical water splitting processes represents an important target for the ecological transition. This challenge can be addressed thanks to bioinspired chemistry and artificial photosynthesis approaches by designing dye-sensitized photocathodes for hydrogen production, incorporating bioinspired first-row transition metal-based catalysts. The present work describes the preparation and photoelectrochemical characterization of a NiO photocathode sensitized with a phosphonate-derivatized ruthenium tris-diimine photosensitizer covalently linked to a cobalt diimine dioxime hydrogen-evolving catalyst. Under simulated AM 1.5G irradiation, hydrogen is produced with photocurrent densities reaching 84 ± 7 μA·cm-2, which is among the highest values reported so far for dye-sensitized photocathodes with surface-immobilized catalysts. Thanks to the unique combination of advanced spectroscopy and surface characterization techniques, the fast desorption of the dyad from the NiO electrode and the low yield of electron transfer to the catalyst, resulting in the Co demetallation from the diimine dioxime framework, were identified as the main barriers limiting the performances and the stability of the system. This work therefore paves the way for a more rational design of molecular photocathodes for solar fuel production and represents a further step toward the development of sustainable processes for the production of hydrogen from sunlight and water.
Collapse
Affiliation(s)
- Emmanouil Giannoudis
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Sebastian Bold
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, 17 rue des Martyrs, F-38000 Grenoble, France
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena (IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 8, 07743 Jena, Germany
| | - Carolin Müller
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena (IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 8, 07743 Jena, Germany
| | - Alexander Schwab
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Jakob Bruhnke
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Nicolas Queyriaux
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Corinne Gablin
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5, rue de la Doua, F-69100 Villeurbanne, France
| | - Didier Leonard
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5, rue de la Doua, F-69100 Villeurbanne, France
| | | | - Didier Gasparutto
- Univ. Grenoble Alpes, CNRS, CEA IRIG, SyMMES, F-38000 Grenoble, France
| | - Dmitry Aldakov
- Univ. Grenoble Alpes, CNRS, CEA IRIG, SyMMES, F-38000 Grenoble, France
| | - Stephan Kupfer
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Vincent Artero
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Benjamin Dietzek
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena (IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 8, 07743 Jena, Germany
| | - Murielle Chavarot-Kerlidou
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, 17 rue des Martyrs, F-38000 Grenoble, France
| |
Collapse
|
7
|
Aitchison CM, Sprick RS. Conjugated nanomaterials for solar fuel production. NANOSCALE 2021; 13:634-646. [PMID: 33393561 DOI: 10.1039/d0nr07533g] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photocatalytic hydrogen production from water has the potential to fulfil future energy needs by producing a clean and storable fuel. In recent years polymer photocatalysts have attracted significant interest in an attempt to address these challenges. One reason organic photocatalysts have been considered an attractive target is their synthetic modularity, therefore, the ability to tune their opto-electronic properties by incorporating different building blocks. A wide range of factors has been investigated and in particular nano-sized particles have found to be highly efficient due to the size effect resulting from the ability of these to increase the number of charges reaching catalytic sites.
Collapse
Affiliation(s)
- Catherine M Aitchison
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA UK
| | - Reiner Sebastian Sprick
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK.
| |
Collapse
|
8
|
Huang J, Sun J, Wu Y, Turro C. Dirhodium(II,II)/NiO Photocathode for Photoelectrocatalytic Hydrogen Evolution with Red Light. J Am Chem Soc 2021; 143:1610-1617. [DOI: 10.1021/jacs.0c12171] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jie Huang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jiaonan Sun
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yiying Wu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
9
|
Troiano JL, Hu G, Crabtree RH, Brudvig GW. Diazo coupling for surface attachment of small molecules to TiO 2 nanoparticles. Chem Commun (Camb) 2020; 56:9340-9343. [PMID: 32671361 DOI: 10.1039/d0cc03631e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Robust surface attachment of molecular species to metal oxide semiconductors is desirable for many applications. Here, we report the interfacial diazo coupling of surface-bound amines with aromatics to bind them to the surface of TiO2 nanoparticles via a siloxane anchor and a diazo linker. The technique shows potential for the inexpensive, stable, modular and tunable attachment of molecules to metal oxide surfaces.
Collapse
Affiliation(s)
- Jennifer L Troiano
- Department of Chemistry, and Yale Energy Sciences Institute, Yale University, New Haven, Connecticut 06520-8107, USA. and Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, USA
| | - Gongfang Hu
- Department of Chemistry, and Yale Energy Sciences Institute, Yale University, New Haven, Connecticut 06520-8107, USA. and Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, USA
| | - Robert H Crabtree
- Department of Chemistry, and Yale Energy Sciences Institute, Yale University, New Haven, Connecticut 06520-8107, USA. and Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, USA
| | - Gary W Brudvig
- Department of Chemistry, and Yale Energy Sciences Institute, Yale University, New Haven, Connecticut 06520-8107, USA. and Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, USA
| |
Collapse
|
10
|
Materna K, Beiler AM, Thapper A, Ott S, Tian H, Hammarström L. Understanding the Performance of NiO Photocathodes with Alkyl-Derivatized Cobalt Catalysts and a Push-Pull Dye. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31372-31381. [PMID: 32538612 PMCID: PMC7467559 DOI: 10.1021/acsami.0c05228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/15/2020] [Indexed: 05/22/2023]
Abstract
Mesoporous NiO photocathodes containing the push-pull dye PB6 and alkyl-derivatized cobaloxime catalysts were prepared using surface amide couplings and analyzed for photocatalytic proton reduction catalysis. The length of the alkyl linker used to derivatize the cobalt catalysts was found to correlate to the photocurrent with the highest photocurrent observed using shorter alkyl linkers but the lowest one for samples without linker. The alkyl linkers were also helpful in slowing dye-NiO charge recombination. Photoelectrochemical measurements and femtosecond transient absorption spectroscopic measurements suggested electron transfer to the surface-immobilized catalysts occurred; however, H2 evolution was not observed. Based on UV-vis, X-ray fluorescence spectroscopy (XRF), and X-ray photoelectron spectroscopy (XPS) measurements, the cobalt catalyst appeared to be limiting the photocathode performance mainly via cobalt demetallation from the oxime ligand. This study highlights the need for a deeper understanding of the effect of catalyst molecular design on photocathode performance.
Collapse
|