1
|
Yang H, Bao F, Chen S, Liu S, Huang H, Wang L, Liu H, Yu J, Zhu C, Xu J. Construction of a Borophene-Based Hybrid Aerogel for Multifunctional Applications. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39364552 DOI: 10.1021/acsami.4c10663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
As a novel approach to pursue high-performance multifunctional materials, the structural design of cutting-edge two-dimensional (2D) materials has ignited substantial interests. Borophene, an emerging member in the realm of 2D materials, exhibits crucial attributes, including high theoretical carrier density, electrical conductivity, magnetism, and high aspect ratio, rendering it highly promising for diverse applications. Yet, the exploration of porous structural configurations of borophene remains untapped. Addressing this gap, our study focuses on the fabrication of a multifunctional borophene hybrid foam (CMB-foam). This hybridization leverages the exceptional multifunctionality of MXene alongside borophene within a three-dimensional porous framework, facilitating reflection and absorption of electromagnetic waves, thereby demonstrating remarkable electromagnetic interference (EMI) shielding capabilities. Moreover, this structural configuration exposes an enlarged surface area, thus shortening the transport pathway for electrolyte ions, leading to an excellent energy storage performance. Additionally, CMB-foam performs well in thermal management and thermal insulation. These findings underscore the potential of borophene-based materials in multifunctional applications and offer valuable insights into further performance explorations in this domain.
Collapse
Affiliation(s)
- Haiyan Yang
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| | - Feng Bao
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| | - Shengnan Chen
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| | - Sisi Liu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| | - Huihu Huang
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| | - Lanqing Wang
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| | - Huichao Liu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| | - Jiali Yu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| | - Caizhen Zhu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| | - Jian Xu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
2
|
Aditya T, Moitra P, Alafeef M, Skrodzki D, Pan D. Chiral Induction in 2D Borophene Nanoplatelets through Stereoselective Boron-Sulfur Conjugation. ACS NANO 2024; 18:11921-11932. [PMID: 38651695 DOI: 10.1021/acsnano.4c01792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Chirality is a structural metric that connects biological and abiological forms of matter. Although much progress has been made in understanding the chemistry and physics of chiral inorganic nanoparticles over the past decade, almost nothing is known about chiral two-dimensional (2D) borophene nanoplatelets and their influence on complex biological networks. Borophene's polymorphic nature, derived from the bonding configurations among boron atoms, distinguishes it from other 2D materials and allows for further customization of its material properties. In this study, we describe a synthetic methodology for producing chiral 2D borophene nanoplatelets applicable to a variety of structural polymorphs. Using this methodology, we demonstrate feasibility of top-down synthesis of chiral χ3 and β12 phases of borophene nanoplatelets via interaction with chiral amino acids. The chiral nanoplatelets were physicochemically characterized extensively by various techniques. Results indicated that the thiol presenting amino acids, i.e., cysteine, coordinates with borophene in a site-selective manner, depending on its handedness through boron-sulfur conjugation. The observation has been validated by circular dichroism, X-ray photoelectron spectroscopy, and 11B NMR studies. To understand how chiral nanoplatelets interact with biological systems, mammalian cell lines were exposed to them. Results showed that the achiral as well as the left- and right-handed biomimetic χ3 and β12 borophene nanoplatelets have distinct interaction with the cellular membrane, and their internalization pathway differs with their chirality. By engineering optical, physical, and chemical properties, these chiral 2D nanomaterials could be applied successfully to tuning complex biological events and find applications in photonics, sensing, catalysis, and biomedicine.
Collapse
Affiliation(s)
- Teresa Aditya
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Parikshit Moitra
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Maha Alafeef
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - David Skrodzki
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dipanjan Pan
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Institutes of the Life Sciences, Millennium Science Complex, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
3
|
Borah P, Baruah DJ, Mridha P, Baishya R, Bora HK, Das MR. Photoenhanced intrinsic peroxidase-like activity of a metal-free biocompatible borophene photonanozyme for colorimetric sensor assay of dopamine biomolecule. Chem Commun (Camb) 2024; 60:2417-2420. [PMID: 38323809 DOI: 10.1039/d3cc06326g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Photonanozymes are novel enzyme-mimicking nanomaterials with light-harvesting capacity and have widespread applications in many areas including biosensing, biomedicine, environmental applications, energy, etc. Herein, we introduce freestanding metal-free biocompitable borophene nanosheets (BNSs) exhibiting excellent photoresponsive peroxidase-like activity for biosensing applications. The photo-enhanced peroxidase-like activity of BNSs photonanozyme was indicated to be due to its band gap energy being comparable to the energy of visible light.
Collapse
Affiliation(s)
- Pulakesh Borah
- Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India.
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Diksha J Baruah
- Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India.
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Prosenjit Mridha
- Centre for Preclinical Studies, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Rinku Baishya
- Centre for Preclinical Studies, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Himangsu K Bora
- Centre for Preclinical Studies, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Manash R Das
- Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India.
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
4
|
Sun R, Chen J, Zhang W, Huang Y, Zheng J, Chi Y. Facile Synthesis of Oxidized Boron Nanosheets for Chemo- and Biosensing. Anal Chem 2023. [PMID: 37471238 DOI: 10.1021/acs.analchem.3c01979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
As recently emerging nanomaterials, boron nanosheets (BNSs) have attracted more and more attention in various fields such as supercapacitors, photodetectors, bioimaging, and electrocatalysis due to their advantages of good biological compatibility, environmental friendliness, and good electro-optical properties. However, the study and application of BNSs in chemical and biological sensing are still in the infant stage, mainly due to the requirement of complicated, high-cost, and time-consuming preparation strategies. In this work, a new class of BNSs, namely oxidized-BNSs (i.e., ox-BNSs), were easily and rapidly synthesized by chemically treating boron powder with diluted HNO3 in a very short time (less than 15 min). The composition, morphology, optical property, and peroxidase mimetic activity of obtained ox-BNSs were investigated in detail. The prepared ox-BNSs were several-layered nanosheets with abundant oxygen-containing groups, emitted blue fluorescence, and possessed good intrinsic peroxidase mimetic activity, based on which a sensitive and selective colorimetric sensor was developed for detection of H2O2 and glucose. The new easy preparation strategy and good sensing performances of the prepared ox-BNSs would greatly stimulate the study and application of BNSs in chemo- and biosensing.
Collapse
Affiliation(s)
- Ruifen Sun
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jie Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Weiwei Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yun Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jingcheng Zheng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yuwu Chi
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
5
|
Zhang Z, Yang M, Zhang Y, Zhou M. Research and Application of Terahertz Response Mechanism of Few-Layer Borophene. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2702. [PMID: 35957133 PMCID: PMC9370456 DOI: 10.3390/nano12152702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The terahertz stealth and shielding performance of a new type of two-dimensional material, borophene, has been studied theoretically and experimentally. Studies have shown that borophene materials have good terahertz stealth and shielding properties. First-principles calculations show that compared with single-layer borophene, few-layer borophene has good terahertz stealth and shielding performance in the range of 0.1~2.7 THz. In the range of 2~4 layers, the terahertz stealth and shielding performance of few-layer borophene increases with the increase of the number of layers. The finite element simulation calculation results also confirmed this point. Using the few-layer borophene prepared by our research group as a raw material, a PDMS composite was prepared to verify the terahertz stealth and shielding performance of the few-layer borophene. In the ultra-wide frequency range of 0.1~2.7 THz, the electromagnetic shielding effectiveness (EMI SE) of the PDMS material mixed with few-layer borophene can reach 50 dB, and the reflection loss (RL) can reach 35 dB. With the concentration of few-layer borophene increasing, the terahertz stealth and shielding effectiveness of the material is enhanced. In addition, the simultaneous mixing of few-layer borophene and few-layer graphene will make the material exhibit better terahertz stealth and shielding performance compared with mixing separately.
Collapse
Affiliation(s)
- Zhixun Zhang
- State Key Laboratory of Tribology, School of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Mingyang Yang
- State Key Laboratory of Tribology, School of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yibo Zhang
- State Key Laboratory of Tribology, School of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Ming Zhou
- State Key Laboratory of Tribology, School of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Yang M, Jin H, Sun Z, Gui R. Monoelemental two-dimensional boron nanomaterials beyond theoretical simulations: From experimental preparation, functionalized modification to practical applications. Adv Colloid Interface Sci 2022; 304:102669. [PMID: 35429719 DOI: 10.1016/j.cis.2022.102669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/08/2022] [Accepted: 04/06/2022] [Indexed: 11/01/2022]
Abstract
During the past decade, there is an explosive growth of theoretical and computational studies on 2D boron-based nanomaterials. In terms of extensive predictions from theoretical simulations, borophene, boron nanosheets and 2D boron derivatives show excellent structural, electronic, photonic and nonlinear optical characteristics, and potential applications in a wide range of fields. In recent years, previous studies have reported the successful experimental preparations, superior properties, multi-functionalized modifications of various 2D boron and its derivatives, which show many practical applications in significant fields. To further promote the ever-increasing experimental studies, this present review systematically summarizes recent progress on experimental preparation methods, functionalized modification strategies and practical applications of 2D boron-based nanomaterials and multifunctional derivatives. Firstly, this review summarizes the experimental preparation methods, including molecular beam epitaxy, chemical vapor deposition, liquid-phase exfoliation, chemical reaction, and other auxiliary methods. Then, various strategies for functionalized modification are introduced overall, focusing on borophene derivatives, boron-based nanosheets, atom-introduced, chemically-functionalized borophene and boron nanosheets, borophene or boron nanosheet-based heterostructures, and other functionalized 2D boron nanomaterials. Subsequently, various potential applications are discussed in detail, involving energy storage, catalysis conversion, photonics, optoelectronics, sensors, bio-imaging, biomedicine therapy, and adsorption. We comment the state-of-the-art related studies concisely, and also discuss the current status, probable challenges and perspectives rationally. This review is timely, comprehensive, in-depth and highly attractive for scientists from multiple disciplines and scientific fields, and can facilitate further development of advanced functional low-dimensional nanomaterials and multi-functionalized systems toward high-performance practical applications in significant fields.
Collapse
|
7
|
He J, Zheng B, Xie Y, Qian YY, Zhang J, Wang K, Yang L, Yu HT. Effects of adatom species on the structure, stability, and work function of adatom-α-borophene nanocomposites. Phys Chem Chem Phys 2022; 24:8923-8939. [PMID: 35373802 DOI: 10.1039/d2cp00506a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Work function-tunable borophene-based electrode materials are of significant importance because they promote efficient carrier extraction/injection, thereby enabling electronic devices to achieve maximum energy conversion efficiency. Accordingly, determining the work function of adatom-borophene nanocomposites within a series wherein the adatom is systematically changed will facilitate the design of such materials. In this study, we theoretically determined that the M-B bond length, binding energy, electron transfer between adatoms and BBP, and work function (ϕ) are linearly dependent on the ionization potential (IP) and electronegativity for thermodynamically and kinetically stable adatom-α-borophene (M/BBP) systems involving a series of alkali (earth) metal/BBP (M = Li-Cs; Be-Ba) and halogen/BBP (M = F-I), respectively. However, the binding energies of Li/BBP and Be/BBP deviate from these dependencies owing to their super small adatoms and the resulting significantly enhanced effective M-B bonding areas. By interpreting the electron transfer picture among the different parts of M/BBP, we confirmed that metallic M/BBP possesses ionic sp-p and dsp-p M-B bonds in alkali (earth) metal/BBP but covalent-featured ionic p-p interactions in halogen/BBP. In particular, the direct proportionality between IP and ϕ for alkali (earth) metal/BBP originates from the synergistic effect of charge rearrangement and the increased induced dipole moment; however, the inverse proportionality between electronegativity and ϕ for halogen/BBP arises from the adsorption induced charge redistribution. Our results provide guidance for experimental efforts toward the realization of work function-tunable borophene-based electrodes as well as insight into the bonding rules between various adatoms and α-borophene.
Collapse
Affiliation(s)
- Jing He
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China.
| | - Bing Zheng
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China.
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China.
| | - Yin-Yin Qian
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China.
| | - Jiao Zhang
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China.
| | - Ke Wang
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China.
| | - Lin Yang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China.,School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Hai-Tao Yu
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China.
| |
Collapse
|
8
|
Zhang F, Jia C, Zhang N, He X, Li Q, Sun J, Jiang R, Lei Z, Liu ZH. Few-layer Mg-deficient borophene nanosheets: I 2 oxidation and ultrasonic delamination from MgB 2. NANOSCALE 2022; 14:4195-4203. [PMID: 35234763 DOI: 10.1039/d1nr07353b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
By using I2 as an oxidant and CH3CN as a reaction medium, few-layer Mg-deficient borophene nanosheets (FBN) with a stoichiometric ratio of Mg0.22B2 are prepared by oxidizing MgB2 in a mixture of CH3CN and HCl for 14 days under nitrogen protection and followed by ultrasonic delaminating in CH3CN for 2 h. The prepared FBN possess a two-dimensional flake morphology, and they show a clear interference fringe with a d-spacing of 0.251 nm corresponding to the (208) plane of rhombohedral boron. While maintaining the hexagonal boron networks of MgB2, the FBN have an average thickness of about 4.14 nm (four monolayer borophene) and a lateral dimension of 500 nm, and the maximum Mg deintercalation rate can reach 78%. The acidity of the reaction system plays an important role; the HCl reaction system not only facilitates the oxidation of MgB2 by I2, but also increases the deintercalation ratio of Mg atoms. Etching of the Mg atom layer with HCl, the negative charge decrease of the boron layer by I2 oxidation, and the Mg chelating effect from CH3COOH due to the hydrolysis of CH3CN in an HCl environment led to a high deintercalation rate of the Mg atom. Density functional theory (DFT) calculations further support the result that the maximum deintercalation rate of Mg atoms is about 78% while maintaining the hexagonal layer structure of boron. This research solves the problems of low Mg atom deintercalation rate and hexagonal boron structure destruction when using the precursor MgB2 to produce borophene nanosheets, which is of great significance for large-scale novel preparation and application of borophene nanosheets.
Collapse
Affiliation(s)
- Feng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an, 710062, P. R. China.
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Congying Jia
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an, 710062, P. R. China.
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Nan Zhang
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Xuexia He
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Qi Li
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Jie Sun
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Ruibin Jiang
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Zhibin Lei
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an, 710062, P. R. China.
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Zong-Huai Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an, 710062, P. R. China.
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| |
Collapse
|
9
|
Joshi DJ, Malek NI, Kailasa SK. Borophene as a rising star in materials chemistry: synthesis, properties and applications in analytical science and energy devices. NEW J CHEM 2022. [DOI: 10.1039/d1nj05271c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Borophene is a two-dimensional material that has shown outstanding applications in energy storage devices and analytical chemistry.
Collapse
Affiliation(s)
- Dharaben J. Joshi
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat – 395007, Gujarat, India
| | - Naved I. Malek
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat – 395007, Gujarat, India
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat – 395007, Gujarat, India
| |
Collapse
|
10
|
Wang S, Xue X, Cheng M, Chen S, Liu C, Zhou L, Bi K, Ji X. High-Throughput Computational Screening of Metal-Organic Frameworks for CH 4/H 2 Separation by Synergizing Machine Learning and Molecular Simulation. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22010031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Qian YY, Zheng B, Xie Y, He J, Chen JM, Yang L, Lu X, Yu HT. Imparting α-Borophene with High Work Function by Fluorine Adsorption: A First-Principles Investigation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11027-11040. [PMID: 34498881 DOI: 10.1021/acs.langmuir.1c01598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Increasing the work function of borophene over a large range is crucial for the development of borophene-based anode materials for highly efficient electronic devices. In this study, the effect of fluorine adsorption on the structures and stabilities, particularly on the work function, of α-borophene (BBP), was systematically investigated via first-principles density functional theory. The calculations indicated that BBP was well-stabilized by fluorine adsorption and the work functions of metallic fluorine-adsorbed BBPs (Fn-BBPs) sharply increased with increasing fluorine content. Moreover, the work function of F-BBP was close to that of the frequently used anode material Au and even, for other Fn-BBPs, higher than that of Pt. Furthermore, we have comprehensively discussed the factors, including substrate deformation, charge transfer, induced dipole moment, and Fermi and vacuum energy levels, affecting the improvement of work function. Particularly, we have demonstrated that the charge redistribution of the substrate induced by the bonding interaction between fluorine and the matrix predominantly contributes to the observed increase in the work function. Additionally, the effect of fluorine adsorption on the increase in the work function of BBP was significantly stronger than that of silicene or graphene. Our results concretely support the fact that Fn-BBPs can be extremely attractive anode materials for electronic device applications.
Collapse
Affiliation(s)
- Yin-Yin Qian
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Bing Zheng
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Jing He
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Jia-Min Chen
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Lin Yang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hai-Tao Yu
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
12
|
Zou Q, Shi C, Liu B, Liu D, Cao D, Liu F, Zhang Y, Shi W. Enhanced terahertz shielding by adding rare Ag nanoparticles to Ti 3C 2T xMXene fiber membranes. NANOTECHNOLOGY 2021; 32:415204. [PMID: 34237709 DOI: 10.1088/1361-6528/ac1296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Polyacrylonitrile/Ti3C2TxMXene/silver nanoparticles fiber membranes with different silver nanoparticles contents and thickness of porous structure have been successfully prepared by electrospinning. Through the measurement of terahertz time domain spectrum, the shielding effect of the fiber membrane with 1% silver nanoparticles content can reach up to 12 dB. Moreover, the thickness of the spinning fiber membranes is controlled by adjusting the spinning time, so as to better analyze the influence of the thickness of the shielding performance in terahertz band. We attribute this excellent phenomenon to porous structure of the spun fiber membrane and combination of Ti3C2TxMXene with few-layers and silver nanoparticles to increase the absorption and conductivity of the fiber membrane, thereby enhancing the shielding effect in terahertz range. Meanwhile, the prepared polyacrylonitrile/Ti3C2TxMXene/silver nanoparticles fiber membranes show good stability and little change in terahertz shielding effect after high temperature annealing. This may provide potential ideas about the development of high-performance terahertz shielding materials, which are of great significance of terahertz electromagnetic shielding.
Collapse
Affiliation(s)
- Qi Zou
- Key Laboratory of Optoelectronic Material and Device, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Chaofan Shi
- Key Laboratory of Optoelectronic Material and Device, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Bo Liu
- Key Laboratory of Optoelectronic Material and Device, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Dejun Liu
- Mathematics and Science College, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Duo Cao
- Mathematics and Science College, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Feng Liu
- Key Laboratory of Optoelectronic Material and Device, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Yi Zhang
- Key Laboratory of Optoelectronic Material and Device, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Wangzhou Shi
- Mathematics and Science College, Shanghai Normal University, Shanghai 200234, People's Republic of China
| |
Collapse
|
13
|
Mazaheri A, Javadi M, Abdi Y. Chemical Vapor Deposition of Two-Dimensional Boron Sheets by Thermal Decomposition of Diborane. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8844-8850. [PMID: 33565849 DOI: 10.1021/acsami.0c22580] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional (2D) boron sheets (borophenes) are promising materials for the next generation of electronic devices because of their metallic conductivity. Molecular beam epitaxy has remained the main approach for the growth of borophene, which considerably restricts large-scale production of 2D boron sheets. The high melting point of boron and the growth of borophenes at moderate temperatures posed a significant challenge for the synthesis of borophenes. Employing diborane (B2H6) pyrolysis as a pure boron source, we report, for the first time, the growth of atomic-thickness borophene sheets by chemical vapor deposition (CVD). A methodical study on the effect of temperature, deposition rate, and pressure on the growth of 2D boron sheets is provided and detailed analyses about the morphology and crystalline phase of borophene sheets are presented. The CVD-borophene layers display an average thickness of 4.2 Å, χ3 crystalline structure, and metallic conductivity. We also present experimental evidence supporting the formation of stacked bilayer and trilayer borophene sheets. Our method paves the way for empirical investigations on borophenes.
Collapse
Affiliation(s)
- Ali Mazaheri
- Nanophysics Research Laboratory, Department of Physics, University of Tehran, Tehran 14395-547, Iran
| | - Mohammad Javadi
- Nanophysics Research Laboratory, Department of Physics, University of Tehran, Tehran 14395-547, Iran
| | - Yaser Abdi
- Nanophysics Research Laboratory, Department of Physics, University of Tehran, Tehran 14395-547, Iran
| |
Collapse
|