1
|
Birla PN, Arbuj S, Chauhan R, Shinde M, Rane S, Gosavi S, Kale B. Nanostructured electroless Ni deposited SnO 2 for solar hydrogen production. NANOSCALE 2024; 16:17838-17851. [PMID: 39248022 DOI: 10.1039/d4nr01194e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Herein, Ni-decorated SnO2 (Ni@SnO2) nanostructures have been synthesized using SnO2 as a matrix via a simple electroless deposition method for the generation of hydrogen, a potent near-future fuel. XRD analysis confirmed the generation of rutile SnO2 in Ni@SnO2. FESEM and FETEM imaging exhibited the formation of SnO2 nanoparticles with a size of 10-50 nm, which are deposited with Ni nanoparticles (5-7 nm) and intermittent films (thickness 1-2 nm). The associated EDS elemental mapping validated Ni deposition on the surface of the SnO2 nanoparticles, further supplemented by FTIR, Raman and XPS analysis. Slight red shifts in the band gaps of the Ni@SnO2 nanostructures (in the range of 3.53-3.65 eV) compared to the pristine SnO2 nanoparticles (3.72 eV) were observed. Also, intensity quenching of the band gap and associated defect peaks were observed in PL analysis. The Ni@SnO2 nanostructures were used as photocatalysts and exhibited proficient hydrogen evolution. Among the samples, the 0.3 wt% Ni@SnO2 nanostructures showed the greatest hydrogen evolution, i.e., ∼50 μmol g-1 h-1 under visible light irradiation versus pristine SnO2 (8.5 μmol g-1 h-1) owing to the enhanced density of active sites and effective charge separation. It is noteworthy that the hydrogen evolution is much better as compared to earlier reports of Pt-doped-SnO2 based materials.
Collapse
Affiliation(s)
- Priyanka N Birla
- Centre for Materials for Electronics Technology, Off Pashan Road, Panchwati, Pune-411008, India.
| | - Sudhir Arbuj
- Centre for Materials for Electronics Technology, Off Pashan Road, Panchwati, Pune-411008, India.
| | - Ratna Chauhan
- Department of Environment Science, Savitribai Phule Pune University, Pune-411007, India
| | - Manish Shinde
- Centre for Materials for Electronics Technology, Off Pashan Road, Panchwati, Pune-411008, India.
| | - Sunit Rane
- Centre for Materials for Electronics Technology, Off Pashan Road, Panchwati, Pune-411008, India.
| | - Suresh Gosavi
- Department of Environment Science, Savitribai Phule Pune University, Pune-411007, India
| | - Bharat Kale
- Centre for Materials for Electronics Technology, Off Pashan Road, Panchwati, Pune-411008, India.
- Material Science Department, MITWPU, University Paud Road, Pune 38, India
| |
Collapse
|
2
|
Zhou CA, Ma K, Zhuang Z, Ran M, Shu G, Wang C, Song L, Zheng L, Yue H, Wang D. Tuning the Local Environment of Pt Species at CNT@MO 2-x (M = Sn and Ce) Heterointerfaces for Boosted Alkaline Hydrogen Evolution. J Am Chem Soc 2024; 146:21453-21465. [PMID: 39052434 DOI: 10.1021/jacs.4c04189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
As the most promising hydrogen evolution reaction (HER) electrocatalysts, platinum (Pt)-based catalysts still struggle with sluggish kinetics and expensive costs in alkaline media. Herein, we accelerate the alkaline hydrogen evolution kinetics by optimizing the local environment of Pt species and metal oxide heterointerfaces. The well-dispersed PtRu bimetallic clusters with adjacent MO2-x (M = Sn and Ce) on carbon nanotubes (PtRu/CNT@MO2-x) are demonstrated to be a potential electrocatalyst for alkaline HER, exhibiting an overpotential of only 75 mV at 100 mA cm-2 in 1 M KOH. The excellent mass activity of 12.3 mA μg-1Pt+Ru and specific activity of 32.0 mA cm-2ECSA at an overpotential of 70 mV are 56 and 64 times higher than those of commercial Pt/C. Experimental and theoretical investigations reveal that the heterointerfaces between Pt clusters and MO2-x can simultaneously promote H2O adsorption and activation, while the modification with Ru further optimizes H adsorption and H2O dissociation energy barriers. Then, the matching kinetics between the accelerated elementary steps achieved superb hydrogen generation in alkaline media. This work provides new insight into catalytic local environment design to simultaneously optimize the elementary steps for obtaining ideal alkaline HER performance.
Collapse
Affiliation(s)
- Chang-An Zhou
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Kui Ma
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Meiling Ran
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Guoqiang Shu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chao Wang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Lei Song
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Hairong Yue
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Zhang Y, Yang Y, Hou Q, Xu E, Wang L, Li F, Wei M. Metal-Acid Bifunctional Catalysts toward Tandem Reaction: One-Step Hydroalkylation of Benzene to Cyclohexylbenzene. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31998-32008. [PMID: 35793492 DOI: 10.1021/acsami.2c07074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The one-step hydroalkylation of benzene to cyclohexylbenzene (CHB) is a technically challenging and economically interesting reaction with great industrial importance, where bifunctional catalysts play a crucial role in such a tandem reaction. In this work, we report H3PW12O40 (HPW) modified Ni nanoparticles (NPs) supported on mixed metal oxides (Ni/MMOs), which are featured by HPW species localized on the surface of Ni NPs (denoted as HPW-Ni/MMOs). The optimal catalyst (0.3HPW-Ni/MMOs) exhibits a satisfactory catalytic performance toward benzene hydroalkylation to CHB with a CHB yield of up to 41.2%, which is the highest standard among previously reported catalysts to date. A combination investigation based on HR-TEM, XPS, XANES, and in situ FT-IR verified the electron transfer from the W atom to the adjacent Ni atom, which facilitated the formation and desorption of cyclohexene (CHE) from Ni followed by the alkylation reaction of benzene and CHE at the interfacial Brønsted (B) acid sites of HPW, accounting for the significantly enhanced catalytic behavior. It is proposed that the HPW-Ni interface structure in xHPW-Ni/MMOs samples provides unique adsorption sites for benzene and CHE with a moderate adsorption strength, which serve as the intrinsic active center for this reaction: the Ni site promotes the hydrogenation of benzene to CHE, while the B acid site in HPW facilitates the alkylation of CHE and benzene to produce CHB. This work provides a fundamental understanding of the metal-acid synergistic catalysis toward the hydroalkylation reaction, which can be extended to the design and preparation of high-performance catalysts used in tandem reactions.
Collapse
Affiliation(s)
- Yuanjing Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yusen Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Quandong Hou
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Enze Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Lei Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
4
|
Sundararaj SB, Tamilarasan S, Thangavelu S. Layered Porous Graphitic Carbon Nitride Stabilized Effective Co 2SnO 4 Inverse Spinel as a Bifunctional Electrocatalyst for Overall Water Splitting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7833-7845. [PMID: 35708286 DOI: 10.1021/acs.langmuir.2c01095] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing an efficient, low-cost, and non-noble metal oxide-based nanohybrid material for overall water splitting is a highly desirable approach to promote clean energy harnessing and to minimize environmental issues. Accordingly, we proposed an interfacial engineering approach to construct layered porous graphitic carbon nitride (g-C3N4)-stabilized Co2SnO4 inverse spinel nanohybrid materials as highly active bifunctional electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in an alkaline medium. Here, a Co2SnO4/g-C3N4 nanohybrid with a layered porous g-C3N4 stabilized cubelike inverse spinel has been synthesized with an enhanced surface area via a simple one-pot hydrothermal method. Besides, detailed structural and morphological characterizations were carried out using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission-scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), Fourier transform infrared (FT-IR), and Brunauer-Emmett-Teller (BET) analysis. Briefly, XPS analysis has revealed the existence of a strong coupling bond at the interface between a definite proportion of g-C3N4 nanosheets and the inverse spinel, which act as an electron transport channel to explore the exceptional performances for HER and OER. Compared to the Co2SnO4 inverse spinel lattice or g-C3N4 nanosheets, the prepared Co2SnO4/g-C3N4 nanohybrid-loaded 316 SSL mesh electrode showed excellent and stable electrocatalytic performances with very low overpotentials of 41 mV for HER and 260 mV for OER to reach the current density of 10 mA cm-2. To understand the electrocatalytic phenomena, the faradic efficiency was calculated for the prepared bifunctional electrocatalyst as 96%, which effectively would favor water electrolysis. Accordingly, the Co2SnO4/g-C3N4 nanohybrid-loaded electrodes were constructed, and the minimum cell voltage was found to be 1.52 V to reach the current density of 10 mA cm-2, which is comparable to the standard RuO2∥Pt/C in two-electrode systems. Thus, the developed nanohybrid-based electrocatalyst could be an alternative to noble metal-centered systems for highly efficient overall water splitting.
Collapse
Affiliation(s)
| | - Saravanakumar Tamilarasan
- Department of Nanoscience and Technology, Anna University Regional campus, Coimbatore 641 046, India
| | | |
Collapse
|
5
|
Zhang Y, Yang Z, Zhao L, Fei T, Liu S, Zhang T. Boosting room-temperature ppb-level NO 2 sensing over reduced graphene oxide by co-decoration of α-Fe 2O 3 and SnO 2 nanocrystals. J Colloid Interface Sci 2022; 612:689-700. [PMID: 35030345 DOI: 10.1016/j.jcis.2022.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 12/29/2022]
Abstract
As promising sensing materials, reduced graphene oxide (RGO)-based nanomaterials have drawn considerable attention in the fields of gas monitoring owing to their low operating temperature. However, constructing RGO-based room-temperature gas sensors possessing ppb-level limit of detection with high sensitivity remains challenging. In this work, a series of highly sensitive NO2 sensors were fabricated using α-Fe2O3 and SnO2 co-decorated RGO hybrids (designated as α-Fe2O3/SnO2-RGO) as sensing materials. They were rationally synthesized by a one-pot hydrothermal method. Compared to SnO2 modified RGO hybrids (SnO2-RGO with bandgap of 3.88 eV), the bandgap energy of α-Fe2O3/SnO2-RGO hybrids (3.53 eV) was reduced by adding α-Fe2O3; the narrower bandgap facilitated the sensing materials to release more electrons and form more oxygen ions at room temperature. Besides, the high carrier migration of RGO, which served as continuous phase, identical structure with ultrasmall particle size of α-Fe2O3 and SnO2 (about 3-6 nm), and abundant chemisorbed oxygen species on the surface (20.8%) of the sensing materials, as well as their suitable bandgap (3.53 eV) in the sensing materials, significantly improved NO2 response at room temperature. Among the sensors fabricated, α-Fe2O3/SnO2-RGO-15-based NO2 sensor had the highest response of 7.4 with a short response time of 59 s towards 1 ppm NO2; it could even reach a response of 2.6 towards 100 ppb NO2. Notably, α-Fe2O3/SnO2-RGO-15 sample has excellent capability to recognize NO2, where the response value (7.4) towards 1 ppm NO2 is about 7 times higher than that of 100 ppm ammonia and common volatile organic compounds (formaldehyde, toluene, ethanol and acetone). Such NO2 sensor has superior repeatability with negligible response deviation towards 1 ppm NO2 for four reversible cycles. This makes it to have a great potential application in the field of NO2 detection.
Collapse
Affiliation(s)
- Yaqing Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Zhimin Yang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Liang Zhao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Teng Fei
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Sen Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China.
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
6
|
Parkash A. Metal-organic framework derived ultralow-loading platinum-copper catalyst: a highly active and durable bifunctional electrocatalyst for oxygen-reduction and evolution reactions. NANOTECHNOLOGY 2021; 32:325703. [PMID: 33902017 DOI: 10.1088/1361-6528/abfb9b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Electrocatalysts with high active oxygen reduction (ORR) and oxygen evolution reaction (OER) activities are key factors in renewable energy technologies. Unlike common strategies for adjusting the proportion of metal centers in a multi-metal organic framework (MOF), herein, we designed and synthesized bifunctional electrocatalysts using cetyltrimethylammonium bromide (CTAB)-capped ultra-low content platinum (Pt) (≤0.5 wt.% Pt) and copper (Cu) nanoparticles and doped on the surface of zinc-based MOF (Zn-MOF-74) and calcinated at 900 °C. According to the electrochemical activity, the Pt/Cu/NPC-900 exhibits superior catalytic activities towards both the ORR with the onset (E0) and half-wave (E1/2) potentials were 1.0 V and 0.89 V versus RHE, respectively, and OER (Eo = 1.48 V versus RHE and overpotential (η) = 0.265 V versus RHE) in an alkaline electrolyte at ambient temperature. Also, Pt/Cu/NPC-900 catalyzes through a 4-electron process and exhibits superior stability. Such insightful findings, as well as a newly developed approach, provides rational design and synthesis of an economical and efficient strategy for bifunctional electrocatalyst development.
Collapse
Affiliation(s)
- Anand Parkash
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Chang'an, West Street 620, Xi'an 710119, People's Republic of China
| |
Collapse
|
7
|
Degenerated TiO
2
Semiconductor Modified with Ni and Zn as Efficient Photocatalysts for the Water Splitting Reaction. ChemCatChem 2020. [DOI: 10.1002/cctc.202000691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Abstract
The catalytic activity of a series of vanadium aluminophosphates catalysts prepared by sol-gel method followed by combustion of the obtained gel was evaluated in glycerol conversion towards methanol. The materials were characterized by several techniques such as X-ray diffraction (XRD), UV-vis, Fourier-transform infrared (FTIR), Raman and X-ray photoelectron (XPS) spectroscopies. The amount of vanadium incorporated in aluminophosphates framework played an important role in the catalytic activity, while in the products distribution the key role is played by the vanadium oxidation state on the surface. The sample that contains a large amount of V4+ has the highest selectivity towards methanol. On the sample with the lowest vanadium loading the oxidation path to dihydroxyacetone is predominant. The catalyst with higher content of tetrahedral isolated vanadium species, such V5APO, is less active in breaking the C–C bonds in the glycerol molecule than the one containing polymeric species.
Collapse
|