1
|
Zhang X, Cheng S, Fu C, Yin G, Wang L, Wu Y, Huo H. Advancements and Challenges in Organic-Inorganic Composite Solid Electrolytes for All-Solid-State Lithium Batteries. NANO-MICRO LETTERS 2024; 17:2. [PMID: 39302512 DOI: 10.1007/s40820-024-01498-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/05/2024] [Indexed: 09/22/2024]
Abstract
To address the limitations of contemporary lithium-ion batteries, particularly their low energy density and safety concerns, all-solid-state lithium batteries equipped with solid-state electrolytes have been identified as an up-and-coming alternative. Among the various SEs, organic-inorganic composite solid electrolytes (OICSEs) that combine the advantages of both polymer and inorganic materials demonstrate promising potential for large-scale applications. However, OICSEs still face many challenges in practical applications, such as low ionic conductivity and poor interfacial stability, which severely limit their applications. This review provides a comprehensive overview of recent research advancements in OICSEs. Specifically, the influence of inorganic fillers on the main functional parameters of OICSEs, including ionic conductivity, Li+ transfer number, mechanical strength, electrochemical stability, electronic conductivity, and thermal stability are systematically discussed. The lithium-ion conduction mechanism of OICSE is thoroughly analyzed and concluded from the microscopic perspective. Besides, the classic inorganic filler types, including both inert and active fillers, are categorized with special emphasis on the relationship between inorganic filler structure design and the electrochemical performance of OICSEs. Finally, the advanced characterization techniques relevant to OICSEs are summarized, and the challenges and perspectives on the future development of OICSEs are also highlighted for constructing superior ASSLBs.
Collapse
Affiliation(s)
- Xueyan Zhang
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Shichao Cheng
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Chuankai Fu
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| | - Geping Yin
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Liguang Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Yongmin Wu
- State Key Laboratory of Space Power-Sources, 2965 Dongchuan Road, Minhang District, Shanghai, 200240, People's Republic of China.
| | - Hua Huo
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| |
Collapse
|
2
|
Yang C, Jiang Z, Chen X, Luo W, Zhou T, Yang J. Lithium metal based battery systems with ultra-high energy density beyond 500 W h kg -1. Chem Commun (Camb) 2024; 60:10245-10264. [PMID: 39177678 DOI: 10.1039/d4cc03177f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
As industries and consumption patterns evolve, new electrical appliances are increasingly playing critical roles in national production, defense, and cognitive exploration. However, the slow development of energy storage devices with ultra-high energy density (beyond 500 W h kg-1) has impeded the promotion and widespread application of the next generation of intelligent, multi-scenario electrical equipment. Among the numerous ultra-high specific energy battery systems, lithium metal batteries (LMBs) hold significant potential for applications in advanced and sophisticated fields. This potential is primarily due to lithium metal's high specific capacity (3860 mA h g-1). However, LMBs face numerous challenges, including the growth of lithium dendrites, poor cycle stability, and safety concerns. In recent years, research on the mechanisms of Li metal-based battery systems, innovation in electrode materials, and optimization of device configurations have made significant progress. In this highlight, we provide a comprehensive overview of the storage mechanisms and the latest advancements in high-energy-density LMBs, represented by systems such as Li-Li1-xMO2, Li-S/Se, Li-gas (CO2/air/O2), Li-CFx, and all-solid-state LMBs. By integrating the current research findings, we highlight the opportunities and future research directions for high-energy-density LMBs, offering new guiding perspectives for their development under practical conditions.
Collapse
Affiliation(s)
- Chenyu Yang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University, Hefei 230601, China.
| | - Zhan Jiang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University, Hefei 230601, China.
| | - Xiangyue Chen
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University, Hefei 230601, China.
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Tengfei Zhou
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University, Hefei 230601, China.
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
3
|
Zhu Y, Wang C, Guo D, Chen X, Wang S. Solid-State Electrolytes: Probing Interface Regulation from Multiple Perspectives. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43114-43133. [PMID: 39110026 DOI: 10.1021/acsami.4c07428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Solid-state electrolytes (SSEs), as the heart of all-solid-state batteries (ASSBs), are recognized as the next-generation energy storage solution, offering high safety, extended cycle life, and superior energy density. SSEs play a pivotal role in ion transport and electron separation. Nonetheless, interface compatibility and stability issues pose significant obstacles to further enhancing ASSB performance. Extensive research has demonstrated that interface control methods can effectively elevate ASSB performance. This review delves into the advancements and recent progress of SSEs in interfacial engineering over the past years. We discuss the detailed effects of various regulation strategies and directions on performance, encompassing enhancing Li+ mobility, reducing energy barriers, immobilizing anions, introducing interlayers, and constructing unique structures. This review offers fresh perspectives on the development of high-performance lithium-metal ASSBs.
Collapse
Affiliation(s)
- Yuchuan Zhu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Cong Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Daying Guo
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Xi'an Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Shun Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| |
Collapse
|
4
|
Wu H, Lu Y, Han H, Yan Z, Chen J. Solid-State Electrolytes by Electrospinning Techniques for Lithium Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309801. [PMID: 38528431 DOI: 10.1002/smll.202309801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/08/2024] [Indexed: 03/27/2024]
Abstract
Solid-state lithium batteries (SSLBs) are regarded as next-generation energy storage devices because of their advantages in terms of safety and energy density. However, the poor interfacial compatibility and low ionic conductivity seriously hinder their development. Electrospinning is considered as a promising method for fabricating solid-state electrolytes (SSEs) with controllable nanofiber structures, scalability, and cost-effectiveness. Numerous efforts are dedicated to electrospinning SSEs with high ionic conductivity and strong interfacial compatibility, but a comprehensive summary is lacking. Here, the history of electrospinning SSEs is overeviewed and introduce the electrospinning mechanism, followed by the manipulation of electrospun nanofibers and their utilization in SSEs, as well as various methods to improve the ionic conductivity of SSEs. Finally, new perspectives aimed at enhancing the performance of SSEs membranes and facilitating their industrialization are proposed. This review aims to provide a comprehensive overview and future perspective on electrospinning technology in SSEs, with the goal of guiding the further development of SSLBs.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yong Lu
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Haoqin Han
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zhenhua Yan
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jun Chen
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
5
|
Wang Y, Chen Z, Jiang K, Shen Z, Passerini S, Chen M. Accelerating the Development of LLZO in Solid-State Batteries Toward Commercialization: A Comprehensive Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402035. [PMID: 38770746 DOI: 10.1002/smll.202402035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/09/2024] [Indexed: 05/22/2024]
Abstract
Solid-state batteries (SSBs) are under development as high-priority technologies for safe and energy-dense next-generation electrochemical energy storage systems operating over a wide temperature range. Solid-state electrolytes (SSEs) exhibit high thermal stability and, in some cases, the ability to prevent dendrite growth through a physical barrier, and compatibility with the "holy grail" metallic lithium. These unique advantages of SSEs have spurred significant research interests during the last decade. Garnet-type SSEs, that is, Li7La3Zr2O12 (LLZO), are intensively investigated due to their high Li-ion conductivity and exceptional chemical and electrochemical stability against lithium metal anodes. However, poor interfacial contact with cathode materials, undesirable lithium plating along grain boundaries, and moisture-induced chemical degradation greatly hinder the practical implementation of LLZO-based SSEs for SSBs. In this review, the recent advances in synthesis methods, modification strategies, corresponding mechanisms, and applications of garnet-based SSEs in SSBs are critically summarized. Furthermore, a comprehensive evaluation of the challenges and development trends of LLZO-based electrolytes in practical applications is presented to accelerate their development for high-performance SSBs.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, China
| | - Zhen Chen
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, China
| | - Kai Jiang
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, China
- State Key Laboratory of Advanced Electromagnetic Engineering, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zexiang Shen
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, China
| | - Stefano Passerini
- Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, D-89081, Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, D-76021, Karlsruhe, Germany
- Sapienza University of Rome, Chemistry Department, P. Aldo Moro 5, Rome, 00185, Italy
| | - Minghua Chen
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, China
| |
Collapse
|
6
|
Liang X, Shi X, Lan L, Qing Y, Zhang B, Fang Z, Wang Y. Synthesis and Properties of Polyvinylidene Fluoride-Hexafluoropropylene Copolymer/Li 6PS 5Cl Gel Composite Electrolyte for Lithium Solid-State Batteries. Gels 2024; 10:199. [PMID: 38534617 DOI: 10.3390/gels10030199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/06/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
Gel electrolytes for lithium-ion batteries continue to replace the organic liquid electrolytes in conventional batteries due to their advantages of being less prone to leakage and non-explosive and possessing a high modulus of elasticity. However, the development of gel electrolytes has been hindered by their generally low ionic conductivity at room temperature and high interfacial impedance with electrodes. In this paper, a poly (vinylidene fluoride)-hexafluoropropylene copolymer (PVdF-HFP) with a flexible structure, Li6PS5Cl (LPSCl) powder of the sulfur-silver-germanium ore type, and lithium perchlorate salt (LiClO4) were prepared into sulfide gel composite electrolyte films (GCEs) via a thermosetting process. The experimental results showed that the gel composite electrolyte with 1% LPSCl in the PVdF-HFP matrix exhibited an ionic conductivity as high as 1.27 × 10-3 S·cm-1 at 25 °C and a lithium ion transference number of 0.63. The assembled LiFePO4||GCEs||Li batteries have excellent rate (130 mAh·g-1 at 1 C and 54 mAh·g-1 at 5 C) and cycling (capacity retention was 93% after 100 cycles at 0.1 C and 80% after 150 cycles at 0.2 C) performance. This work provides new methods and strategies for the design and fabrication of solid-state batteries with high ionic conductivity and high specific energy.
Collapse
Affiliation(s)
- Xinghua Liang
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi Transportation Industry Key Laboratory of Vehicle-Road-Cloud Integrated Cooperation, Guangxi University of Science & Technology, Liuzhou 545006, China
| | - Xueli Shi
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi Transportation Industry Key Laboratory of Vehicle-Road-Cloud Integrated Cooperation, Guangxi University of Science & Technology, Liuzhou 545006, China
| | - Lingxiao Lan
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi Transportation Industry Key Laboratory of Vehicle-Road-Cloud Integrated Cooperation, Guangxi University of Science & Technology, Liuzhou 545006, China
| | - Yunmei Qing
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi Transportation Industry Key Laboratory of Vehicle-Road-Cloud Integrated Cooperation, Guangxi University of Science & Technology, Liuzhou 545006, China
| | - Bing Zhang
- Liuzhou Wuling Automobile Industry Co., Ltd., Liuzhou 545006, China
| | - Zhijie Fang
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi Transportation Industry Key Laboratory of Vehicle-Road-Cloud Integrated Cooperation, Guangxi University of Science & Technology, Liuzhou 545006, China
| | - Yujiang Wang
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi Transportation Industry Key Laboratory of Vehicle-Road-Cloud Integrated Cooperation, Guangxi University of Science & Technology, Liuzhou 545006, China
| |
Collapse
|
7
|
Su Y, Mu Z, Qiu Y, Jiang G, Shenouda A, Zhang X, Xu F, Wang H. Embedding of Laser Generated TiO 2 in Poly(ethylene oxide) with Boosted Li + Conduction for Solid-State Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55713-55722. [PMID: 38058104 DOI: 10.1021/acsami.3c12265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Poly(ethylene oxide) (PEO)-based solid polymer electrolytes are considered promising materials for realizing high-safety and high-energy-density lithium metal batteries. However, the high crystallinity of PEO at room temperature triggers low ionic conductivity and Li+ transference number, critically hindering practical applications in solid-state lithium metal batteries. Herein, we prepared nanosized TiO2 with enriched oxygen vacancies down to 13 nm as fillers by laser irradiation, which can be coated by in situ generated polyacetonitrile, ensuring good dispersibility in PEO. The electrolytes with nanosized TiO2 show a combination of high ionic conductivity, high Li+ transference number, superior electrochemical stability, and enhanced mechanical robustness. Accordingly, the lithium symmetric batteries with nanosized TiO2 composite solid electrolytes exhibit a stable cycling life up to 590 h at 0.25 mA cm-2. The full Li metal batteries paired with a LiFePO4 cathode deliver superior durability for 550 cycles. Moreover, the proof-of-concept pouch cells demonstrate excellent safety performance under various harsh conditions. This work provides a realistic guide in designing novel fillers to achieve stable operation of high-safety and energy-dense solid-state lithium metal batteries.
Collapse
Affiliation(s)
- Yanxia Su
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P.R. China
| | - Zheshen Mu
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P.R. China
| | - Yuqian Qiu
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P.R. China
| | - Guangshen Jiang
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P.R. China
| | - Atef Shenouda
- Batteries Technology Department, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, 11911 Helwan, Cairo, Egypt
| | - Xinren Zhang
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P.R. China
| | - Fei Xu
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P.R. China
| | - Hongqiang Wang
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P.R. China
| |
Collapse
|
8
|
Zhou HY, Ou Y, Yan SS, Xie J, Zhou P, Wan L, Xu ZA, Liu FX, Zhang WL, Xia YC, Liu K. Supramolecular Polymer Ion Conductor with Weakened Li Ion Solvation Enables Room Temperature All-Solid-State Lithium Metal Batteries. Angew Chem Int Ed Engl 2023; 62:e202306948. [PMID: 37408357 DOI: 10.1002/anie.202306948] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/07/2023]
Abstract
Improved durability, enhanced interfacial stability, and room temperature applicability are desirable properties for all-solid-state lithium metal batteries (ASSLMBs), yet these desired properties are rarely achieved simultaneously. Here, in this work, it is noticed that the huge resistance at Li metal/electrolyte interface dominantly impeded the normal cycling of ASSLMBs especially at around room temperature (<30 °C). Accordingly, a supramolecular polymer ion conductor (SPC) with "weak solvation" of Li+ was prepared. Benefiting from the halogen-bonding interaction between the electron-deficient iodine atom (on 1,4-diiodotetrafluorobenzene) and electron-rich oxygen atoms (on ethylene oxide), the O-Li+ coordination was significantly weakened. Therefore, the SPC achieves rapid Li+ transport with high Li+ transference number, and importantly, derives a unique Li2 O-rich SEI with low interfacial resistance on lithium metal surface, therefore enabling stable cycling of ASSLMBs even down to 10 °C. This work is a new exploration of halogen-bonding chemistry in solid polymer electrolyte and highlights the importance of "weak solvation" of Li+ in the solid-state electrolyte for room temperature ASSLMBs.
Collapse
Affiliation(s)
- Hang-Yu Zhou
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- National Academy of Safety Science and Engineering, China Academy of Safety Science and Technology, Beijing, 100012, China
| | - Yu Ou
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Shuai-Shuai Yan
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jin Xie
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Pan Zhou
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Lei Wan
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zi-Ang Xu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Feng-Xiang Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Wei-Li Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yin-Chun Xia
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Kai Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
9
|
Su Y, Xu F, Zhang X, Qiu Y, Wang H. Rational Design of High-Performance PEO/Ceramic Composite Solid Electrolytes for Lithium Metal Batteries. NANO-MICRO LETTERS 2023; 15:82. [PMID: 37002362 PMCID: PMC10066058 DOI: 10.1007/s40820-023-01055-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Composite solid electrolytes (CSEs) with poly(ethylene oxide) (PEO) have become fairly prevalent for fabricating high-performance solid-state lithium metal batteries due to their high Li+ solvating capability, flexible processability and low cost. However, unsatisfactory room-temperature ionic conductivity, weak interfacial compatibility and uncontrollable Li dendrite growth seriously hinder their progress. Enormous efforts have been devoted to combining PEO with ceramics either as fillers or major matrix with the rational design of two-phase architecture, spatial distribution and content, which is anticipated to hold the key to increasing ionic conductivity and resolving interfacial compatibility within CSEs and between CSEs/electrodes. Unfortunately, a comprehensive review exclusively discussing the design, preparation and application of PEO/ceramic-based CSEs is largely lacking, in spite of tremendous reviews dealing with a broad spectrum of polymers and ceramics. Consequently, this review targets recent advances in PEO/ceramic-based CSEs, starting with a brief introduction, followed by their ionic conduction mechanism, preparation methods, and then an emphasis on resolving ionic conductivity and interfacial compatibility. Afterward, their applications in solid-state lithium metal batteries with transition metal oxides and sulfur cathodes are summarized. Finally, a summary and outlook on existing challenges and future research directions are proposed.
Collapse
Affiliation(s)
- Yanxia Su
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, People's Republic of China
| | - Fei Xu
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, People's Republic of China.
| | - Xinren Zhang
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, People's Republic of China
| | - Yuqian Qiu
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, People's Republic of China
| | - Hongqiang Wang
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, People's Republic of China.
| |
Collapse
|
10
|
Wang Y, Liu Y, Nguyen M, Cho J, Katyal N, Vishnugopi BS, Hao H, Fang R, Wu N, Liu P, Mukherjee PP, Nanda J, Henkelman G, Watt J, Mitlin D. Stable Anode-Free All-Solid-State Lithium Battery through Tuned Metal Wetting on the Copper Current Collector. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206762. [PMID: 36445936 DOI: 10.1002/adma.202206762] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/23/2022] [Indexed: 06/16/2023]
Abstract
A stable anode-free all-solid-state battery (AF-ASSB) with sulfide-based solid-electrolyte (SE) (argyrodite Li6 PS5 Cl) is achieved by tuning wetting of lithium metal on "empty" copper current-collector. Lithiophilic 1 µm Li2 Te is synthesized by exposing the collector to tellurium vapor, followed by in situ Li activation during the first charge. The Li2 Te significantly reduces the electrodeposition/electrodissolution overpotentials and improves Coulombic efficiency (CE). During continuous electrodeposition experiments using half-cells (1 mA cm-2 ), the accumulated thickness of electrodeposited Li on Li2 Te-Cu is more than 70 µm, which is the thickness of the Li foil counter-electrode. Full AF-ASSB with NMC811 cathode delivers an initial CE of 83% at 0.2C, with a cycling CE above 99%. Cryogenic focused ion beam (Cryo-FIB) sectioning demonstrates uniform electrodeposited metal microstructure, with no signs of voids or dendrites at the collector-SE interface. Electrodissolution is uniform and complete, with Li2 Te remaining structurally stable and adherent. By contrast, an unmodified Cu current-collector promotes inhomogeneous Li electrodeposition/electrodissolution, electrochemically inactive "dead metal," dendrites that extend into SE, and thick non-uniform solid electrolyte interphase (SEI) interspersed with pores. Density functional theory (DFT) and mesoscale calculations provide complementary insight regarding nucleation-growth behavior. Unlike conventional liquid-electrolyte metal batteries, the role of current collector/support lithiophilicity has not been explored for emerging AF-ASSBs.
Collapse
Affiliation(s)
- Yixian Wang
- Materials Science and Engineering Program & Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Yijie Liu
- Materials Science and Engineering Program & Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Mai Nguyen
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jaeyoung Cho
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Naman Katyal
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Bairav S Vishnugopi
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Hongchang Hao
- Materials Science and Engineering Program & Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Ruyi Fang
- Materials Science and Engineering Program & Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Nan Wu
- Materials Science and Engineering Program & Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Pengcheng Liu
- Materials Science and Engineering Program & Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Partha P Mukherjee
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jagjit Nanda
- Applied Energy Division, SLAC National Laboratory, Menlo Park, CA, 94025, USA
| | - Graeme Henkelman
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - John Watt
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - David Mitlin
- Materials Science and Engineering Program & Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA
| |
Collapse
|
11
|
Jia M, Khurram Tufail M, Guo X. Insight into the Key Factors in High Li + Transference Number Composite Electrolytes for Solid Lithium Batteries. CHEMSUSCHEM 2023; 16:e202201801. [PMID: 36401564 DOI: 10.1002/cssc.202201801] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Solid lithium batteries (SLBs) have received much attention due to their potential to achieve secondary batteries with high energy density and high safety. The solid electrolyte (SE) is believed to be the essential material for SLBs. Among the recent SEs, composite electrolytes have good interfacial compatibility and customizability, which have been broadly investigated as promising contenders for commercial SLBs. The high Li+ transference number (t Li + ${{_{{\rm Li}{^{+}}}}}$ ) of composite electrolytes is critically important concerning the power/energy density and cycling life of SLBs, however, which is often overlooked. This Review presents a current opinion on the key factors in high t Li + ${{_{{\rm Li}{^{+}}}}}$ composite electrolytes, including polymers, Li-salts, inorganic fillers, and additives. Various strategies concerning providing a continuous pathway for Li-ions and immobilizing anions via component interaction are discussed. This Review highlights the major obstacles hindering the development of high t Li + ${{_{{\rm Li}{^{+}}}}}$ composite electrolytes and proposes future research directions for developing composite electrolytes with high t Li + ${{_{{\rm Li}{^{+}}}}}$ .
Collapse
Affiliation(s)
- Mengyang Jia
- College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| | - Muhammad Khurram Tufail
- College of Physics, Qingdao University, Qingdao, 266071, P. R. China
- College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiangxin Guo
- College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
12
|
Shan X, Zhao S, Ma M, Pan Y, Xiao Z, Li B, Sokolov AP, Tian M, Yang H, Cao PF. Single-Ion Conducting Polymeric Protective Interlayer for Stable Solid Lithium-Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56110-56119. [PMID: 36490324 DOI: 10.1021/acsami.2c17547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
With many reported attempts on fabricating single-ion conducting polymer electrolytes, they still suffer from low ionic conductivity, narrow voltage window, and high cost. Herein, we report an unprecedented approach on improving the cationic transport number (tLi+) of the polymer electrolyte, i.e., single-ion conducting polymeric protective interlayer (SIPPI), which is designed between the conventional polymer electrolyte (PVEC) and Li-metal electrode. Satisfied ionic conductivity (1 mS cm-1, 30 °C), high tLi+ (0.79), and wide-area voltage stability are realized by coupling the SIPPI with the PVEC electrolyte. Benefiting from this unique design, the Li symmetrical cell with the SIPPI shows stable cycling over 6000 h at 3 mA cm-2, and the full cell with the SIPPI exhibits stable cycling performance with a capacity retention of 86% over 1000 cycles at 1 C and 25 °C. This incorporated SIPPI on the Li anode presents an alternative strategy for enabling high-energy density, long cycling lifetime, and safe and cost-effective solid-state batteries.
Collapse
Affiliation(s)
- Xinyuan Shan
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Sheng Zhao
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Mengxiang Ma
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiyang Pan
- School of Chemistry, Beihang University, Beijing 10019, China
| | - Zhenxue Xiao
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Bingrui Li
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Alexei P Sokolov
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Ming Tian
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huabin Yang
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin 300350, China
| | - Peng-Fei Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
13
|
Xu Y, Zhao R, Fang J, Liang Z, Gao L, Bian J, Zhu J, Zhao Y. Metal-organic framework (MOF)-incorporated polymeric electrolyte realizing fast lithium-ion transportation with high Li+ transference number for solid-state batteries. Front Chem 2022; 10:1013965. [PMID: 36262340 PMCID: PMC9574007 DOI: 10.3389/fchem.2022.1013965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Composite polymer electrolytes (CPEs) show significant advantages in developing solid-state batteries due to their high flexibility and easy processability. In CPEs, solid fillers play a considerable effect on electrochemical performances. Recently, metal-organic frameworks (MOFs) are emerging as new solid fillers and show great promise to regulate ion migration. Herein, by using a Co-based MOF, a high-performance CPE is initially prepared and studied. Benefiting from the sufficient interactions and pore confinement from MOF, the obtained CPE shows both high ionic conductivity and a high Li+ transference number (0.41). The MOF-incorporated CPE then enables a uniform Li deposition and stable interfacial condition. Accordingly, the as-assembled solid batteries demonstrate a high reversible capacity and good cycling performance. This work verifies the practicability of MOFs as solid fillers to produce advanced CPEs, presenting their promising prospect for practical application.
Collapse
Affiliation(s)
- Yifan Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials, Materials Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Ruo Zhao
- Institute for Advanced Study Shenzhen University, Shenzhen, China
- *Correspondence: Ruo Zhao,
| | - Jianjun Fang
- Shenzhen Key Laboratory of Solid State Batteries, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Zibin Liang
- School of Materials Science and Engineering Peking University Beijing, Beijing, China
| | - Lei Gao
- School of Materials Science and Engineering Peking University Beijing, Beijing, China
| | - Juncao Bian
- Shenzhen Key Laboratory of Solid State Batteries, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Jinlong Zhu
- Shenzhen Key Laboratory of Solid State Batteries, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Yusheng Zhao
- Shenzhen Key Laboratory of Solid State Batteries, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
14
|
Liu L, Wu Z, Zheng Z, Zhou Q, Chen K, Yin P. Polymerization-induced microphase separation of polymer-polyoxometalate nanocomposites for anhydrous solid state electrolytes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Tamainato S, Mori D, Takeda Y, Yamamoto O, Imanishi N. Composite Polymer Electrolytes for Lithium Batteries. ChemistrySelect 2022. [DOI: 10.1002/slct.202201667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- S. Tamainato
- Graduate School of Enigineering Mie University Tsu 514-8507 Japan
| | - D. Mori
- Graduate School of Enigineering Mie University Tsu 514-8507 Japan
| | - Y. Takeda
- Graduate School of Enigineering Mie University Tsu 514-8507 Japan
| | - O. Yamamoto
- Graduate School of Enigineering Mie University Tsu 514-8507 Japan
| | - N. Imanishi
- Graduate School of Enigineering Mie University Tsu 514-8507 Japan
| |
Collapse
|
16
|
Bai S, Zhang X, Chen Z, Lin J, Wang Q, Zhang Y. Design of Polymer‐in‐Salt Electrolyte for Solid State Lithium Battery with Wide Working Temperature Range. ChemistrySelect 2022. [DOI: 10.1002/slct.202201571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shuai Bai
- College of Chemistry and Materials Science Fujian Normal University Fuzhou 350007 P. R. China
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Xiangxin Zhang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Zhou Chen
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Junhong Lin
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Qiming Wang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Yining Zhang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| |
Collapse
|
17
|
Zhao G, Wang X, Negnevitsky M. Connecting battery technologies for electric vehicles from battery materials to management. iScience 2022; 25:103744. [PMID: 35128354 PMCID: PMC8800023 DOI: 10.1016/j.isci.2022.103744] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vehicle electrification has always been a hot topic and gradually become a major role in the automobile manufacturing industry over the last two decades. This paper presented comprehensive discussions and insightful evaluations of both conventional electric vehicle (EV) batteries (such as lead-acid, nickel-based, lithium-ion batteries, etc.) and the state-of-the-art battery technologies (such as all-solid-state, silicon-based, lithium-sulphur, metal-air batteries, etc.). Battery major component materials, operating characteristics, theoretical models, manufacturing processes, and end-of-life management were thoroughly reviewed. Different from other reviews focusing on theoretical studies, this review emphasized the key aspects of battery technologies, commercial applications, and lifecycle management. Useful battery managing technologies such as health prediction, charging and discharging, as well as thermal runaway prevention were thoroughly discussed. Two novel hexagon radar charts of all-round evaluations of most reigning and potential EV battery technologies were created to predict the development trend of the EV battery technologies. It showed that lithium-ion batteries (3.9 points) would be still the dominant product for the current commercial EV power battery market in a short term. However, some cutting-edge technologies such as an all-solid-state battery (3.55 points) and silicon-based battery (3.3 points) are highly likely to be the next-generation EV onboard batteries with both higher specific power and better safety performance.
Collapse
Affiliation(s)
- Gang Zhao
- School of Engineering, University of Tasmania, Hobart, TAS 7001, Australia
- Corresponding author
| | - Xiaolin Wang
- School of Engineering, University of Tasmania, Hobart, TAS 7001, Australia
- Corresponding author
| | | |
Collapse
|
18
|
Bian J, Yuan H, Li M, Ling S, Deng B, Luo W, Chen X, Yin L, Li S, Kong L, Zhao R, Lin H, Xia W, Zhao Y, Lu Z. Li-Rich Antiperovskite/Nitrile Butadiene Rubber Composite Electrolyte for Sheet-Type Solid-State Lithium Metal Battery. Front Chem 2021; 9:744417. [PMID: 34869201 PMCID: PMC8634478 DOI: 10.3389/fchem.2021.744417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Lithium-rich antiperovskites (LiRAPs) hold great promise to be the choice of solid-state electrolytes (SSEs) owing to their high ionic conductivity, low activation energy, and low cost. However, processing sheet-type solid-state Li metal batteries (SSLiB) with LiRAPs remains challenging due to the lack of robust techniques for battery processing. Herein, we propose a scalable slurry-based procedure to prepare a flexible composite electrolyte (CPE), in which LiRAP (e.g., Li2OHCl0.5Br0.5, LOCB) and nitrile butadiene rubber (NBR) serve as an active filler and as a polymer scaffold, respectively. The low-polar solvent helps to stabilize the LiRAP phase during slurry processing. It is found that the addition of LOCB into the NBR polymer enhances the Li ion conductivity for 2.3 times at 60°C and reduces the activation energy (max. 0.07 eV). The as-prepared LOCB/NBR CPE film exhibits an improved critical current of 0.4 mA cm-2 and can stably cycle for over 1000 h at 0.04 mA cm-2 under 60°C. In the SSLiB with the sheet-type configuration of LiFePO4(LFP)||LOCB/NBR CPE||Li, LFP exhibits a capacity of 137 mAh/g under 60 at 0.1°C. This work delivers an effective strategy for fabrication of LiRAP-based CPE film, advancing the LiRAP-family SSEs toward practical applications.
Collapse
Affiliation(s)
- Juncao Bian
- Shenzhen Key Laboratory of Solid State Batteries, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, China.,Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Academy for Advanced Interdisciplinary Studies, SUSTech, Shenzhen, China.,Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Academy for Advanced Interdisciplinary Studies, SUSTech, Shenzhen, China
| | - Huimin Yuan
- Department of Materials Science and Engineering, SUSTech, Shenzhen, China
| | - Muqing Li
- Department of Materials Science and Engineering, SUSTech, Shenzhen, China
| | - Sifan Ling
- Department of Physics, SUSTech, Shenzhen, China
| | - Bei Deng
- Department of Physics, SUSTech, Shenzhen, China
| | - Wen Luo
- Department of Materials Science and Engineering, SUSTech, Shenzhen, China
| | - Xuedan Chen
- Shenzhen Key Laboratory of Solid State Batteries, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, China.,Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Academy for Advanced Interdisciplinary Studies, SUSTech, Shenzhen, China.,Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Academy for Advanced Interdisciplinary Studies, SUSTech, Shenzhen, China.,Department of Physics, SUSTech, Shenzhen, China
| | - Lihong Yin
- Shenzhen Key Laboratory of Solid State Batteries, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, China.,Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Academy for Advanced Interdisciplinary Studies, SUSTech, Shenzhen, China.,Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Academy for Advanced Interdisciplinary Studies, SUSTech, Shenzhen, China.,Department of Physics, SUSTech, Shenzhen, China
| | - Shuai Li
- Shenzhen Key Laboratory of Solid State Batteries, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, China.,Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Academy for Advanced Interdisciplinary Studies, SUSTech, Shenzhen, China.,Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Academy for Advanced Interdisciplinary Studies, SUSTech, Shenzhen, China.,Department of Physics, SUSTech, Shenzhen, China
| | - Long Kong
- Shenzhen Key Laboratory of Solid State Batteries, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, China.,Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Academy for Advanced Interdisciplinary Studies, SUSTech, Shenzhen, China.,Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Academy for Advanced Interdisciplinary Studies, SUSTech, Shenzhen, China
| | - Ruo Zhao
- Shenzhen Key Laboratory of Solid State Batteries, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, China.,Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Academy for Advanced Interdisciplinary Studies, SUSTech, Shenzhen, China.,Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Academy for Advanced Interdisciplinary Studies, SUSTech, Shenzhen, China
| | - Haibin Lin
- Shenzhen Key Laboratory of Solid State Batteries, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, China.,Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Academy for Advanced Interdisciplinary Studies, SUSTech, Shenzhen, China.,Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Academy for Advanced Interdisciplinary Studies, SUSTech, Shenzhen, China
| | - Wei Xia
- Shenzhen Key Laboratory of Solid State Batteries, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, China.,Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Academy for Advanced Interdisciplinary Studies, SUSTech, Shenzhen, China.,Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Academy for Advanced Interdisciplinary Studies, SUSTech, Shenzhen, China
| | - Yusheng Zhao
- Shenzhen Key Laboratory of Solid State Batteries, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, China.,Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Academy for Advanced Interdisciplinary Studies, SUSTech, Shenzhen, China.,Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Academy for Advanced Interdisciplinary Studies, SUSTech, Shenzhen, China.,Department of Physics, SUSTech, Shenzhen, China
| | - Zhouguang Lu
- Department of Materials Science and Engineering, SUSTech, Shenzhen, China
| |
Collapse
|
19
|
Zhou H, Yu C, Gao H, Wu JC, Hou D, Liu M, Zhang M, Xu Z, Yang J, Chen D. Polyphenylene Sulfide-Based Solid-State Separator for Limited Li Metal Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104365. [PMID: 34726839 DOI: 10.1002/smll.202104365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The urgent need for high energy batteries is pushing the battery studies toward the Li metal and solid-state direction, and the most central question is finding proper solid-state electrolyte (SSE). So far, the recently studied electrolytes have obvious advantages and fatal weaknesses, resulting in indecisive plans for industrial production. In this work, a thin and dense lithiated polyphenylene sulfide-based solid state separator (PPS-SSS) prepared by a solvent-free process in pilot stage is proposed. Moreover, the PPS surface is functionalized to immobilize the anions, increasing the Li+ transference number to 0.8-0.9, and widening the electrochemical potential window (EPW > 5.1 V). At 25 °C, the PPS-SSS exhibits high intrinsic Li+ diffusion coefficient and ionic conductivity (>10-4 S cm-1 ), and Li+ transport rectifying effect, resulting in homogenous Li-plating on Cu at 2 mA cm-2 density. Based on the limited Li-plated Cu anode or anode-free Cu, high loadings cathode and high voltage, the Li-metal batteries (LMBs) with polyethylene (PE) protected PPS-SSSs deliver high energy and power densities (>1000 Wh L-1 and 900 W L-1 ) with >200 cycling life and high safety, exceeding those of state-of-the-art Li-ion batteries. The results promote the Li metal battery toward practicality.
Collapse
Affiliation(s)
- Haitao Zhou
- School of Materials Science and Engineering, Jiangsu University, Jiangsu Province, 212013, P. R. China
| | - Chongchen Yu
- School of Materials Science and Engineering, Jiangsu University, Jiangsu Province, 212013, P. R. China
| | - Hongquan Gao
- School of Materials Science and Engineering, Jiangsu University, Jiangsu Province, 212013, P. R. China
| | - Jian-Chun Wu
- School of Materials Science and Engineering, Jiangsu University, Jiangsu Province, 212013, P. R. China
- Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Dong Hou
- School of Materials Science and Engineering, Jiangsu University, Jiangsu Province, 212013, P. R. China
| | - Menghao Liu
- School of Materials Science and Engineering, Jiangsu University, Jiangsu Province, 212013, P. R. China
| | - Minghui Zhang
- Amprius (Wuxi) Co., Ltd., Wuxi, Jiangsu Province, 214187, P. R. China
| | - Zifu Xu
- Amprius (Wuxi) Co., Ltd., Wuxi, Jiangsu Province, 214187, P. R. China
| | - Jianhong Yang
- School of Materials Science and Engineering, Jiangsu University, Jiangsu Province, 212013, P. R. China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| |
Collapse
|
20
|
Yu Q, Jiang K, Yu C, Chen X, Zhang C, Yao Y, Jiang B, Long H. Recent progress of composite solid polymer electrolytes for all-solid-state lithium metal batteries. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Yao Z, Zhu K, Li X, Zhang J, Li J, Wang J, Yan K, Liu J. Double-Layered Multifunctional Composite Electrolytes for High-Voltage Solid-State Lithium-Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11958-11967. [PMID: 33656866 DOI: 10.1021/acsami.0c22532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The need for safe storage systems with a high energy density has increased the interest in high-voltage solid-state Li-metal batteries (LMBs). Solid-state electrolytes, as a key material for LMBs, must be stable against both high-voltage cathodes and Li anodes. However, the weak interfacial contact between the electrolytes and electrodes poses challenges in the practical applications of LMBs. In this study, a double-layered solid composite electrolyte (DLSCE) was synthesized by introducing an antioxidative poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP)-10 wt % Li1.3Al0.3Ti1.7(PO4)3 (LATP) to the cathode interface, whereas a lithium-friendly poly(oxyethylene) (PEO)-5 wt % LATP was made to come into contact with Li metal. Owing to the heterogeneous double-layered structure of the DLSCE, a high ionic transfer number (0.43), high ionic conductivity (1.49 × 10-4 S/cm), and a wide redox window (4.82 V) were obtained at ambient temperature. Moreover, the DLSCE showed excellent Li-metal stability, thereby enabling the Li-Li symmetric cells to stably run for over 600 h at 0.2 mA/cm2 with effective lithium dendrite inhibition. When paired with a high-voltage LiNi1/3Co1/3Mn1/3O2 cathode, the Li/DLSCE/NCM111 cell exhibited excellent electrochemical performance: long-term cyclability with 85% capacity retention could be conducted at 0.2C after 100 cycles corresponding to 100% Coulombic efficiencies.
Collapse
Affiliation(s)
- Zhongran Yao
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Kongjun Zhu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Xia Li
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jie Zhang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jun Li
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jing Wang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Kang Yan
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jinsong Liu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
22
|
Challenges and Development of Composite Solid Electrolytes for All-solid-state Lithium Batteries. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-0007-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Gao L, Sarmad B, Li J, Cheng B, Kang W, Deng N. Application of polyamide 6 microfiber non-woven fabrics in the large-scale production of all-solid-state lithium metal batteries. JOURNAL OF POWER SOURCES 2020; 475:228663. [PMID: 32863551 PMCID: PMC7443327 DOI: 10.1016/j.jpowsour.2020.228663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 05/09/2023]
Abstract
All-solid-state electrolytes have received extensive attention due to their excellent safety and good electrochemical performance. However, due to the harsh conditions of the preparation process, the commercial production of all-solid-state electrolytes remains a challenge. The outbreak of the novel coronavirus pneumonia (COVID-19) has caused great inconvenience to people, while also allowing soft, lightweight and mass-producible non-woven fabrics in masks come into sight. Here, a polymer/polymer solid composite electrolyte is obtained by introducing the polyamide 6 (PA6) microfiber non-woven fabric into PEO polymer through the hot-pressing method. The addition of the PA6 non-woven fabric with lithium-philic properties can not only reduce the crystallinity of the polymer, but also provide more functional transmission sites and then promote the migration of lithium ions at the molecular level. Moreover, due to the sufficient mechanical strength and flexibility of the PA6 non-woven fabric, the composite electrolyte shows excellent inhibition ability of lithium dendrite growth and high electrochemical stability. The novel design concept of introducing low-cost and large-scale production of non-woven fabrics into all-solid-state composite electrolytes to develop high-performance lithium metal batteries is attractive, and can also be broadened to the combination of different types of polymers to meet the needs of various batteries.
Collapse
Affiliation(s)
- Lu Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, PR China
| | - Bushra Sarmad
- School of International Education, Tiangong University, Tianjin 300387, PR China
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, PR China
- School of Material Science and Engineering, Tiangong University, Tianjin, 300387, PR China
| | - Bowen Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, PR China
- School of Material Science and Engineering, Tiangong University, Tianjin, 300387, PR China
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, PR China
| | - Nanping Deng
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, PR China
- School of Material Science and Engineering, Tiangong University, Tianjin, 300387, PR China
| |
Collapse
|