1
|
Nughays RO, Almasabi K, Nematulloev S, Wang L, Bian T, Nadinov I, Irziqat B, Harrison GT, Fatayer S, Yin J, Bakr OM, Mohammed OF. Mapping Surface-Defect and Ions Migration in Mixed-Cation Perovskite Crystals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404468. [PMID: 39206684 PMCID: PMC11516060 DOI: 10.1002/advs.202404468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Single crystal perovskites have garnered significant attention as potential replacements for existing absorber layer materials. Despite the extensive investigations on their photoinduced charge-carriers dynamics, most of the time-resolved techniques focus on bulk properties, neglecting surface characteristic which plays a crucial role for their optoelectronic performance. Herein, 4D ultrafast scanning electron microscopy (4D-USEM) is utilized to probing the photogenerated carrier transport at the first few nanometers, alongside density functional theory (DFT) to track both defect centers and ions migration. Two compositions of mixed cation are investigated: FA0.6MA0.4PbI3 and FA0.4MA0.6PbI3, interestingly, the former displays a longer lifetime compared to the latter due the presence of a higher surface-defect centers. DFT calculations fully support that revealing samples with higher FA content have a lower energy barrier for iodide ions to migrate from the bulk to top layer, assisting in passivating surface vacancies, and a higher energy diffusion barrier to escape from surface to vacuum, resulting in fewer vacancies and longer-lived hole-electron pairs. These findings manifest the influence of cation selection on charge carrier transport and formation of defects, and emphasize the importance of understanding ion migrations role in controlling surface vacancies to assist engineering high-performance optoelectronic devices based on single crystal perovskites.
Collapse
Affiliation(s)
- Razan O. Nughays
- Advanced Membranes and Porous Materials Center (AMPM)Division of Physical Science and EngineeringKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
| | - Khulud Almasabi
- KAUST Catalysis CenterDivision of Physical Sciences and EngineeringKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
- Functional Nanomaterials LabDivision of Physical Sciences and EngineeringKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
| | - Sarvarkhodzha Nematulloev
- Advanced Membranes and Porous Materials Center (AMPM)Division of Physical Science and EngineeringKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
| | - Lijie Wang
- Advanced Membranes and Porous Materials Center (AMPM)Division of Physical Science and EngineeringKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
| | - Tieyuan Bian
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloonHong Kong999077P. R. China
| | - Issatay Nadinov
- Advanced Membranes and Porous Materials Center (AMPM)Division of Physical Science and EngineeringKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
| | - Bahaaeddin Irziqat
- KAUST Solar Center (KSC)Division of Physical Science and EngineeringKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
| | - George T Harrison
- Advanced Membranes and Porous Materials Center (AMPM)Division of Physical Science and EngineeringKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
- KAUST Solar Center (KSC)Division of Physical Science and EngineeringKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
| | - Shadi Fatayer
- KAUST Solar Center (KSC)Division of Physical Science and EngineeringKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
| | - Jun Yin
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloonHong Kong999077P. R. China
| | - Osman M. Bakr
- KAUST Catalysis CenterDivision of Physical Sciences and EngineeringKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
- Functional Nanomaterials LabDivision of Physical Sciences and EngineeringKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
| | - Omar F. Mohammed
- Advanced Membranes and Porous Materials Center (AMPM)Division of Physical Science and EngineeringKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
- KAUST Catalysis CenterDivision of Physical Sciences and EngineeringKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Zhang Y, Chen X, Yu Y, Huang Y, Qiu M, Liu F, Feng M, Gao C, Deng S, Fu X. A Femtosecond Electron-Based Versatile Microscopy for Visualizing Carrier Dynamics in Semiconductors Across Spatiotemporal and Energetic Domains. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400633. [PMID: 38894590 PMCID: PMC11336951 DOI: 10.1002/advs.202400633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/16/2024] [Indexed: 06/21/2024]
Abstract
Carrier dynamics detection in different dimensions (space, time, and energy) with high resolutions plays a pivotal role in the development of modern semiconductor devices, especially in low-dimensional, high-speed, and ultrasensitive devices. Here, a femtosecond electron-based versatile microscopy is reported that combines scanning ultrafast electron microscopy (SUEM) imaging and time-resolved cathodoluminescence (TRCL) detection, which allows for visualizing and decoupling different dynamic processes of carriers involved in surface and bulk in semiconductors with unprecedented spatiotemporal and energetic resolutions. The achieved spatial resolution is better than 10 nm, and the temporal resolutions for SUEM imaging and TRCL detection are ≈500 fs and ≈4.5 ps, respectively, representing state-of-the-art performance. To demonstrate its unique capability, the surface and bulk carrier dynamics involved in n-type gallium arsenide (GaAs) are directly tracked and distinguished. It is revealed, in real time and space, that hot carrier cooling, defect trapping, and interband-/defect-assisted radiative recombination in the energy domain result in ordinal super-diffusion, localization, and sub-diffusion of carriers at the surface, elucidating the crucial role of surface states on carrier dynamics. The study not only gives a comprehensive physical picture of carrier dynamics in GaAs, but also provides a powerful platform for exploring complex carrier dynamics in semiconductors for promoting their device performance.
Collapse
Affiliation(s)
- Yaqing Zhang
- Ultrafast Electron Microscopy LaboratoryMOE Key Laboratory of Weak‐Light Nonlinear PhotonicsSchool of PhysicsNankai UniversityTianjin300071China
| | - Xiang Chen
- Ultrafast Electron Microscopy LaboratoryMOE Key Laboratory of Weak‐Light Nonlinear PhotonicsSchool of PhysicsNankai UniversityTianjin300071China
| | - Yaocheng Yu
- Ultrafast Electron Microscopy LaboratoryMOE Key Laboratory of Weak‐Light Nonlinear PhotonicsSchool of PhysicsNankai UniversityTianjin300071China
| | - Yue Huang
- Ultrafast Electron Microscopy LaboratoryMOE Key Laboratory of Weak‐Light Nonlinear PhotonicsSchool of PhysicsNankai UniversityTianjin300071China
| | - Moxi Qiu
- Ultrafast Electron Microscopy LaboratoryMOE Key Laboratory of Weak‐Light Nonlinear PhotonicsSchool of PhysicsNankai UniversityTianjin300071China
| | - Fang Liu
- Ultrafast Electron Microscopy LaboratoryMOE Key Laboratory of Weak‐Light Nonlinear PhotonicsSchool of PhysicsNankai UniversityTianjin300071China
| | - Min Feng
- Ultrafast Electron Microscopy LaboratoryMOE Key Laboratory of Weak‐Light Nonlinear PhotonicsSchool of PhysicsNankai UniversityTianjin300071China
| | - Cuntao Gao
- Ultrafast Electron Microscopy LaboratoryMOE Key Laboratory of Weak‐Light Nonlinear PhotonicsSchool of PhysicsNankai UniversityTianjin300071China
| | - Shibing Deng
- Ultrafast Electron Microscopy LaboratoryMOE Key Laboratory of Weak‐Light Nonlinear PhotonicsSchool of PhysicsNankai UniversityTianjin300071China
| | - Xuewen Fu
- Ultrafast Electron Microscopy LaboratoryMOE Key Laboratory of Weak‐Light Nonlinear PhotonicsSchool of PhysicsNankai UniversityTianjin300071China
- School of Materials Science and EngineeringSmart Sensing Interdisciplinary Science CenterNankai UniversityTianjin300350China
| |
Collapse
|
3
|
Wang L, Wang H, Nughays R, Ogieglo W, Yin J, Gutiérrez-Arzaluz L, Zhang X, Wang JX, Pinnau I, Bakr OM, Mohammed OF. Phonon-driven transient bandgap renormalization in perovskite single crystals. MATERIALS HORIZONS 2023; 10:4192-4201. [PMID: 37431707 DOI: 10.1039/d3mh00570d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Tailoring the electronic structure of perovskite materials on ultrafast timescales is expected to shed light on optimizing optoelectronic applications. However, the transient bandgap renormalization observed upon photoexcitation is commonly explained by many-body interactions of optically created electrons and holes, which shrink the original bandgap by a few tens of millielectronvolts with a sub-picosecond time constant, while the accompanying phonon-induced effect remains hitherto unexplored. Here we unravel a significant contribution of hot phonons in the photo-induced transient bandgap renormalization in MAPbBr3 single crystals, as evidenced by asymmetric spectral evolutions and transient reflection spectral shifts in the picosecond timescale. Moreover, we performed a spatiotemporal study upon optical excitation with time-resolved scanning electron microscopy and identified that the surface charge carrier diffusion and transient bandgap renormalization are strongly correlated in time. These findings highlight the need to re-evaluate current theories on photo-induced bandgap renormalization and provide a new approach for precisely controlling the optical and electronic properties of perovskite materials, enabling the design and fabrication of high-performance optoelectronic devices with exceptional efficiency and unique properties.
Collapse
Affiliation(s)
- Lijie Wang
- Advanced Membranes and Porous Materials Centre (AMPM), Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Hong Wang
- Advanced Membranes and Porous Materials Centre (AMPM), Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.
- KAUST Catalysis Centre, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Razan Nughays
- Advanced Membranes and Porous Materials Centre (AMPM), Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Wojciech Ogieglo
- Advanced Membranes and Porous Materials Centre (AMPM), Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Jun Yin
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, P. R. China
| | - Luis Gutiérrez-Arzaluz
- Advanced Membranes and Porous Materials Centre (AMPM), Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.
- KAUST Catalysis Centre, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Xinyuan Zhang
- KAUST Catalysis Centre, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jian-Xin Wang
- Advanced Membranes and Porous Materials Centre (AMPM), Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Ingo Pinnau
- Advanced Membranes and Porous Materials Centre (AMPM), Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Osman M Bakr
- KAUST Catalysis Centre, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar F Mohammed
- Advanced Membranes and Porous Materials Centre (AMPM), Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.
- KAUST Catalysis Centre, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
El-Zohry AM, Diez-Cabanes V, Pastore M, Ahmed T, Zietz B. Highly Emissive Biological Bilirubin Molecules: Shedding New Light on the Phototherapy Scheme. J Phys Chem B 2021; 125:9213-9222. [PMID: 34346676 PMCID: PMC8389986 DOI: 10.1021/acs.jpcb.1c05308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bilirubin (BR) is the main end-product of the hemoglobin catabolism. For decades, its photophysics has been mainly discussed in terms of ultrafast deactivation of the excited state in solution, where, indeed, BR shows a very low green emission quantum yield (EQY), 0.03%, resulting from an efficient nonradiative isomerization process. Herein, we present, for the first time, unique and exceptional photophysical properties of solid-state BR, which amend by changing the type of crystal, from a closely packed α crystal to an amorphous loosely packed β crystal. BR α crystals show a very bright red emission with an EQY of ca. 24%, whereas β crystals present, in addition, a low green EQY of ca. 0.5%. By combining density functional theory (DFT) calculations and time-resolved emission spectroscopy, we trace back this dual emission to the presence of two types of BR molecules in the crystal: a "stiff" monomer, M1, distorted by particularly strong internal H-bonds and a "floppy" monomer, M2, having a structure close to that of BR in solution. We assign the red strong emission of BR crystals to M1 present in both the α and β crystals, while the low green emission, only present in the amorphous (β) crystal, is interpreted as M2 emission. Efficient energy-transfer processes from M2 to M1 in the closely packed α crystal are invoked to explain the absence of the green component in its emission spectrum. Interestingly, these unique photophysical properties of BR remain in polar solvents such as water. Based on these unprecedented findings, we propose a new model for the phototherapy scheme of BR inside the human body and highlight the usefulness of BR as a strong biological fluorescent probe.
Collapse
Affiliation(s)
- Ahmed M El-Zohry
- Department of Chemistry, Ångström Laboratories, Box 523, SE-75120 Uppsala, Sweden.,Department of Physics - AlbaNova Universitetscentrum, Stockholm University, SE-10691 Stockholm, Sweden
| | - Valentin Diez-Cabanes
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), F-54000 Nancy, France
| | - Mariachiara Pastore
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), F-54000 Nancy, France
| | - Taha Ahmed
- Department of Chemistry, Ångström Laboratories, Box 523, SE-75120 Uppsala, Sweden
| | - Burkhard Zietz
- Department of Chemistry, Ångström Laboratories, Box 523, SE-75120 Uppsala, Sweden
| |
Collapse
|
5
|
Kim YJ, Lee Y, Kim K, Kwon OH. Light-Induced Anisotropic Morphological Dynamics of Black Phosphorus Membranes Visualized by Dark-Field Ultrafast Electron Microscopy. ACS NANO 2020; 14:11383-11393. [PMID: 32790334 DOI: 10.1021/acsnano.0c03644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Black phosphorus (BP) is an elemental layered material with a strong in-plane anisotropic structure. This structure is accompanied by anisotropic optical, electrical, thermal, and mechanical properties. Despite interest in BP from both fundamental and technical aspects, investigation into the structural dynamics of BP caused by strain fields, which are prevalent for two-dimensional (2D) materials and tune the material physical properties, has been overlooked. Here, we report the morphological dynamics of photoexcited BP membranes observed using time-resolved diffractograms and dark-field images obtained via ultrafast electron microscopy. Aided by 4D reconstruction, we visualize the nonequilibrium bulging of thin BP membranes and reveal that the buckling transition is driven by impulsive thermal stress upon photoexcitation in real time. The bulging, buckling, and flattening (on strain release) showed anisotropic spatiotemporal behavior. Our observations offer insights into the fleeting morphology of anisotropic 2D matter and provide a glimpse into the mapping of transient, modulated physical properties upon impulsive excitation, as well as strain engineering at the nanoscale.
Collapse
Affiliation(s)
- Ye-Jin Kim
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Korea
- Center for Soft and Living Matter, Institute for Basic Science (IBS), 50 UNIST-gil, Ulsan 44919, Korea
| | - Yangjin Lee
- Department of Physics, Yonsei University, 50 Yonsei-ro, Seoul 03722, Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), 50 Yonsei-ro, Seoul 03722, Korea
| | - Kwanpyo Kim
- Department of Physics, Yonsei University, 50 Yonsei-ro, Seoul 03722, Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), 50 Yonsei-ro, Seoul 03722, Korea
| | - Oh-Hoon Kwon
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Korea
- Center for Soft and Living Matter, Institute for Basic Science (IBS), 50 UNIST-gil, Ulsan 44919, Korea
| |
Collapse
|
6
|
Zhao J, Bakr OM, Mohammed OF. Ultrafast electron imaging of surface charge carrier dynamics at low voltage. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:021001. [PMID: 32266302 PMCID: PMC7105398 DOI: 10.1063/4.0000007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
The performance of optoelectronic devices strongly depends on charge carrier dynamics on top of surfaces of the absorber layers. Unfortunately, this information cannot be selectively probed using conventional ultrafast laser spectroscopic methods, due to the large penetration depth (tens of nm to μm) of the photon pulses in the pump-probe configurations. Therefore, ultrafast time-resolved approaches that can directly and selectively visualize the behavior of the surface carrier dynamics are urgently needed. Here, we introduce a novel methodology of low-voltage scanning ultrafast electron microscopy that can take ultrafast time-resolved images (snapshots) of the surface of materials at the sub-nanometer level. By this approach, the surface of the photoactive materials is optically excited and imaged, using a pulsed low-voltage electron beam (1 keV) that interacts with the surface to generate secondary electrons with an energy of a few eV, and that are emitted only from the top surface of materials, providing direct information about the carrier dynamics and the localization of electron/holes in real space and time. An outlook on the potential applications of this low voltage approach in different disciplines will also be discussed.
Collapse
Affiliation(s)
- Jianfeng Zhao
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Osman M Bakr
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Omar F Mohammed
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|