1
|
Alaei A, Mohajerani SS, Schmelmer B, Rubio TI, Bendesky J, Kim MW, Ma Y, Jeong S, Zhou Q, Klopfenstein M, Avalos CE, Strauf S, Lee SS. Scaffold-Guided Crystallization of Oriented α-FAPbI 3 Nanowire Arrays for Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56127-56137. [PMID: 37987696 DOI: 10.1021/acsami.3c09434] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Perovskite nanowire arrays with large surface areas for efficient charge transfer and continuous highly crystalline domains for efficient charge transport exhibit ideal morphologies for solar-cell active layers. Here, we introduce a room temperature two-step method to grow dense, vertical nanowire arrays of formamidinium lead iodide (FAPbI3). PbI2 nanocrystals embedded in the cylindrical nanopores of anodized titanium dioxide scaffolds were converted to FAPbI3 by immersion in a FAI solution for a period of 0.5-30 min. During immersion, FAPbI3 crystals grew vertically from the scaffold surface as nanowires with diameters and densities determined by the underlying scaffold. The presence of butylammonium cations during nanowire growth stabilized the active α polymorph of FAPbI3, precluding the need for a thermal annealing step. Solar cells comprising α-FAPbI3 nanowire arrays exhibited maximum solar conversion efficiencies of >14%. Short-circuit current densities of 22-23 mA cm-2 were achieved, on par with those recorded for the best-performing FAPbI3 solar cells reported to date. Such large photocurrents are attributed to the single-crystalline, low-defect nature of the nanowires and increased interfacial area for photogenerated charge transfer compared with thin films.
Collapse
Affiliation(s)
- Aida Alaei
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Seyed Sepehr Mohajerani
- Department of Physics, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Ben Schmelmer
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Thiago I Rubio
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Justin Bendesky
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Min-Woo Kim
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Yichen Ma
- Department of Physics, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Sehee Jeong
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Qintian Zhou
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Mia Klopfenstein
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Claudia E Avalos
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Stefan Strauf
- Department of Physics, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Stephanie S Lee
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
| |
Collapse
|
2
|
Tao S, Kan L, Li Y, Zhang X, Xie Y, Tang J, Zhu X, Yu H, Li J, Wang K. Impact of Bychkov-Rashba Spin Splitting on Dual Emissions for Lead Halide Perovskite Nanowires. J Phys Chem Lett 2023; 14:7751-7758. [PMID: 37610071 DOI: 10.1021/acs.jpclett.3c02182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Bychkov-Rashba spin-orbit coupling (SOC) is decisive for photoinduced photoluminescence (PL) in terms of double emissions. It turns out to be remarkable for one-dimensional lead halide perovskite nanowires (PeNWs). This is primarily due to large surface to volume ratios and structural symmetry breaking fields in the reduced dimension. Systematic studies of the effect of Rashba SOC on PL and its discrimination with the self-trapped exciton in wide temperature and illumination intensity ranges are considerably important and, heretofore, have not been performed. Here, highly crystalline methylammonium lead triiodine (MAPbI3) PeNWs are demonstrated to be able to produce remarkable dual emissions at low temperatures. With extensive analyses by a photoelectrical device-based spin-photogalvanic effect and magnetophotoluminescence, the Rashba effect is proven to be the only factor that governs the dual emissions. We believe a complete understanding of the PL character of PeNWs is beneficial for the development of novel perovskite nanophotonic devices.
Collapse
Affiliation(s)
- Sheng Tao
- Institute of Optoelectronics Technology, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Lixuan Kan
- Institute of Optoelectronics Technology, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Yang Li
- Institute of Optoelectronics Technology, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Xiangpeng Zhang
- Institute of Optoelectronics Technology, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Yongchao Xie
- Institute of Optoelectronics Technology, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Jun Tang
- Institute of Optoelectronics Technology, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Xixiang Zhu
- Institute of Optoelectronics Technology, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Haomiao Yu
- Institute of Optoelectronics Technology, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Jinpeng Li
- Institute of Optoelectronics Technology, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Kai Wang
- Institute of Optoelectronics Technology, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
3
|
Wang B, Handschuh-Wang S, Shen J, Zhou X, Guo Z, Liu W, Pumera M, Zhang L. Small-Scale Robotics with Tailored Wettability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205732. [PMID: 36113864 DOI: 10.1002/adma.202205732] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/01/2022] [Indexed: 05/05/2023]
Abstract
Small-scale robots (SSRs) have emerged as promising and versatile tools in various biomedical, sensing, decontamination, and manipulation applications, as they are uniquely capable of performing tasks at small length scales. With the miniaturization of robots from the macroscale to millimeter-, micrometer-, and nanometer-scales, the viscous and surface forces, namely adhesive forces and surface tension have become dominant. These forces significantly impact motion efficiency. Surface engineering of robots with both hydrophilic and hydrophobic functionalization presents a brand-new pathway to overcome motion resistance and enhance the ability to target and regulate robots for various tasks. This review focuses on the current progress and future perspectives of SSRs with hydrophilic and hydrophobic modifications (including both tethered and untethered robots). The study emphasizes the distinct advantages of SSRs, such as improved maneuverability and reduced drag forces, and outlines their potential applications. With continued innovation, rational surface engineering is expected to endow SSRs with exceptional mobility and functionality, which can broaden their applications, enhance their penetration depth, reduce surface fouling, and inhibit bacterial adhesion.
Collapse
Affiliation(s)
- Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Stephan Handschuh-Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou, 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou, 730000, China
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, 70800, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, 999077, China
- Department of Surgery, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, 999077, China
| |
Collapse
|
4
|
Guan K, Zhang Z, Zhang Q, Ling P, Gao F. Rational design of semiconducting polymer poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(6-{4-ethyl-piperazin-1-yl}-2-phenyl-benzo{de}isoquinoline-1,3-dione)] for highly selective photoelectrochemical assay of p-phenylenediamine. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
5
|
Lu Y, Qu K, Zhang T, He Q, Pan J. Metal Halide Perovskite Nanowires: Controllable Synthesis, Mechanism, and Application in Optoelectronic Devices. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:419. [PMID: 36770381 PMCID: PMC9919554 DOI: 10.3390/nano13030419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Metal halide perovskites are promising energy materials because of their high absorption coefficients, long carrier lifetimes, strong photoluminescence, and low cost. Low-dimensional halide perovskites, especially one-dimensional (1D) halide perovskite nanowires (NWs), have become a hot research topic in optoelectronics owing to their excellent optoelectronic properties. Herein, we review the synthetic strategies and mechanisms of halide perovskite NWs in recent years, such as hot injection, vapor phase growth, selfassembly, and solvothermal synthesis. Furthermore, we summarize their applications in optoelectronics, including lasers, photodetectors, and solar cells. Finally, we propose possible perspectives for the development of halide perovskite NWs.
Collapse
Affiliation(s)
| | | | | | - Qingquan He
- Correspondence: (Q.H.); (J.P.); Tel.: +86-1-520-193-3096(Q.H.); +86-1-348-617-8387(J.P.)
| | - Jun Pan
- Correspondence: (Q.H.); (J.P.); Tel.: +86-1-520-193-3096(Q.H.); +86-1-348-617-8387(J.P.)
| |
Collapse
|
6
|
Xu X, Peng Q. Hole/Electron Transporting Materials for Nonfullerene Organic Solar Cells. Chemistry 2022; 28:e202104453. [PMID: 35224789 DOI: 10.1002/chem.202104453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Indexed: 12/27/2022]
Abstract
Nonfullerene acceptor based organic solar cells (NF-OSCs) have witnessed rapid progress over the past few years owing to the intensive research efforts on novel electron donor and nonfullerene acceptor (NFA) materials, interfacial engineering, and device processing techniques. Interfacial layers including electron transporting layers (ETL) and hole transporting layers (HTLs) are crucially important in the OSCs for facilitating electron and hole extraction from the photoactive blend to the respective electrodes. In this review, the lates progress in both ETLs and HTLs for the currently prevailing NF-OSCs are discussed, in which the ETLs are summarized from the categories of metal oxides, metal chelates, non-conjugated electrolytes and conjugated electrolytes, and the HTLs are summarized from the categories of inorganic and organic materials. In addition, some bifunctional interlayer materials served as both ETLs and HTLs are also introduced. Finally, the prospects of ETL/HTL materials for NF-OSCs are provided.
Collapse
Affiliation(s)
- Xiaopeng Xu
- School of Chemical Engineering, Key Laboratory of Green Chemistry and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Qiang Peng
- School of Chemical Engineering, Key Laboratory of Green Chemistry and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
7
|
Abstract
The thin-film organic solar cells (OSCs) are currently one of the most promising photovoltaic technologies to effectively harvest the solar energy due to their attractive features of mechanical flexibility, light weight, low-cost manufacturing, and solution-processed large-scale fabrication, etc. However, the relative insufficient light absorption, short exciton diffusion distance, and low carrier mobility of the OSCs determine the power conversion efficiency (PCE) of the devices are relatively lower than their inorganic photovoltaic counterparts. To conquer the challenges, the two-dimensional (2D) nanomaterials, which have excellent photoelectric properties, tunable energy band structure, and solvent compatibility etc., exhibit the great potential to enhance the performance of the OSCs. In this review, we summarize the most recent successful applications of the 2D materials, including graphene, black phosphorus, transition metal dichalcogenides, and g-C3N4, etc., adapted in the charge transporting layer, the active layer, and the electrode of the OSCs, respectively, for boosting the PCE and stability of the devices. The strengths and weaknesses of the 2D materials in the application of OSCs are also reviewed in details. Additionally, the challenges, commercialization potentials, and prospects for the further development of 2D materials-based OSCs are outlined in the end.
Collapse
|
8
|
Abstract
The increasing demand for renewable energy devices over the past decade has motivated researchers to develop new and improve the existing fabrication techniques. One of the promising candidates for renewable energy technology is metal halide perovskite, owning to its high power conversion efficiency and low processing cost. This work analyzes the relationship between the structure of metal halide perovskites and their properties along with the effect of alloying and other factors on device stability, as well as causes and mechanisms of material degradation. The present work discusses the existing approaches for enhancing the stability of PSC devices through modifying functional layers. The advantages and disadvantages of different methods in boosting device efficiency and reducing fabrication cost are highlighted. In addition, the paper presents recommendations for the enhancement of interfaces in PSC structures.
Collapse
|