1
|
Satheesh D, Baskar L, Jayavelu Y, Dekshinamoorthy A, Sakthinathan VR, Daniel PJ, Vijayaraghavan S, Krishnan K, Rajendran R, Pachaiappan R, Manavalan K. Efficient electrochemical hydrogen evolution activity of nanostructured Ag 3PO 4/MoS 2 heterogeneous composite catalyst. CHEMOSPHERE 2024; 351:141220. [PMID: 38224749 DOI: 10.1016/j.chemosphere.2024.141220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/31/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Hydrogen (H2) generation by electrochemical water splitting is a key technique for sustainable energy applications. Two-dimensional (2D) transition-metal dichalcogenide (MoS2) and silver phosphate (Ag3PO4) possess excellent electrochemical hydrogen evolution reaction (HER) properties when they are combined together as a composite rather than individuals. Reports examining the HER activity by using Ag3PO4, especially, in combination with the 2D layered MoS2 are limited in literature. The weight fraction of MoS2 in Ag3PO4 is optimized for 1, 3, and 5 wt%. The Ag3PO4/1 wt % MoS2 combination exhibits enhanced HER activity with least overpotential of 235 mV among the other samples in the acidic medium. The synergistic effect of optimal nano-scale 2D layered MoS2 structure and Ag3PO4 is essential for creating higher electrochemical active surface area of 217 mF/cm2, and hence this leads to faster reaction kinetics in the HER. This work suggests the advantages of Ag3PO4/1 wt % MoS2 heterogeneous composite catalyst for electrochemical analysis and HER indicating lower resistivity and low Tafel slope value (179 mV/dec) among the prepared catalysts making it a promising candidate for its use in practical energy applications.
Collapse
Affiliation(s)
- Divyadharshini Satheesh
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamilnadu, India
| | - Leena Baskar
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamilnadu, India
| | - Yuvashree Jayavelu
- Department of Physics, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Amuthan Dekshinamoorthy
- Corrosion and Materials Protection Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, Tamilnadu, India
| | - Vishwath Rishaban Sakthinathan
- Corrosion and Materials Protection Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, Tamilnadu, India
| | - Paul Joseph Daniel
- Department of Physics, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Saranyan Vijayaraghavan
- Corrosion and Materials Protection Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, Tamilnadu, India
| | - Karthik Krishnan
- Corrosion and Materials Protection Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, Tamilnadu, India
| | - Rathika Rajendran
- Department of Physics, St. Theresa's Arts & Science College for Women, Tharangambadi, Mayiladuthurai District, Tamilnadu, 609313, India
| | - Rekha Pachaiappan
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería Mecánica, Universidad de Tarapacá, Avda. General Velasquez 1775 , Arica, Chile
| | - Kovendhan Manavalan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamilnadu, India.
| |
Collapse
|
2
|
Liu Y, Li HY, Cao HX, Zheng XY, Yin Shi B, Yin HT. Defect and interface/surface engineering synergistically modulated electron transfer and nonlinear absorption properties in MoX 2 (X = Se, S, Te)@ZnO heterojunction. NANOSCALE 2024; 16:1865-1879. [PMID: 38168696 DOI: 10.1039/d3nr05766f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Systematic interface and defect engineering strategies have been demonstrated to be an effective way to modulate the electron transfer and nonlinear absorption properties in semiconductor heterojunctions. However, the role played by defects and interfacial strain in electron transfer at the interface of the MoX2 (X = Se, S, Te)@ZnO heterojunction remains poorly understood. Herein, using the MoX2@ZnO heterojunction, we reveal that vacancies play a critical role in the interfacial electron transfer of heterojunctions. Specifically, we present the defect and interface engineering of the MoX2@ZnO heterojunction for controlled charge transfer and electron excitation-relaxation. The experimental characterization combined with first-principles calculations showed that the presence of defects promoted the transport of photogenerated carriers at the heterojunction interface, thereby inhibiting their rapid recombination. The DFT calculation confirmed that the electron band structure, density of states and charge density distribution in the system changed after the formation of Mo-O bonds. On the basis of defects and interfacial stress and the effective charge transfer, the MoX2@ZnO heterojunction exhibited excellent excitation and emission behaviors. The nonlinear optical regulation behavior of TMDs is expected to be realized with the help of the defects and interface/surface synergistically modulated effect of ZnO nanoparticles. The local strain generation on the MoX2@ZnO heterojunction boundary provides a new method for the design of new heterogeneous materials and will be of great significance to investigate the contact physical behavior and application of metals and two-dimensional (2D) semiconductors. This work provides some inspiration for the construction of heterojunctions with rich defects and surface/interface charge transfer channels to promote tunable electron transfer dynamics, thereby achieving a good nonlinear optical conversion efficiency and efficient charge separation in optoelectronic functional materials.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Photonic and electric Bandgap materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China.
| | - Hong-Yu Li
- Key Laboratory of Photonic and electric Bandgap materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China.
| | - Hong-Xu Cao
- Key Laboratory of Photonic and electric Bandgap materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China.
| | - Xin-Yu Zheng
- Key Laboratory of Photonic and electric Bandgap materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China.
| | - Bing- Yin Shi
- Key Laboratory of Photonic and electric Bandgap materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China.
| | - Hai-Tao Yin
- Key Laboratory of Photonic and electric Bandgap materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China.
| |
Collapse
|
3
|
Dang VD, Putikam R, Lin MC, Wei KH. MoS 2 Nanoflowers Grown on Plasma-Induced W-Anchored Graphene for Efficient and Stable H 2 Production Through Seawater Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305220. [PMID: 37658516 DOI: 10.1002/smll.202305220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Indexed: 09/03/2023]
Abstract
Herein, it is found that 3D transition metal dichalcogenide (TMD)-MoS2 nanoflowers-grown on 2D tungsten oxide-anchored graphene nanosheets (MoS2 @W-G) functions as a superior catalyst for the hydrogen evolution reaction (HER) under both acidic and alkaline conditions. The optimized weight ratio of MoS2 @W-G (MoS2 :W-G/1.5:1) in 0.5 M H2 SO4 achieves a low overpotential of 78 mV at 10 mA cm-2 , a small Tafel slope of 48 mV dec-1 , and a high exchange current density (0.321 mA cm⁻2 ). Furthermore, the same MoS2 @W-G composite exhibits stable HER performance when using real seawater, with Faradaic efficiencies of 96 and 94% in acidic and alkaline media, respectively. Density functional theory calculations based on the hybrid MoS2 @W-G structure model confirm that suitable hybridization of 3D MoS2 and 2D W-G nanosheets can lower the hydrogen adsorption: Gibbs free energy (∆GH* ) from 1.89 eV for MoS2 to -0.13 eV for the MoS2 @W-G composite. The excellent HER activity of the 3D/2D hybridized MoS2 @W-G composite arises from abundance of active heterostructure interfaces, optimizing the electrical configuration, thereby accelerating the adsorption and dissociation of H2 O. These findings suggest a new approach for the rational development of alternative 3D/2D TMD/graphene electrocatalysts for HER applications using seawater.
Collapse
Affiliation(s)
- Van Dien Dang
- Faculty of Biology and Environment, Ho Chi Minh City University of Industry and Trade, 140 Le Trong Tan, Ho Chi Minh, 700000, Vietnam
| | - Raghunath Putikam
- Department of Applied Chemistry, Center for Interdisciplinary Molecular Science, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Ming-Chang Lin
- Department of Applied Chemistry, Center for Interdisciplinary Molecular Science, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Kung-Hwa Wei
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| |
Collapse
|
4
|
Dual-cathode plasma-induced exfoliated WSe2/graphene nanosheet composite mediating an efficient hydrogen evolution reaction. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
5
|
Zhang G, Wu H, Zhang L, Yang L, Xie Y, Guo F, Li H, Tao B, Wang G, Zhang W, Chang H. Two-Dimensional Van Der Waals Topological Materials: Preparation, Properties, and Device Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204380. [PMID: 36135779 DOI: 10.1002/smll.202204380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Over the past decade, 2D van der Waals (vdW) topological materials (TMs), including topological insulators and topological semimetals, which combine atomically flat 2D layers and topologically nontrivial band structures, have attracted increasing attention in condensed-matter physics and materials science. These easily cleavable and integrated TMs provide the ideal platform for exploring topological physics in the 2D limit, where new physical phenomena may emerge, and represent a potential to control and investigate exotic properties and device applications in nanoscale topological phases. However, multifaced efforts are still necessary, which is the prerequisite for the practical application of 2D vdW TMs. Herein, this review focuses on the preparation, properties, and device applications of 2D vdW TMs. First, three common preparation strategies for 2D vdW TMs are summarized, including single crystal exfoliation, chemical vapor deposition, and molecular beam epitaxy. Second, the origin and regulation of various properties of 2D vdW TMs are introduced, involving electronic properties, transport properties, optoelectronic properties, thermoelectricity, ferroelectricity, and magnetism. Third, some device applications of 2D vdW TMs are presented, including field-effect transistors, memories, spintronic devices, and photodetectors. Finally, some significant challenges and opportunities for the practical application of 2D vdW TMs in 2D topological electronics are briefly addressed.
Collapse
Affiliation(s)
- Gaojie Zhang
- Quantum-Nano Matter and Device Lab, Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hao Wu
- Quantum-Nano Matter and Device Lab, Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liang Zhang
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Microelectronics and Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Li Yang
- Quantum-Nano Matter and Device Lab, Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuanmiao Xie
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Microelectronics and Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Fei Guo
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Microelectronics and Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Hongda Li
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Microelectronics and Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Boran Tao
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Microelectronics and Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Guofu Wang
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Microelectronics and Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Wenfeng Zhang
- Quantum-Nano Matter and Device Lab, Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Shenzhen R&D Center of Huazhong University of Science and Technology (HUST), Shenzhen, 518000, China
| | - Haixin Chang
- Quantum-Nano Matter and Device Lab, Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Shenzhen R&D Center of Huazhong University of Science and Technology (HUST), Shenzhen, 518000, China
| |
Collapse
|
6
|
Surface plasma–induced tunable nitrogen doping through precursors provides 1T-2H MoSe2/graphene sheet composites as electrocatalysts for the hydrogen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Le PA, Le VQ, Nguyen NT, Phung VBT. Food seasoning-derived gel polymer electrolyte and pulse-plasma exfoliated graphene nanosheet electrodes for symmetrical solid-state supercapacitors. RSC Adv 2022; 12:1515-1526. [PMID: 35425167 PMCID: PMC8978909 DOI: 10.1039/d1ra07820h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/09/2021] [Indexed: 12/20/2022] Open
Abstract
Kitchen sea salt or table salt is used every day by cooks as a food seasoning. Here, it is introduced into a gel polymer (poly(vinyl) alcohol (PVA)-table salt) for use as an electrolyte, and an electrode was constructed from graphene nanosheets for use as symmetrical solid-state supercapacitors. The graphene sheets are prepared by a pulse control plasma method and used as an electrode material, and were studied by X-ray diffraction (XRD), Raman spectroscopy, as well as scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). A specific capacitance of 117.6 F g-1 at 5 mV s-1 was obtained in a three electrode system with table sea salt as an aqueous electrolyte. For a symmetrical solid-state supercapacitor: graphene/PVA-table sea salt/graphene gave a good specific capacitance of 31.67 F g-1 at 0.25 A g-1 with an energy density of 6.33 W h kg-1 at a power density of 600 W kg-1, with good charge-discharge stability, which was 87% after 8000 cycles. Thus, the development of table sea salt as an environmentally friendly electrolyte has a good potential for use in energy storage applications.
Collapse
Affiliation(s)
- Phuoc Anh Le
- Institute of Sustainability Science, VNU Vietnam Japan University, Vietnam National University Hanoi 100000 Vietnam
| | - Van Qui Le
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
| | - Nghia Trong Nguyen
- School of Chemical Engineering, Hanoi University of Science and Technology Hanoi 100000 Vietnam
| | - Viet Bac Thi Phung
- Institute of Sustainability Science, VNU Vietnam Japan University, Vietnam National University Hanoi 100000 Vietnam
| |
Collapse
|
8
|
Du W, Yu Z, Wang X, Wu J, Zhang L. Large-scale and clean preparation of low-defect few-layered graphene from commercial graphite via hydroxyl radical exfoliation in an acidic medium. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00289a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanism diagram of hydroxyl radical stripping graphite.
Collapse
Affiliation(s)
- Wenqiao Du
- Jilin Provincial Engineering Laboratory for the Complex Utilization of Petro-resources and Biomass, School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin, 130012, P. R. China
| | - Zaiqian Yu
- Jilin Provincial Engineering Laboratory for the Complex Utilization of Petro-resources and Biomass, School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin, 130012, P. R. China
| | - Xin Wang
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| | - Jingdong Wu
- Jilin Provincial Engineering Laboratory for the Complex Utilization of Petro-resources and Biomass, School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin, 130012, P. R. China
| | - Long Zhang
- Jilin Provincial Engineering Laboratory for the Complex Utilization of Petro-resources and Biomass, School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin, 130012, P. R. China
| |
Collapse
|
9
|
Jin X, Gu TH, Kwon NH, Hwang SJ. Synergetic Advantages of Atomically Coupled 2D Inorganic and Graphene Nanosheets as Versatile Building Blocks for Diverse Functional Nanohybrids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005922. [PMID: 33890336 DOI: 10.1002/adma.202005922] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/20/2020] [Indexed: 05/05/2023]
Abstract
2D nanostructured materials, including inorganic and graphene nanosheets, have evoked plenty of scientific research activity due to their intriguing properties and excellent functionalities. The complementary advantages and common 2D crystal shapes of inorganic and graphene nanosheets render their homogenous mixtures powerful building blocks for novel high-performance functional hybrid materials. The nanometer-level thickness of 2D inorganic/graphene nanosheets allows the achievement of unusually strong electronic couplings between sheets, leading to a remarkable improvement in preexisting functionalities and the creation of unexpected properties. The synergetic merits of atomically coupled 2D inorganic-graphene nanosheets are presented here in the exploration of novel heterogeneous functional materials, with an emphasis on their critical roles as hybridization building blocks, interstratified sheets, additives, substrates, and deposited monolayers. The great flexibility and controllability of the elemental compositions, defect structures, and surface natures of inorganic-graphene nanosheets provide valuable opportunities for exploring high-performance nanohybrids applicable as electrodes for supercapacitors and rechargeable batteries, electrocatalysts, photocatalysts, and water purification agents, to give some examples. An outlook on future research perspectives for the exploitation of emerging 2D nanosheet-based hybrid materials is also presented along with novel synthetic strategies to maximize the synergetic advantage of atomically mixed 2D inorganic-graphene nanosheets.
Collapse
Affiliation(s)
- Xiaoyan Jin
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Tae-Ha Gu
- Department of Chemistry and Nanoscience, College of Natural Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Nam Hee Kwon
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seong-Ju Hwang
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
10
|
Chen W, Wei W, Wang K, Cui J, Zhu X, Ostrikov KK. Partial sulfur vacancies created by carbon-nitrogen deposition of MoS 2 for high-performance overall electrocatalytic water splitting. NANOSCALE 2021; 13:14506-14517. [PMID: 34473169 DOI: 10.1039/d1nr02966e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrocatalytic water splitting is a promising energy-efficient solution to obtain clean hydrogen energy. Bifunctional electrocatalysts made up of cheap and abundant elements and suitable for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) are critically needed, yet their performance deserves substantial improvement. The catalytic activity could be improved by creating unsaturated defects, which so far has rarely been demonstrated. Here, we combine the effects of unsaturated sulfur vacancies and bi-elemental C and N doping in MoS2 nanosheets to achieve high-performance bifunctional electrocatalysts. The new method to obtain C and N doped MoS2 at high temperature is presented. The obtained C-N-MoS2/CC-T catalysts with S unsaturated defect sites and Mo-N links exhibit high activity and improved electrical conductivity for both the HER and OER in alkaline media. Systematic experiments and density functional theory (DFT) analysis confirm that CN-doping exposes catalytically active sites and enhances water adsorption. The optimized C-N-MoS2/CC-700 catalyst exhibits low overpotentials of 90 and 230 mV at 10 mA cm-2 for the HER and OER, respectively. Importantly, the porous C-N-MoS2/CC-700 nanosheets deliver low voltages of 1.58 V for the overall water splitting at 10 mA cm-2 and robust operation for 30 h without any reduced activity. Such impressive performances are attributed to their unique structure with large specific surface area, abundant S unsaturated sites, Mo-N links, and shortened electron transfer paths. This partial defect filling by the bi-dopant incorporation approach is generic and is promising for a broad range of advanced energy materials.
Collapse
Affiliation(s)
- Wenxia Chen
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan D&A Engineering Center of Advanced Battery Materials, Shangqiu Normal University, Shangqiu 476000, China.
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan D&A Engineering Center of Advanced Battery Materials, Shangqiu Normal University, Shangqiu 476000, China.
| | - Kefeng Wang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan D&A Engineering Center of Advanced Battery Materials, Shangqiu Normal University, Shangqiu 476000, China.
| | - Jinhai Cui
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan D&A Engineering Center of Advanced Battery Materials, Shangqiu Normal University, Shangqiu 476000, China.
| | - Xingwang Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
11
|
Wang P, Dai Y, Wang X, Ren X, Luo C. Boosting Hydrogen Evolution on MoS
2
/CNT Modified by Poly(sodium‐p–styrene sulfonate)
via
Proton Concentration in Acid Solution. ChemElectroChem 2021. [DOI: 10.1002/celc.202100608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pengfei Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 PR China
| | - Yuxue Dai
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 PR China
| | - Xueying Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 PR China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 PR China
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 PR China
| |
Collapse
|
12
|
Puente Santiago AR, Sanad MF, Moreno-Vicente A, Ahsan MA, Cerón MR, Yao YR, Sreenivasan ST, Rodriguez-Fortea A, Poblet JM, Echegoyen L. A New Class of Molecular Electrocatalysts for Hydrogen Evolution: Catalytic Activity of M 3N@C 2n (2 n = 68, 78, and 80) Fullerenes. J Am Chem Soc 2021; 143:6037-6042. [PMID: 33821637 DOI: 10.1021/jacs.0c13002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electrocatalytic properties of some endohedral fullerenes for hydrogen evolution reactions (HER) were recently predicted by DFT calculations. Nonetheless, the experimental catalytic performance under realistic electrochemical environments of these 0D-nanomaterials have not been explored. Here, for the first time, we disclose the HER electrocatalytic behavior of seven M3N@2n (2n = 68, 78, and 80) fullerenes (Gd3N@Ih(7)-C80, Y3N@Ih(7)-C80, Lu3N@Ih(7)-C80, Sc3N@Ih(7)-C80, Sc3N@D5h(6)-C80, Sc3N@D3h(5)-C78, and Sc3N@D3(6140)-C68) using a combination of experimental and theoretical techniques. The non-IPR Sc3N@D3(6140)-C68 compound exhibited the best catalytic performance toward the generation of molecular hydrogen, exhibiting an onset potential of -38 mV vs RHE, a very high mass activity of 1.75 A·mg-1 at -0.4 V vs RHE, and an excellent electrochemical stability, retaining 96% of the initial current after 24 h. The superior performance was explained on the basis of the fused pentagon rings, which represent a new and promising HER catalytic motif.
Collapse
Affiliation(s)
- Alain R Puente Santiago
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Mohamed Fathi Sanad
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States.,Department of Environmental Sciences and Engineering, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Antonio Moreno-Vicente
- Departmento de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcellí Domingo 1, 43007 Tarragona, Spain
| | - Md Ariful Ahsan
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Maira R Cerón
- Lawrence Livermore National Laboratory 7000 East Ave, Livermore, California 94550, United States
| | - Yang-Rong Yao
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Sreeprasad T Sreenivasan
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Antonio Rodriguez-Fortea
- Departmento de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcellí Domingo 1, 43007 Tarragona, Spain
| | - Josep M Poblet
- Departmento de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcellí Domingo 1, 43007 Tarragona, Spain
| | - Luis Echegoyen
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| |
Collapse
|
13
|
Chang L, Sun Z, Hu YH. 1T Phase Transition Metal Dichalcogenides for Hydrogen Evolution Reaction. ELECTROCHEM ENERGY R 2021. [DOI: 10.1007/s41918-020-00087-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Chang B, Cheng HW, Lin YC, Wang HC, Chen CH, Nguyen VT, Yang Y, Wei KH. Incorporating Indium Selenide Nanosheets into a Polymer/Small Molecule Binary Blend Active Layer Enhances the Long-Term Stability and Performance of Its Organic Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55023-55032. [PMID: 33238703 DOI: 10.1021/acsami.0c14461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this report, we demonstrated that the incorporation of 15 wt % two-dimensional transition-metal dichalcogenide materials indium selenide (In2Se3) nanosheets into a polymer (PM6)/small molecule (Y6) active layer not only increased its light absorption but also enhanced the long-term stability of the PM6/Y6/In2Se3 ternary blend organic photovoltaic (OPV) devices. The power conversion efficiency (PCE) of the device was improved from 15.7 to 16.5% for the corresponding PM6/Y6 binary blend device. Moreover, the PM6/Y6/In2Se3 device retained 80% of its initial PCE after thermal treatment at 100 °C for 600 h; in comparison, the binary blend device retained only 62% of its initial value. This relative enhancement of 29% resulted from the In2Se3 nanosheets retarding or facilitating molecule packing in different orientations that stabilizes the morphology of the active layer. We adopted a modified kinetics model to account for the intrinsic degradation of the OPV; the degradation-facilitated energy for the degradation kinetics of the PCE for the ternary blend device was 5.3 kJ/mol, half of that (11.3 kJ/mol) of the binary blend device, indicating a slower degradation rate occurring for the case of incorporating In2Se3 nanosheets. Therefore, the incorporation of transition metal dichalcogenide nanosheets having tunable band gaps and large asymmetric shape appears to be a new way to improve the long-term stability of devices and realize the practical use of OPVs.
Collapse
Affiliation(s)
- Bin Chang
- Department of Materials Science and Engineering, National Chiao Tung University 30010 Hsinchu, Taiwan
| | - Hao-Wen Cheng
- Department of Materials Science and Engineering, National Chiao Tung University 30010 Hsinchu, Taiwan
| | - Yu-Che Lin
- Department of Materials Science and Engineering, National Chiao Tung University 30010 Hsinchu, Taiwan
| | - Hao-Cheng Wang
- Department of Materials Science and Engineering, National Chiao Tung University 30010 Hsinchu, Taiwan
| | - Chung-Hao Chen
- Department of Materials Science and Engineering, National Chiao Tung University 30010 Hsinchu, Taiwan
| | - Van-Truong Nguyen
- Department of Materials Science and Engineering, National Chiao Tung University 30010 Hsinchu, Taiwan
| | - Yang Yang
- Department of Material Science and Engineering, University of California, Los Angeles, California 90095, United States
| | - Kung-Hwa Wei
- Department of Materials Science and Engineering, National Chiao Tung University 30010 Hsinchu, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
15
|
Designing of Ag
2
S Nanowires from a Single‐Source Molecular Precursor [(PPh
3
)
2
AgS
2
P(O
i
Pr)
2
] for Hydrogen Evolution Reaction. ChemistrySelect 2020. [DOI: 10.1002/slct.202002693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Improvement in the Hard Milling of AISI D2 Steel under the MQCL Condition Using Emulsion-Dispersed MoS2 Nanosheets. LUBRICANTS 2020. [DOI: 10.3390/lubricants8060062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present work shows the process for MoS2 nanosheet production by liquid N2-queched bulk, a novel method having highly efficient, green, and facile operation. The produced MoS2 nanoparticles are suspended in minimum quantity cooling lubrication (MQCL)-based fluid to form nanofluid used for the hard milling of AISI D2 steel. The study aims to improve the hard-milling performance assisted by the MQCL technique using MoS2 nanofluid. ANOVA analysis is used to evaluate the effects of three input machining variables, including nanoparticle concentration, cutting speed, and material hardness on cutting forces. The results indicate that the better cooling effect from the principle of the Ranque–Hilsch vortex tube of the MQCL device combined with the better lubricating performance from MoS2 nanofluid brings out the sustainable alternative solution for machining difficult-to-cut material. Moreover, the experimental results provide the technical guides for the selection of proper values of nanoparticle concentration and cutting speed while ensuring the technological, economic, and environmental characteristics.
Collapse
|
17
|
Huang SY, Le PA, Yen PJ, Lu YC, Sahoo SK, Cheng HW, Chiu PW, Tseng TY, Wei KH. Cathodic plasma–induced syntheses of graphene nanosheet/MnO2/WO3 architectures and their use in supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136043] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|