1
|
Sun Z, Yin Y, Liu B, Xue T, Zou Q. Amphibious Multifunctional Hydrogel Flexible Haptic Sensor with Self-Compensation Mechanism. SENSORS (BASEL, SWITZERLAND) 2024; 24:3232. [PMID: 38794086 PMCID: PMC11125873 DOI: 10.3390/s24103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
In recent years, hydrogel-based wearable flexible electronic devices have attracted much attention. However, hydrogel-based sensors are affected by structural fatigue, material aging, and water absorption and swelling, making stability and accuracy a major challenge. In this study, we present a DN-SPEZ dual-network hydrogel prepared using polyvinyl alcohol (PVA), sodium alginate (SA), ethylene glycol (EG), and ZnSO4 and propose a self-calibration compensation strategy. The strategy utilizes a metal salt solution to adjust the carrier concentration of the hydrogel to mitigate the resistance drift phenomenon to improve the stability and accuracy of hydrogel sensors in amphibious scenarios, such as land and water. The ExpGrow model was used to characterize the trend of the ∆R/R0 dynamic response curves of the hydrogels in the stress tests, and the average deviation of the fitted curves ϵ¯ was calculated to quantify the stability differences of different groups. The results showed that the stability of the uncompensated group was much lower than that of the compensated group utilizing LiCl, NaCl, KCl, MgCl2, and AlCl3 solutions (ϵ¯ in the uncompensated group in air was 276.158, 1.888, 2.971, 30.586, and 13.561 times higher than that of the compensated group in LiCl, NaCl, KCl, MgCl2, and AlCl3, respectively; ϵ¯ in the uncompensated group in seawater was 10.287 times, 1.008 times, 1.161 times, 4.986 times, 1.281 times, respectively, higher than that of the compensated group in LiCl, NaCl, KCl, MgCl2 and AlCl3). In addition, for the ranking of the compensation effect of different compensation solutions, the concentration of the compensation solution and the ionic radius and charge of the cation were found to be important factors in determining the compensation effect. Detection of events in amphibious environments such as swallowing, robotic arm grasping, Morse code, and finger-wrist bending was also performed in this study. This work provides a viable method for stability and accuracy enhancement of dual-network hydrogel sensors with strain and pressure sensing capabilities and offers solutions for sensor applications in both airborne and underwater amphibious environments.
Collapse
Affiliation(s)
- Zhenhao Sun
- School of Microelectronics, Tianjin University, Tianjin 300072, China; (Z.S.); (Y.Y.); (B.L.)
| | - Yunjiang Yin
- School of Microelectronics, Tianjin University, Tianjin 300072, China; (Z.S.); (Y.Y.); (B.L.)
| | - Baoguo Liu
- School of Microelectronics, Tianjin University, Tianjin 300072, China; (Z.S.); (Y.Y.); (B.L.)
| | - Tao Xue
- Center of Analysis and Testing Facilities, Tianjin University, Tianjin 300072, China;
| | - Qiang Zou
- School of Microelectronics, Tianjin University, Tianjin 300072, China; (Z.S.); (Y.Y.); (B.L.)
- Tianjin International Joint Research Center for Internet of Things, Tianjin 300072, China
- Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Sui N, Song Z, Xu X, Cao S, Xu Y, Zhou T, Zhang T. Effect of heterogenous dopant and high temperature pulse excitation on ozone sensing behavior of In 2O 3 nanostructures and an image recognition method coupled to ozone sensing array. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133379. [PMID: 38160555 DOI: 10.1016/j.jhazmat.2023.133379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Ground-level ozone (O3) is a primary air pollutant with potential adverse impacts on human health and ecosystems. Aiming to detect O3 concentration and develop efficient O3 sensing materials, sensing behavior of heterogenous cation (Fe3+, Sn4+ and Sb5+) doped In2O3 nanostructures was investigated. The incorporation of these cations modulated the electronic structure of semiconductor oxides, affecting the density of chemisorbed oxygen species and reactive sites. From O3 sensing results, Fe3+ doped In2O3 based sensors featuring saturated resistance curves in O3 gas, demonstrated fast sensing speed and qualified detection threshold (20 ppb). In contrast, Sn4+ and Sb5+ doped counterparts exhibited non-saturated sensing curves, resulting in slower response/recovery speed. As a proof-of-concept, these optimized sensors were integrated as the sensor array. Coupled to the image recognition technique, this sensor array could successfully discriminate O3 and NOx. That is, through the tailored combination of material modulation and sensor array, this study paves a novel approach for highly sensitive and selective O3 detection.
Collapse
Affiliation(s)
- Ning Sui
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Zijie Song
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Xiaoyi Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Shuang Cao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Yifeng Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Tingting Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China.
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
3
|
Kim J, John AT, Li H, Huang CY, Chi Y, Anandan PR, Murugappan K, Tang J, Lin CH, Hu L, Kalantar-Zadeh K, Tricoli A, Chu D, Wu T. High-Performance Optoelectronic Gas Sensing Based on All-Inorganic Mixed-Halide Perovskite Nanocrystals with Halide Engineering. SMALL METHODS 2024; 8:e2300417. [PMID: 37330645 DOI: 10.1002/smtd.202300417] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/30/2023] [Indexed: 06/19/2023]
Abstract
Gas sensors are of great interest to portable and miniaturized sensing technologies with applications ranging from air quality monitoring to explosive detection and medical diagnostics, but the existing chemiresistive NO2 sensors still suffer from issues such as poor sensitivity, high operating temperature, and slow recovery. Herein, a high-performance NO2 sensors based on all-inorganic perovskite nanocrystals (PNCs) is reported, achieving room temperature operation with ultra-fast response and recovery time. After tailoring the halide composition, superior sensitivity of ≈67 at 8 ppm NO2 is obtained in CsPbI2 Br PNC sensors with a detection level down to 2 ppb, which outperforms other nanomaterial-based NO2 sensors. Furthermore, the remarkable optoelectronic properties of such PNCs enable dual-mode operation, i.e., chemiresistive and chemioptical sensing, presenting a new and versatile platform for advancing high-performance, point-of-care NO2 detection technologies.
Collapse
Affiliation(s)
- Jiyun Kim
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Alishba T John
- Nanotechnology Research Laboratory, Research School of Electrical, Energy and Materials Engineering Chemistry, College of Engineering and Computer Science, Australian National University (ANU), Canberra, ACT, 0200, Australia
| | - Hanchen Li
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Chien-Yu Huang
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Yuan Chi
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Pradeep Raja Anandan
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Krishnan Murugappan
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Mineral Resources, Clayton South, Victoria, 3169, Australia
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Chun-Ho Lin
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
- School of Engineering, Macquarie University, Sydney, NSW, 2019, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, 2006, Australia
| | - Antonio Tricoli
- Nanotechnology Research Laboratory, Research School of Electrical, Energy and Materials Engineering Chemistry, College of Engineering and Computer Science, Australian National University (ANU), Canberra, ACT, 0200, Australia
- Nanotechnology Research Laboratory, School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Dewei Chu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Tom Wu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
4
|
Bakhori NM, Ismail Z, Hassan MZ, Dolah R. Emerging Trends in Nanotechnology: Aerogel-Based Materials for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1063. [PMID: 36985957 PMCID: PMC10058649 DOI: 10.3390/nano13061063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
At present, aerogel is one of the most interesting materials globally. The network of aerogel consists of pores with nanometer widths, which leads to a variety of functional properties and broad applications. Aerogel is categorized as inorganic, organic, carbon, and biopolymers, and can be modified by the addition of advanced materials and nanofillers. Herein, this review critically discusses the basic preparation of aerogel from the sol-gel reaction with derivation and modification of a standard method to produce various aerogels for diverse functionalities. In addition, the biocompatibility of various types of aerogels were elaborated. Then, biomedical applications of aerogel were focused on this review as a drug delivery carrier, wound healing agent, antioxidant, anti-toxicity, bone regenerative, cartilage tissue activities and in dental fields. The clinical status of aerogel in the biomedical sector is shown to be similarly far from adequate. Moreover, due to their remarkable properties, aerogels are found to be preferably used as tissue scaffolds and drug delivery systems. The advanced studies in areas including self-healing, additive manufacturing (AM) technology, toxicity, and fluorescent-based aerogel are crucially important and are further addressed.
Collapse
Affiliation(s)
- Noremylia Mohd Bakhori
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Persiaran Ilmu, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Zarini Ismail
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Persiaran Ilmu, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Mohamad Zaki Hassan
- Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Selangor, Malaysia
| | - Rozzeta Dolah
- Department of Chemical Engineering, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Selangor, Malaysia
| |
Collapse
|
5
|
Zhou Q, Xu L, Kan Z, Yang L, Chang Z, Dong B, Bai X, Lu G, Song H. A multi-platform sensor for selective and sensitive H 2S monitoring: Three-dimensional macroporous ZnO encapsulated by MOFs with small Pt nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128075. [PMID: 34959212 DOI: 10.1016/j.jhazmat.2021.128075] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
The high-selectivity and high-sensitivity determination of trace concentrations of toxic gases is a major challenge when using semiconductor metal oxide (SMO) gas sensors in complicated real-world environments. In this study, by strategically combining a three-dimensional inverse opal (3DIO) macroporous ZnO substrate and a ZIF-8 outer filter membrane, two series of sensors with Pt NPs loaded at different locations are developed. In the optimal 3DIO ZnO@ZIF-8/Pt sensor, the existence of small Pt NPs in ZIF-8 cavities can effectively accelerate the absorption of H2S, capture electrons from the N site of ZIF-8, and donate the electron to the S site of H2S, as indicated by density functional theory simulations, leading to a significantly increased response to H2S. Together with the molecular-sieving effect that ZIF-8 exerts on gas molecules with larger kinetic diameters, the 3DIO ZnO@ZIF-8/Pt sensor exhibits a high response to H2S (118-5.5 ppm), a detection limit of 40 ppb, and importantly, a 59-fold higher selectivity to H2S against typical interference gases. In addition, the 3DIO ZnO@ZIF-8/Pt sensor is developed as a multi-platform sensor to evaluate trace concentrations of H2S in meat quality assessment, halitosis diagnosis, and automobile exhaust assessment.
Collapse
Affiliation(s)
- Qingqing Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Lin Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China.
| | - Zitong Kan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Long Yang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Zhiyong Chang
- Key Laboratory of Bionic Engineering, Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, People's Republic of China.
| | - Biao Dong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Hongwei Song
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
6
|
Yan W, Liu Y, Shao G, Zhu K, Cui S, Wang W, Shen X. Chemical Surface Adsorption and Trace Detection of Alcohol Gas in Graphene Oxide-Based Acid-Etched SnO 2 Aerogels. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20467-20478. [PMID: 33880925 DOI: 10.1021/acsami.1c00302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An acidified SnO2/rGO aerogel (ASGA) is an attractive contributor in ethanol gas sensing under ultralow concentration because of the sufficient active sites and adsorption pores in SnO2 and the rGA, respectively. Furthermore, a p-n heterojunction is successfully constructed by the high electron mobility between ASP and rGA to establish a brand-new bandgap of 2.72 eV, where more electrons are released and the surface energy is decreased, to improve the gas sensitivity. The ASGA owns a specific surface area of 256.1 m2/g, far higher than SnO2 powder (68.7 m2/g), indicating an excellent adsorption performance, so it can acquire more ethanol gas for a redox reaction. For gas-sensing ability, the ASGA exhibits an excellent response of Ra/Rg = 137.4 to 20 ppm of ethanol at the optimum temperature of 210 °C and can reach a response of 1.2 even at the limit detection concentration of 0.25 ppm. After the concentration gradient change test, a nonlinear increase between concentration and sensitivity (S-C curve) is observed, and it indirectly proves the chemical adsorption between ethanol and ASGA, which exhibits charge transfer and improves electron mobility. In addition, a detailed energy band diagram and sensor response diagram jointly depict the gas-sensitive mechanism. Finally, a conversed calculation explains the feasibility of the nonlinear S-C curve from the atomic level, which further verifies the chemical adsorption during the sensing process.
Collapse
Affiliation(s)
- Wenqian Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China
| | - Yiming Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China
| | - Gaofeng Shao
- Institute of Advanced Materials and Flexible Electronics, School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Kunmeng Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China
| | - Sheng Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China
| | - Wei Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China
| | - Xiaodong Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|