1
|
Francis S, Salim S, Rajith L. Fluorescent Determination of Uric Acid Based on Porphyrin and ZnCo 2O 4 Nanocomposite. J Fluoresc 2024:10.1007/s10895-024-03986-1. [PMID: 39425835 DOI: 10.1007/s10895-024-03986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Advances in porphyrin chemistry have provided exciting technologies in the field of optical biosensing. Herein, we have synthesized 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin (TCPP) and porous Zn0.1Co2O4 nanorods using a simple one-pot hydrothermal method. The obtained TCPP- Zn0.1Co2O4 composite was then used for the development of a novel optical sensor for the determination of uric acid (UA), which is an important biomarker in human urine, serum or saliva for the clinical diagnosis of hyperuricemia and hypouricemia, etc. TCPP-Zn0.1Co2O4 composite was characterized using SEM, TEM, EDAX, PXRD, FT-IR, UV-Visible, and NMR spectroscopic techniques. The fluorescence emission spectral analysis of TCPP-Zn0.1Co2O4 was then investigated for potential applications in the detection of uric acid via the fluorescence quenching mechanism. The designed sensor showed a linear response towards the uric acid in the concentration range of 0.99 to 5.2 nM. The optical sensor exhibits a sensitive response to uric acid with a detection limit of 0.015 nM. The sensor was employed to quantify UA in spiked human urine samples and artificial urine with satisfactory results.
Collapse
Affiliation(s)
- Shijo Francis
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, 682022, Kerala, India
| | - Shamna Salim
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, 682022, Kerala, India
| | - Leena Rajith
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, 682022, Kerala, India.
| |
Collapse
|
2
|
Pan Q, Ma X, Wang H, Shu Y, Liu H, Yang L, Li W, Liu J, Wu Y, Mao Y, Xie J, Zou G, Hou H, Deng W, Ji X. Approaching Splendid Catalysts for Li-CO 2 Battery from the Theory to Practical Designing: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406905. [PMID: 39081118 DOI: 10.1002/adma.202406905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/02/2024] [Indexed: 10/04/2024]
Abstract
Lithium carbon dioxide (Li-CO2) batteries, noted for their high discharge voltage of approximately 2.8 V and substantial theoretical specific energy of 1876 Wh kg-1, represent a promising avenue for new energy sources and CO2 emission reduction. However, the practical application of these batteries faces significant hurdles, particularly at high current densities and over extended cycle lives, due to their complex reaction mechanisms and slow kinetics. This paper delves into the recent advancements in cathode catalysts for Li-CO2 batteries, with a specific focus on the designing philosophy from composition, geometry, and homogeneity of the catalysts to the proper test conditions and real-world application. It surveys the possible catalytic mechanisms, giving readers a brief introduction of how the energy is stored and released as well as the critical exploration of the relationship between material properties and performances. Specifically, optimization and standardization of test conditions for Li-CO2 battery research is highlighted to enhance data comparability, which is also critical to facilitate the practical application of Li-CO2 batteries. This review aims to bring up inspiration from previous work to advance the design of more effective and sustainable cathode catalysts, tailored to meet the practical demands of Li-CO2 batteries.
Collapse
Affiliation(s)
- Qing Pan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410006, China
| | - Xianpeng Ma
- Light Alloy Research Institute, Central South University, Changsha, 410006, China
| | - Haoji Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410006, China
| | - Yuming Shu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410006, China
| | - Huaxin Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410006, China
| | - Lu Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410006, China
| | - Wenyuan Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410006, China
| | - Jintao Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410006, China
| | - Yancheng Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410006, China
| | - Ya Mao
- State Key Laboratory of Space Power Sources, Shanghai Institute of Space Power Sources, Shanghai, 200245, China
| | - Jingying Xie
- State Key Laboratory of Space Power Sources, Shanghai Institute of Space Power Sources, Shanghai, 200245, China
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410006, China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410006, China
| | - Wentao Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410006, China
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410006, China
| |
Collapse
|
3
|
Chen X, Chen J, Qiao Y, Gao Y, Fan S, Liu Y, Li L, Liu Y, Chou S. Facile fabrication of Ni, Fe-doped δ-MnO 2 derived from Prussian blue analogues as an efficient catalyst for stable Li-CO 2 batteries. Chem Sci 2024; 15:2473-2479. [PMID: 38362438 PMCID: PMC10866367 DOI: 10.1039/d3sc05794a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024] Open
Abstract
Rechargeable Li-CO2 batteries are regarded as an ideal new-generation energy storage system, owing to their high energy density and extraordinary CO2 capture capability. Developing a suitable cathode to improve the electrochemical performance of Li-CO2 batteries has always been a research hotspot. Herein, Ni-Fe-δ-MnO2 nano-flower composites are designed and synthesized by in situ etching a Ni-Fe PBA precursor as the cathode for Li-CO2 batteries. Ni-Fe-δ-MnO2 nanoflowers composed of ultra-thin nanosheets possess considerable surface spaces, which can not only provide abundant catalytic active sites, but also facilitate the nucleation of discharge products and promote the CO2 reduction reaction. On the one hand, the introduction of Ni and Fe elements can improve the electrical conductivity of δ-MnO2. On the other hand, the synergistic catalytic effect between Ni, Fe elements and δ-MnO2 will greatly enhance the cycling performance and reduce the overpotential of Li-CO2 batteries. Consequently, the Li-CO2 battery based on the Ni-Fe-δ-MnO2 cathode shows a high discharge capacity of 8287 mA h g-1 and can stabilize over 100 cycles at a current density of 100 mA g-1. The work offers a promising guideline to design efficient manganese-based catalysts for Li-CO2 batteries.
Collapse
Affiliation(s)
- Xiaoyang Chen
- School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Jian Chen
- School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Yun Qiao
- School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Yun Gao
- Institute for Carbon Neutralization, College of Chemistry and Materials, Engineering, Wenzhou University Zhejiang 325035 China
| | - Siwei Fan
- School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Yijie Liu
- School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Li Li
- School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Yang Liu
- School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Shulei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials, Engineering, Wenzhou University Zhejiang 325035 China
| |
Collapse
|
4
|
Sarkar A, Dharmaraj VR, Yi CH, Iputera K, Huang SY, Chung RJ, Hu SF, Liu RS. Recent Advances in Rechargeable Metal-CO 2 Batteries with Nonaqueous Electrolytes. Chem Rev 2023; 123:9497-9564. [PMID: 37436918 DOI: 10.1021/acs.chemrev.3c00167] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
This review article discusses the recent advances in rechargeable metal-CO2 batteries (MCBs), which include the Li, Na, K, Mg, and Al-based rechargeable CO2 batteries, mainly with nonaqueous electrolytes. MCBs capture CO2 during discharge by the CO2 reduction reaction and release it during charging by the CO2 evolution reaction. MCBs are recognized as one of the most sophisticated artificial modes for CO2 fixation by electrical energy generation. However, extensive research and substantial developments are required before MCBs appear as reliable, sustainable, and safe energy storage systems. The rechargeable MCBs suffer from the hindrances like huge charging-discharging overpotential and poor cyclability due to the incomplete decomposition and piling of the insulating and chemically stable compounds, mainly carbonates. Efficient cathode catalysts and a suitable architectural design of the cathode catalysts are essential to address this issue. Besides, electrolytes also play a vital role in safety, ionic transportation, stable solid-electrolyte interphase formation, gas dissolution, leakage, corrosion, operational voltage window, etc. The highly electrochemically active metals like Li, Na, and K anodes severely suffer from parasitic reactions and dendrite formation. Recent research works on the aforementioned secondary MCBs have been categorically reviewed here, portraying the latest findings on the key aspects governing secondary MCB performances.
Collapse
Affiliation(s)
- Ayan Sarkar
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | | | - Chia-Hui Yi
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Kevin Iputera
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Shang-Yang Huang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
- High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Shu-Fen Hu
- Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan
| | - Ru-Shi Liu
- Department of Chemistry and Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
5
|
Carbon Tube-Based Cathode for Li-CO 2 Batteries: A Review. NANOMATERIALS 2022; 12:nano12122063. [PMID: 35745402 PMCID: PMC9227857 DOI: 10.3390/nano12122063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023]
Abstract
Metal–air batteries are considered the research, development, and application direction of electrochemical devices in the future because of their high theoretical energy density. Among them, lithium–carbon dioxide (Li–CO2) batteries can capture, fix, and transform the greenhouse gas carbon dioxide while storing energy efficiently, which is an effective technique to achieve “carbon neutrality”. However, the current research on this battery system is still in the initial stage, the selection of key materials such as electrodes and electrolytes still need to be optimized, and the actual reaction path needs to be studied. Carbon tube-based composites have been widely used in this energy storage system due to their excellent electrical conductivity and ability to construct unique spatial structures containing various catalyst loads. In this review, the basic principle of Li–CO2 batteries and the research progress of carbon tube-based composite cathode materials were introduced, the preparation and evaluation strategies together with the existing problems were described, and the future development direction of carbon tube-based materials in Li–CO2 batteries was proposed.
Collapse
|
6
|
Jheng BR, Chiu PT, Yang SH, Tong YL. Using ZnCo 2O 4 nanoparticles as the hole transport layer to improve long term stability of perovskite solar cells. Sci Rep 2022; 12:2921. [PMID: 35190601 PMCID: PMC8861179 DOI: 10.1038/s41598-022-06764-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/21/2022] [Indexed: 11/08/2022] Open
Abstract
Inorganic metal oxides with the merits of high carrier transport capability, low cost and superior chemical stability have largely served as the hole transport layer (HTL) in perovskite solar cells (PSCs) in recent years. Among them, ternary metal oxides have gradually attracted attention because of the wide tenability of the two inequivalent cations in the lattice sites that offer interesting physicochemical properties. In this work, ZnCo2O4 nanoparticles (NPs) were prepared by a chemical precipitation method and served as the HTL in inverted PSCs. The device based on the ZnCo2O4 NPs HTL showed better efficiency of 12.31% and negligible hysteresis compared with the one using PEDOT:PSS film as the HTL. Moreover, the device sustained 85% of its initial efficiency after 240 h storage under a halogen lamps matrix exposure with an illumination intensity of 1000 W/m2, providing a powerful strategy to design long term stable PSCs for future production.
Collapse
Affiliation(s)
- Bo-Rong Jheng
- Institute of Lighting and Energy Photonics, College of Photonics, National Yang Ming Chiao Tung University, No.301, Section 2, Gaofa 3rd Road, Guiren District, Tainan, 71150, Taiwan ROC
| | - Pei-Ting Chiu
- Institute of Lighting and Energy Photonics, College of Photonics, National Yang Ming Chiao Tung University, No.301, Section 2, Gaofa 3rd Road, Guiren District, Tainan, 71150, Taiwan ROC
- Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, No.360, Gaofa 2nd Road, Guiren District, Tainan, 71150, Taiwan ROC
| | - Sheng-Hsiung Yang
- Institute of Lighting and Energy Photonics, College of Photonics, National Yang Ming Chiao Tung University, No.301, Section 2, Gaofa 3rd Road, Guiren District, Tainan, 71150, Taiwan ROC.
| | - Yung-Liang Tong
- Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, No.360, Gaofa 2nd Road, Guiren District, Tainan, 71150, Taiwan ROC
| |
Collapse
|
7
|
Lian Z, Pei Y, Ma S, Lu Y, Liu Q. Anchoring Ru/RuO
2
Nanoparticles on Porous Carbon Shell as An Efficient Cathode Catalyst for Li‐CO
2
Battery. ChemistrySelect 2022. [DOI: 10.1002/slct.202104549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zheng Lian
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 PR China
| | - Ying Pei
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 PR China
| | - Shiyu Ma
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 PR China
| | - Youcai Lu
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 PR China
| | - Qingchao Liu
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 PR China
| |
Collapse
|
8
|
Lian Z, Lu Y, Wang C, Zhu X, Ma S, Li Z, Liu Q, Zang S. Single-Atom Ru Implanted on Co 3 O 4 Nanosheets as Efficient Dual-Catalyst for Li-CO 2 Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102550. [PMID: 34672110 PMCID: PMC8655220 DOI: 10.1002/advs.202102550] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/17/2021] [Indexed: 05/19/2023]
Abstract
Li-CO2 battery has attracted extensive attention and research due to its super high theoretical energy density and its ability to fix greenhouse gas CO2 . However, the slow reaction kinetics during discharge/charge seriously limits its development. Hence, a simple cation exchange strategy is developed to introduce Ru atoms onto a Co3 O4 nanosheet array grown on carbon cloth (SA Ru-Co3 O4 /CC) to prepare a single atom site catalyst (SASC) and successfully used in Li-CO2 battery. Li-CO2 batteries based on SA Ru-Co3 O4 /CC cathode exhibit enhanced electrochemical performances including low overpotential, ultra high capacity, and long cycle life. Density functional theory calculations reveal that single atom Ru as the driving force center can significantly enhance the intrinsic affinity for key intermediates, thus enhancing the reaction kinetics of CO2 reduction reaction in Li-CO2 batteries, and ultimately optimizing the growth pathway of discharge products. In addition, the Bader charge analysis indicates that Ru atoms as electron-deficient centers can enhance the catalytic activity of SA Ru-Co3 O4 /CC cathode for the CO2 evolution reaction. It is believed that this work has important implications for the development of new SASCs and the design of efficient catalyst for Li-CO2 batteries.
Collapse
Affiliation(s)
- Zheng Lian
- College of ChemistryInstitute of Green CatalysisZhengzhou UniversityZhengzhou450001P. R. China
| | - Youcai Lu
- College of ChemistryInstitute of Green CatalysisZhengzhou UniversityZhengzhou450001P. R. China
| | - Chunzhi Wang
- College of ChemistryInstitute of Green CatalysisZhengzhou UniversityZhengzhou450001P. R. China
| | - Xiaodan Zhu
- College of ChemistryInstitute of Green CatalysisZhengzhou UniversityZhengzhou450001P. R. China
| | - Shiyu Ma
- College of ChemistryInstitute of Green CatalysisZhengzhou UniversityZhengzhou450001P. R. China
| | - Zhongjun Li
- College of ChemistryInstitute of Green CatalysisZhengzhou UniversityZhengzhou450001P. R. China
| | - Qingchao Liu
- College of ChemistryInstitute of Green CatalysisZhengzhou UniversityZhengzhou450001P. R. China
| | - Shuangquan Zang
- College of ChemistryInstitute of Green CatalysisZhengzhou UniversityZhengzhou450001P. R. China
| |
Collapse
|
9
|
Synergistic effect of Cu-La0.96Sr0.04Cu0.3Mn0.7O3-δ heterostructure and oxygen vacancy engineering for high-performance Li-CO2 batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Hu Z, Xie Y, Yu D, Liu Q, Zhou L, Zhang K, Li P, Hu F, Li L, Chou S, Peng S. Hierarchical Ti 3C 2T x MXene/Carbon Nanotubes for Low Overpotential and Long-Life Li-CO 2 Batteries. ACS NANO 2021; 15:8407-8417. [PMID: 33979142 DOI: 10.1021/acsnano.0c10558] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrochemical carbon dioxide conversion at ambient temperature is an efficient route to synchronously provide a continuous power supply and produce useful chemicals such as carbonates. Rigid catalysts with rational morphological and structural design are used to overcome the sluggish reaction kinetics and contribute to a better cycle life in Li-CO2 batteries. In this report, a two-dimensional Ti3C2Tx MXene/carbon heterostructure assembled parallel-aligned tubular architecture was delicately synthesized through a self-sacrificial templating method and delivered an ultralow overpotential of 1.38 V at 0.2 A·g-1. The heterostructure that inherited the high catalytic performance of Ti3C2Tx MXene and the outstanding stability of carbon material promoted the adsorption of CO2 and accelerated the decomposition of lithium carbonate, which was proved by in situ and ex situ characterizations and density functional theory calculations. The tubular architecture with large surface area was demonstrated to provide a high durability for long cycle life and ensure good contacts among gas, electrolyte, and electrode.
Collapse
Affiliation(s)
- Zhe Hu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong Innovation Campus, Squires Way, North Wollongong, New South Wales 2522, Australia
| | - Yaoyi Xie
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Deshuang Yu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Qiannan Liu
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong Innovation Campus, Squires Way, North Wollongong, New South Wales 2522, Australia
| | - Limin Zhou
- Department Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Engineering Research Center of High-Efficiency Energy Storage (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Kai Zhang
- Department Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Engineering Research Center of High-Efficiency Energy Storage (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Peng Li
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Feng Hu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Linlin Li
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Shulei Chou
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong Innovation Campus, Squires Way, North Wollongong, New South Wales 2522, Australia
| | - Shengjie Peng
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
11
|
Thoka S, Tsai CM, Tong Z, Jena A, Wang FM, Hsu CC, Chang H, Hu SF, Liu RS. Comparative Study of Li-CO 2 and Na-CO 2 Batteries with Ru@CNT as a Cathode Catalyst. ACS APPLIED MATERIALS & INTERFACES 2021; 13:480-490. [PMID: 33375777 DOI: 10.1021/acsami.0c17373] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Alkali metal-carbon dioxide (Li/Na-CO2) batteries have generated widespread interest in the past few years owing to the attractive strategy of utilizing CO2 while still delivering high specific energy densities. Among these systems, Na-CO2 batteries are more cost effective than Li-CO2 batteries because the former uses cheaper and abundant Na. Herein, a Ru/carbon nanotube (CNT) as a cathode material was used to compare the mechanisms, stabilities, overpotentials, and energy densities of Li-CO2 and Na-CO2 batteries. The potential of Na-CO2 batteries as a viable energy storage technology was demonstrated.
Collapse
Affiliation(s)
| | - Chun-Ming Tsai
- Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan
| | - Zizheng Tong
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Anirudha Jena
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
- Department of Mechanical Engineering and Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Fu-Ming Wang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Sustainable Energy Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Chun-Chuan Hsu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Ho Chang
- Department of Mechanical Engineering and Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Shu-Fen Hu
- Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|