1
|
Starykov H, Bezvikonnyi O, Sych G, Simokaitiene J, Volyniuk D, Lazauskas A, Grazulevicius JV. Effects of donor substituents on the conformational heterogeneity, photophysical, mechanochromic and electroluminescent properties of the donor-substituted fluorine-containing triphenylpyrimidines. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124668. [PMID: 38963947 DOI: 10.1016/j.saa.2024.124668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/08/2024] [Accepted: 06/16/2024] [Indexed: 07/06/2024]
Abstract
Three derivatives of fluorinated triphenylpyrimidine with the attached carbazole, phenothiazine, or acridan donor moieties are synthesized by Buchwald-Hartwig reactions. The impact of the donor units on emissive and other properties of the compounds is reported. The compounds exhibit excellent thermal stability, competitive photophysical phenomena such as room temperature phosphorescence (RTP) appearing when compounds are molecularly dispersed in the rigid polymer matrix and thermally activated delayed fluorescence (TADF). The compounds with carbazole and phenothiazine donor moieties show the manifestation of triplet-triplet annihilation in the electroluminescence when used as emitters in organic light-emitting diodes (OLEDs). The phenothiazine-containing compound exhibit dual photoluminescence with the blue-shifted peak corresponding to the quasi-axial conformer and a red-shifted peak to the quasi-equatorial conformer. This derivative shows reversible shifts of emission spectra exceeding 100 nm due to the stable (at least 4 cycles) mechanochromic luminescence under the application of external stimuli. After grinding the emission intensity maximum is observed at 555 nm, after fuming at. ca 448 nm and after melting at 555 nm. The photoluminescence shifts and ON/OFF delayed fluorescence of the phenothiazine-based emitter occur due to the alteration between the crystalline and amorphous states. Optimization of the device structure allows to control the charge balance resulting in external quantum efficiency of up to 5.7 % observed for the OLED based on the phenothiazine-based emitter. This compound also shows the biggest response to the presence of oxygen acting as the quencher of triplet excited energy. The film of the compound doped in rigid Zeonex shows an 8.4-fold increase in emission intensity after evacuation. The optical sensor fabricated using the derivative of fluorinated triphenylpyrimidine and phenothiazine is characterized by the Stern-Volmer constant 1.37 × 10-4 ppm-1.
Collapse
Affiliation(s)
- Hryhorii Starykov
- Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, K. Baršausko St. 59 LT-51423, Kaunas, Lithuania
| | - Oleksandr Bezvikonnyi
- Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, K. Baršausko St. 59 LT-51423, Kaunas, Lithuania; Department of Physics, Faculty of Mathematics and Natural Sciences, Kaunas University of Technology, Studentų St. 50 LT-51369, Kaunas, Lithuania.
| | - Galyna Sych
- Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, K. Baršausko St. 59 LT-51423, Kaunas, Lithuania
| | - Jurate Simokaitiene
- Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, K. Baršausko St. 59 LT-51423, Kaunas, Lithuania
| | - Dmytro Volyniuk
- Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, K. Baršausko St. 59 LT-51423, Kaunas, Lithuania
| | - Algirdas Lazauskas
- Institute of Materials Sciences, Kaunas University of Technology, K. Baršausko St. 59 LT-51423, Kaunas, Lithuania
| | - Juozas Vidas Grazulevicius
- Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, K. Baršausko St. 59 LT-51423, Kaunas, Lithuania.
| |
Collapse
|
2
|
Govindharaj P, Wierzba AJ, Kęska K, Kochman MA, Wiosna-Sałyga G, Kubas A, Data P, Lindner M. Regioisomerism vs Conformation: Impact of Molecular Design on the Emission Pathway in Organic Light-Emitting Device Emitters. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 38668584 PMCID: PMC11082840 DOI: 10.1021/acsami.3c19212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Despite the design and proposal of several new structural motifs as thermally activated delayed fluorescent (TADF) emitters for organic light-emitting device (OLED) applications, the nature of their interaction with the host matrix in the emissive layer of the device and their influence on observed photophysical outputs remain unclear. To address this issue, we present, for the first time, the use of up to four regioisomers bearing a donor-acceptor-donor electronic structure based on the desymmetrized naphthalene benzimidazole scaffold, equipped with various electron-donating units and possessing distinguished conformational lability. Quantum chemical calculations allow us to identify the most favorable conformations adopted by the electron-rich groups across the entire pool of regioisomers. These conformations were then compared with conformational changes caused by the interaction of the emitter with the Zeonex and 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP) matrices, and the correlation with observed photophysics was monitored by UV-vis absorption and steady-state photoluminescence spectra, combined with time-resolved spectroscopic techniques. Importantly, a CBP matrix was found to have a significant impact on the conformational change of regioisomers, leading to unique TADF emission mechanisms that encompass dual emission and inversion of the singlet-triplet excited-state energies and result in the enhancement of TADF efficiency. As a proof of concept, regioisomers with optimal donor positions were utilized to fabricate an OLED, revealing, with the best-performing dye, an external quantum emission of 11.6%, accompanied by remarkable luminance (28,000 cd/m2). These observations lay the groundwork for a better understanding of the role of the host matrix. In the long term, this new knowledge can lead to predicting the influence of the host matrix and adopting the structure of the emitter in a way that allows the development of highly efficient and efficient OLEDs.
Collapse
Affiliation(s)
- Prasannamani Govindharaj
- Department
of Molecular Physics, Faculty of Chemistry, Łódź University of Technology, Stefana Żeromskiego 114, 90-543 Łódź, Poland
| | - Aleksandra J. Wierzba
- Institute
of Organic Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Karolina Kęska
- Institute
of Organic Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Michał Andrzej Kochman
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Gabriela Wiosna-Sałyga
- Department
of Molecular Physics, Faculty of Chemistry, Łódź University of Technology, Stefana Żeromskiego 114, 90-543 Łódź, Poland
| | - Adam Kubas
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Przemysław Data
- Department
of Molecular Physics, Faculty of Chemistry, Łódź University of Technology, Stefana Żeromskiego 114, 90-543 Łódź, Poland
| | - Marcin Lindner
- Institute
of Organic Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
3
|
Hodée M, Massue J, Achelle S, Fihey A, Tondelier D, Ulrich G, Guen FRL, Katan C. Styrylpyrimidine chromophores with bulky electron-donating substituents: experimental and theoretical investigation. Phys Chem Chem Phys 2023; 25:32699-32708. [PMID: 38014523 DOI: 10.1039/d3cp03705c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Styrylpyrimidines with bulky 9,9-dimethylacridan, phenoxazine and phenothiazine electron-donating fragments were designed. Thermally activated delayed fluorescence (TADF) properties were expected for these structures. These chromophores exhibit peculiar emission properties. For 9,9-dimethylacridan and phenoxazine derivatives, a single emission highly sensitive to the polarity is observed in solution whereas for phenothiazine derivative a dual emission is observed in solution and is attributed to the coexistence of quasi-axial (Qax) and quasi-equatorial (Qeq) conformers. This study intends to understand through theoretical and experimental works, why the studied chromophores do not exhibit TADF properties, contrary to what was expected. The absence of phosphorescence both at room temperature and 77 K tends to indicate the impossibility to harvest triplet states in these systems. Wave-function based calculations show that for both conformers of the three chromophores the S1-T1 splitting is significantly larger than 0.2 eV. The second triplet state T2 of Qeq conformers is found very close in energy to the singlet S1 state, but S1 and T2 states possess similar charge transfer characters. This prevents efficient spin-orbit coupling between the states, which is consistent with the absence of TADF.
Collapse
Affiliation(s)
- Maxime Hodée
- Univ Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Julien Massue
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR CNRS 7515, Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO) 25 Rue Becquerel, 67087 Strasbourg, Cedex 02, France.
| | - Sylvain Achelle
- Univ Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Arnaud Fihey
- Univ Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Denis Tondelier
- Laboratoire de Physique des Interfaces et des Couches Minces (LPICM), CNRS, Ecole Polytechnique, IP Paris, Palaiseau Cedex, France
- Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, Gif-sur-Yvette, France
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR CNRS 7515, Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO) 25 Rue Becquerel, 67087 Strasbourg, Cedex 02, France.
| | - Françoise Robin-le Guen
- Univ Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Claudine Katan
- Univ Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| |
Collapse
|
4
|
Bernard RS, Andruleviciene V, Belousov GK, Vaitusionak AA, Tsiko U, Volyniuk D, Kostjuk SV, Kublickas RH, Grazulevicius JV. Methoxy-substituted carbazole-based polymers obtained by RAFT polymerization for solution-processable organic light-emitting devices. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
5
|
Locally twisted donor-π-acceptor fluorophore based on phenanthroimidazole-phenoxazine hybrid for electroluminescence. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Liu T, Deng C, Duan K, Tsuboi T, Niu S, Wang D, Zhang Q. Zero-Zero Energy-Dominated Degradation in Blue Organic Light-Emitting Diodes Employing Thermally Activated Delayed Fluorescence. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22332-22340. [PMID: 35511443 DOI: 10.1021/acsami.2c02623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Blue-emitting organic light-emitting diodes (OLEDs) fall significantly behind other OLEDs in operational stability. To better understand the key factors governing the stability of blue OLEDs employing thermally activated delayed fluorescence (TADF), nine efficient sky-blue to green TADF emitters with different frontier orbital energy levels and different TADF lifetimes have been designed and synthesized on the basis of charge-transfer (CT) acridine/phenyltriazine derivatives. Among them, ToDMAC-TRZ, a molecule composed of a 9,9-dimethyl-2,7-di-o-tolyl-9,10-dihydroacridine donor and a 2,4,6-triphenyl-1,3,5-triazine acceptor, shows a quantum yield of nearly 1 and a TADF lifetime as short as 0.59 μs in thin film. However, the stability of OLEDs is independent of the frontier orbital energy levels and TADF lifetime of the emitter. In contrast, the device half-life is found to decrease by five-sixths as the 0-0 energy of the singlet excitons increases by about 0.06 eV, which can be well-explained by the Arrhenius equation employing a photoreaction model. Whether in photoluminescence or electroluminescence, the contribution of long-lifetime triplet excitons to degradation is much lower than expected, which can be accounted for by how the solid-state solvation effect reduces the energy of the 3CT state and how most molecules have a low-lying locally excited triplet state.
Collapse
Affiliation(s)
- Tiangeng Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chao Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ke Duan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Taiju Tsuboi
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sheng Niu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Dan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qisheng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
7
|
Fiodorova I, Serevičius T, Skaisgiris R, Juršėnas S, Tumkevicius S. Substituent effect on TADF properties of 2-modified 4,6-bis(3,6-di- tert-butyl-9-carbazolyl)-5-methylpyrimidines. Beilstein J Org Chem 2022; 18:497-507. [PMID: 35601989 PMCID: PMC9086497 DOI: 10.3762/bjoc.18.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/28/2022] [Indexed: 11/23/2022] Open
Abstract
The interest in organic materials exhibiting thermally activated delayed fluorescence (TADF) significantly increased in recent years owing to their potential application as emitters in highly efficient organic light emitting diodes (OLEDs). Simple modification of the molecular structure of TADF compounds through the selection of different electron-donating or accepting fragments opens great possibilities to tune the emission properties and rates. Here we present the synthesis of a series of novel pyrimidine-carbazole emitters and their photophysical characterization in view of effects of substituents in the pyrimidine ring on their TADF properties. We demonstrate that electron-withdrawing substituents directly connected to the pyrimidine unit have greater impact on the lowering of the energy gap between singlet and triplet states (ΔE ST) for efficient TADF as compared to those attached through a phenylene bridge. A modification of the pyrimidine unit with CN, SCH3, and SO2CH3 functional groups at position 2 is shown to enhance the emission yield up to 0.5 with pronounced TADF activity.
Collapse
Affiliation(s)
- Irina Fiodorova
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225, Vilnius, Lithuania
| | - Tomas Serevičius
- Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio 3, LT-10257 Vilnius, Lithuania
| | - Rokas Skaisgiris
- Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio 3, LT-10257 Vilnius, Lithuania
| | - Saulius Juršėnas
- Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio 3, LT-10257 Vilnius, Lithuania
| | - Sigitas Tumkevicius
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225, Vilnius, Lithuania
| |
Collapse
|
8
|
Serevičius T, Skaisgiris R, Dodonova J, Fiodorova I, Genevičius K, Tumkevičius S, Kazlauskas K, Juršėnas S. Temporal Dynamics of Solid-State Thermally Activated Delayed Fluorescence: Disorder or Ultraslow Solvation? J Phys Chem Lett 2022; 13:1839-1844. [PMID: 35174704 PMCID: PMC8883520 DOI: 10.1021/acs.jpclett.1c03810] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Time-resolved emission spectra of thermally activated delayed fluorescence (TADF) compounds in solid hosts demonstrate significant temporal shifts. To explain the shifts, two possible mechanisms were suggested, namely, slow solid-state solvation and conformational disorder. Here we employ solid hosts with controllable polarity for analysis of the temporal dynamics of TADF. We show that temporal fluorescence shifts are independent of the dielectric constant of the solid film; however, these shifts evidently depend on the structural parameters of both the host and the TADF dopant. A ≤50% smaller emission peak shift was observed in more rigid polymer host polystyrene than in poly(methyl methacrylate). The obtained results imply that both the host and the dopant should be as rigid as possible to minimize fluorescence instability.
Collapse
Affiliation(s)
- Tomas Serevičius
- Institute
of Photonics and Nanotechnology, Vilnius
University, Saulėtekio 3, LT-10257 Vilnius, Lithuania
| | - Rokas Skaisgiris
- Institute
of Photonics and Nanotechnology, Vilnius
University, Saulėtekio 3, LT-10257 Vilnius, Lithuania
| | - Jelena Dodonova
- Institute
of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Irina Fiodorova
- Institute
of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Kristijonas Genevičius
- Institute
of Chemical Physics, Vilnius University, Saulėtekio 3, LT-10257 Vilnius, Lithuania
| | - Sigitas Tumkevičius
- Institute
of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Karolis Kazlauskas
- Institute
of Photonics and Nanotechnology, Vilnius
University, Saulėtekio 3, LT-10257 Vilnius, Lithuania
| | - Saulius Juršėnas
- Institute
of Photonics and Nanotechnology, Vilnius
University, Saulėtekio 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
9
|
Bracciale MP, Kwon G, Ho D, Kim C, Santarelli ML, Marrocchi A. Synthesis, Characterization, and Thin-Film Transistor Response of Benzo[i]pentahelicene-3,6-dione. Molecules 2022; 27:863. [PMID: 35164123 PMCID: PMC8840029 DOI: 10.3390/molecules27030863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/16/2022] Open
Abstract
Organic semiconductors hold the promise of simple, large area solution deposition, low thermal budgets as well as compatibility with flexible substrates, thus emerging as viable alternatives for cost-effective (opto)-electronic devices. In this study, we report the optimized synthesis and characterization of a helically shaped polycyclic aromatic compound, namely benzo[i]pentahelicene-3,6-dione, and explored its use in the fabrication of organic field effect transistors. In addition, we investigated its thermal, optical absorption, and electrochemical properties. Finally, the single crystal X-ray characterization is reported.
Collapse
Affiliation(s)
- Maria Paola Bracciale
- Department of Chemical Engineering Materials and Environment, University of Rome “Sapienza”, Via Eudossiana 18, 00184 Rome, Italy;
| | - Guhyun Kwon
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (G.K.); (D.H.); (C.K.)
| | - Dongil Ho
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (G.K.); (D.H.); (C.K.)
| | - Choongik Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (G.K.); (D.H.); (C.K.)
| | - Maria Laura Santarelli
- Department of Chemical Engineering Materials and Environment, University of Rome “Sapienza”, Via Eudossiana 18, 00184 Rome, Italy;
| | - Assunta Marrocchi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
10
|
Achelle S, Verbitskiy EV, Fecková M, Bureš F, Barsella A, Robin-le Guen F. V-Shaped Methylpyrimidinium Chromophores for Nonlinear Optics. Chempluschem 2021; 86:758-762. [PMID: 33973733 DOI: 10.1002/cplu.202100081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/28/2021] [Indexed: 12/16/2022]
Abstract
A series of four V-shaped methylpyrimidinium salts bearing diphenylamino-electron-donating groups appended at various pyrimidine positions were designed. These chromophores were obtained by regioselective N(1) monomethylation by methyl methanesulfonate of the pyrimidine core. Linear optical properties were studied experimentally and electronic properties were further completed by (TD)-DFT calculations. The second-order nonlinear optical (NLO) properties were also studied using electric field induced second harmonic generation (EFISH) method in chloroform, and all pyrimidinium salts exhibited μβ0 >1000×10-48 esu. The 2,4-disubstituted pyrimidinium core is preferred over 4,6-disubstitution as it enhances the NLO response and increases the dipole moment. (E,E)-2,4-Bis[4-(diphenylamino)styryl]-1-methylpyrimidin-1-ium methanesulfonate appears to be the best NLO-phore in chloroform in the series (μβ0 =2500×10-48 esu) and a figure of merit μβ0 /MW=3.4 10-48 esu mol g-1 .
Collapse
Affiliation(s)
- Sylvain Achelle
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes-UMR6226, 35000, Rennes, France
| | - Egor V Verbitskiy
- I. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya Str. 22, Ekaterinburg, 620137, Russia
- Ural Federal University, Mira St. 19, Ekaterinburg, 620002, Russia
| | - Michaela Fecková
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes-UMR6226, 35000, Rennes, France
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, 53210, Czech Republic
| | - Filip Bureš
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, 53210, Czech Republic
| | - Alberto Barsella
- Département d'Optique ultrarapide et Nanophotonique, IPCMS, UMR CNRS 7504, Université de Strasbourg, 23 rue du Loess, BP 43, 67034, Strasbourg Cedex 2, France
| | | |
Collapse
|
11
|
Hempe M, Kukhta NA, Danos A, Fox MA, Batsanov AS, Monkman AP, Bryce MR. Vibrational Damping Reveals Vibronic Coupling in Thermally Activated Delayed Fluorescence Materials. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2021; 33:3066-3080. [PMID: 34267422 PMCID: PMC8273894 DOI: 10.1021/acs.chemmater.0c03783] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/05/2021] [Indexed: 05/18/2023]
Abstract
We investigate a series of D-A molecules consisting of spiro[acridan-9,9'-fluorene] as the donor and 2-phenylenepyrimidine as the acceptor. In two of the materials, a spiro center effectively electronically isolates the D unit from (consequently) optically innocent yet structurally influential adamantyl side groups. In a third material, adamantyl groups attached directly to the acceptor strongly influence the electronic properties. Steady-state and time-resolved photophysical studies in solution, Zeonex polymer matrix, and neat films reveal that the substituents impact the efficiency of vibronic coupling between singlet and triplet states relevant to reverse intersystem crossing (rISC) and thermally activated delayed fluorescence (TADF), without significantly changing the singlet-triplet gap in the materials. The adamantyl groups serve to raise the segmental mass and inertia, thereby damping intramolecular motions (both vibrational and rotational). This substitution pattern reveals the role of large-amplitude (primarily D-A dihedral angle rocking) motions on reverse intersystem crossing (rISC), as well as smaller contributions from low-amplitude or dampened vibrations in solid state. We demonstrate that rISC still occurs when the high-amplitude motions are suppressed in Zeonex and discuss various vibronic coupling scenarios that point to an underappreciated role of intersegmental motions that persist in rigid solids. Our results underline the complexity of vibronic couplings in the mediation of rISC and provide a synthetic tool to enable future investigations of vibronic coupling through selective mechanical dampening with no impact on electronic systems.
Collapse
Affiliation(s)
- Matthias Hempe
- Chemistry
Department, Durham University, South Road, Durham DH1 3LE, U.K.
| | - Nadzeya A. Kukhta
- Chemistry
Department, Durham University, South Road, Durham DH1 3LE, U.K.
| | - Andrew Danos
- Physics
Department, Durham University, South Road, Durham DH1 3LE, U.K.
| | - Mark A. Fox
- Chemistry
Department, Durham University, South Road, Durham DH1 3LE, U.K.
| | - Andrei S. Batsanov
- Chemistry
Department, Durham University, South Road, Durham DH1 3LE, U.K.
| | - Andrew P. Monkman
- Physics
Department, Durham University, South Road, Durham DH1 3LE, U.K.
| | - Martin R. Bryce
- Chemistry
Department, Durham University, South Road, Durham DH1 3LE, U.K.
| |
Collapse
|
12
|
Wu P, Xie FM, Wei HX, Li YQ, Dai GL, Wang Y, Tang JX, Zhao X. Thermally activated delayed fluorescent emitters based on 3-(phenylsulfonyl)pyridine. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Serevičius T, Skaisgiris R, Kreiza G, Dodonova J, Kazlauskas K, Orentas E, Tumkevičius S, Juršėnas S. TADF Parameters in the Solid State: An Easy Way to Draw Wrong Conclusions. J Phys Chem A 2021; 125:1637-1641. [PMID: 33576226 PMCID: PMC8279544 DOI: 10.1021/acs.jpca.0c10391] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
successful development of thermally activated delayed fluorescence
(TADF) OLEDs relies on advances in molecular design. To guide the
molecular design toward compounds with preferable properties, special
care should be taken while estimating the parameters of prompt and
delayed fluorescence. Mistakes made in the initial steps of analysis
may lead to completely misleading conclusions. Here we show that inaccuracies
usually are introduced in the very first steps while estimating the
solid-state prompt and delayed fluorescence quantum yields, resulting
in an overestimation of prompt fluorescence (PF) parameters and a
subsequent underestimation of the delayed emission (DF) yield and
rates. As a solution to the problem, a working example of a more sophisticated
analysis is provided, stressing the importance of in-depth research
of emission properties in both oxygen-saturated and oxygen-free surroundings.
Collapse
Affiliation(s)
- Tomas Serevičius
- Institute of Photonics and Nanotechnology, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Rokas Skaisgiris
- Institute of Photonics and Nanotechnology, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Gediminas Kreiza
- Institute of Photonics and Nanotechnology, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Jelena Dodonova
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Karolis Kazlauskas
- Institute of Photonics and Nanotechnology, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Edvinas Orentas
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Sigitas Tumkevičius
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Saulius Juršėnas
- Institute of Photonics and Nanotechnology, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
14
|
Woo SJ, Kim JJ. TD-DFT and Experimental Methods for Unraveling the Energy Distribution of Charge-Transfer Triplet/Singlet States of a TADF Molecule in a Frozen Matrix. J Phys Chem A 2021; 125:1234-1242. [PMID: 33517658 DOI: 10.1021/acs.jpca.0c11322] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reverse intersystem crossing (RISC) rate of a thermally activated delayed fluorescence (TADF) molecule is sensitive to the energy alignment of the singlet charge-transfer state (1CT), triplet charge-transfer state (3CT), and locally excited triplet state (3LE). However, the energy distribution of the charge-transfer states originating from the conformational distribution of TADF molecules in a solid matrix inevitably generated during the preparation of a solid sample due to the rotatable donor-acceptor linkage is rarely considered. Moreover, the investigation of the energy distribution of the 3CT state is both theoretically and experimentally difficult due to the triplet instabilities of time-dependent density functional (TD-DFT) calculations and difficulties in phosphorescence measurements, respectively. As a result, the relationships between conformational distribution, configurations of excited state transition orbitals, and excited state energies/dynamics have not been clearly explained. In this work, we determined the energy distribution of CT states of the TADF emitter TPSA in frozen toluene at 77 K by the measurement of time-resolved spectra in the full time range (1 ns to 30 s) of emission including prompt fluorescence, TADF, 3CT phosphorescence, and 3LE phosphorescence. We obtained the energy band of CT states where 1CT and 3CT states are distributed in the range of 2.85-3.00 and 2.64-2.96 eV, respectively. We tested various global hybrid and long-range corrected functionals for the TD-DFT calculation of 3CT energy of TPSA and found that only the M11 functional shows consistent results without triplet instability. We performed TD-DFT with the M11* functional optimized for a robust dihedral angle scan of 3CT states without triplet instability and reproduced the energy band structure obtained from the experiment. Through TD-DFT and experimental investigations, it is estimated that the dihedral angles of donor-acceptor (θD-A) and acceptor-linker (θA) of TPSA in frozen toluene lie within the range 70° ≤ θD-A ≤ 90° and 0° ≤ θA ≤ 30° respectively. Our results show that the dihedral angle distribution must be considered for further investigation of the photophysics of TADF molecules and the development of stable and efficient TADF emitters.
Collapse
Affiliation(s)
- Seung-Je Woo
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jang-Joo Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
15
|
Fecková M, Kalis IK, Roisnel T, le Poul P, Pytela O, Klikar M, Robin-le Guen F, Bureš F, Fakis M, Achelle S. Photophysics of 9,9-Dimethylacridan-Substituted Phenylstyrylpyrimidines Exhibiting Long-Lived Intramolecular Charge-Transfer Fluorescence and Aggregation-Induced Emission Characteristics. Chemistry 2020; 27:1145-1159. [PMID: 33016475 DOI: 10.1002/chem.202004328] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Indexed: 01/23/2023]
Abstract
Six pyrimidine-based push-pull systems substituted at positions C2 and C4/6 with phenylacridan and styryl moieties, employing methoxy or N,N-diphenylamino donors, have been designed and synthesized through cross-coupling and Knoevenagel reactions. X-ray analysis confirmed that the molecular structure featured the acridan moiety arranged perpendicularly to the residual π system. Photophysical studies revealed significant differences between the methoxy and N,N-diphenylamino chromophores. Solvatochromic studies revealed that the methoxy derivatives showed dual emission in polar solvents. Time-resolved spectroscopy revealed that the higher energy band involved very fast (<80 ps) fluorescence, whereas the lower energy one included long components (≈30 ns) due to long-lived intramolecular charge-transfer fluorescence. In contrast to N,N-diphenylamino chromophores, the methoxy derivatives also showed aggregation-induced emission in mixtures of THF/water, as well as dual emission in thin films, covering almost the whole visible spectrum with corresponding chromaticity coordinates not far from that of pure white light. These properties render the methoxy derivatives as very promising organic materials for white organic light-emitting diodes.
Collapse
Affiliation(s)
- Michaela Fecková
- Institut des Sciences Chimique de Rennes, UMR 6226, Univ. Rennes, CNRS, 35000, Rennes, France.,Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studenská 573, 53210, Pardubice, Czech Republic
| | | | - Thierry Roisnel
- Institut des Sciences Chimique de Rennes, UMR 6226, Univ. Rennes, CNRS, 35000, Rennes, France
| | - Pascal le Poul
- Institut des Sciences Chimique de Rennes, UMR 6226, Univ. Rennes, CNRS, 35000, Rennes, France
| | - Oldřich Pytela
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studenská 573, 53210, Pardubice, Czech Republic
| | - Milan Klikar
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studenská 573, 53210, Pardubice, Czech Republic
| | - Françoise Robin-le Guen
- Institut des Sciences Chimique de Rennes, UMR 6226, Univ. Rennes, CNRS, 35000, Rennes, France
| | - Filip Bureš
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studenská 573, 53210, Pardubice, Czech Republic
| | - Mihalis Fakis
- Department of Physics, University of Patras, 26504, Patras, Greece
| | - Sylvain Achelle
- Institut des Sciences Chimique de Rennes, UMR 6226, Univ. Rennes, CNRS, 35000, Rennes, France
| |
Collapse
|